• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column

    2021-09-10 09:26:34ZheDING丁哲JingfengYAO姚靜鋒YingWANG王瑩ChengxunYUAN袁承勛ZhongxiangZHOU周忠祥AnatolyKUDRYAVTSEVRuilinGAO高瑞林andJieshuJIA賈潔姝
    Plasma Science and Technology 2021年9期
    關(guān)鍵詞:王瑩

    Zhe DING (丁哲),Jingfeng YAO (姚靜鋒),Ying WANG (王瑩),2,Chengxun YUAN (袁承勛),2,?,Zhongxiang ZHOU (周忠祥),2,Anatoly A KUDRYAVTSEV,2,3,Ruilin GAO (高瑞林) and Jieshu JIA (賈潔姝)

    1 School of Physics,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    2 Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology,Harbin 150001,People’s Republic of China

    3 Physics Department,Saint Petersburg State University,St.Petersburg 198504,Russia

    4 Shanghai Electro-Mechanical Engineering Institute,Shanghai 201109,People’s Republic of China

    5 Science and Technology on Electromagnetic Scattering Laboratory,Shanghai 200438,People’s Republic of China

    Abstract This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma.Dust in a plasma has a large impact on the properties of the plasma.According to a probe diagnostic experiment on a dust-free plasma combined with machine learning,an experiment on a dusty plasma is designed and carried out.Using a specific experimental device,dusty plasma with a stable and controllable dust particle density is generated.A Langmuir probe is used to measure the electron density and electron temperature under different pressures,discharge currents,and dust particle densities.The diagnostic result is processed through a machine learning algorithm,and the error of the predicted results under different pressures and discharge currents is analyzed,from which the law of the machine learning results changing with the pressure and discharge current is obtained.Finally,the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.

    Keywords: dusty plasma,machine learning,Langmuir probe

    1.Introduction

    Dusty plasma is a plasma system formed by adding dust particles to a plasma [1].The dust particles become charged due to the nature of the plasma itself [2].Dusty plasmas are often not intentional but sometimes formed intentionally for certain applications.Because the properties of charged dust particles are different from those of electrons and ions,dusty plasma has many unique characteristics [3].It plays an important role in the field of space and engineering applications [4,5].In carrying out laboratory research on dusty plasma,it is important to understand the specific parameters of the dusty plasma [6,7],especially its electron density and electron temperature [8].The diagnostic method is therefore at the heart of experimental research on dusty plasma,so that improving the diagnostic method is of great significance [9].

    The very existence of the dust particles makes the diagnosis of dusty plasma in the laboratory a very challenging problem[10].Commonly used methods include spectrum diagnosis[11],microwave diagnosis[12],and probe diagnosis[13].In spectrum diagnosis,the fiber probe can usually diagnose only outside the plasma area[14].Dust particles in the dusty plasma interfere with the spectrum that the probe can receive,so that the measured spectrum cannot accurately reflect the real situation inside the dusty plasma.For microwave diagnosis,since the dust particles carry electric charges,they will,like electrons,interact with the electromagnetic waves passing through the plasma,causing attenuation of the waves and introducing errors in the measurement of parameters.For probe diagnosis [15],because the diagnostic system applies a voltage to the probe during the diagnostic process,the charged dust particles will adhere to the surface of the probe,preventing the probe from collecting the current in the plasma[10].Because the dust attachment process is relatively random,accurate corrections cannot be made during the diagnostic process and the probe data cannot be calculated correctly [16].So,the dust particles and especially the fact that they are charged prevent the accurate diagnosis of dusty plasma using conventional diagnostic methods.Therefore,improving the diagnostic methods is an important task in the study of dusty plasma [17].

    At the same time,machine learning methods have been used to solve the Boltzmann equation of weakly ionized plasma[18].In plasma diagnosis,Jonathan Chalaturnyk[19]studied the feasibility of machine learning to enhance the diagnosis of dust-free plasma probes.In previous experiments,machine learning has also been successfully implemented to enhance the diagnosis of plasma probes [20].We conclude that improvement in diagnosing dusty plasma is feasible.Since the amount of dust in the dusty plasma has a direct influence on the diagnostic result,the use of machine learning to process the data obtained from the diagnosis and thereby to reduce the error of the result has great research value.At the same time,considering that in common probe diagnostic methods dust particles have relatively little influence,probe diagnosis can be used as the data source for machine learning in order to study parameters such as the electron density and temperature of the dusty plasma.

    Here we present the results of a study in which diagnosing dusty plasma is combined with machine learning and probe diagnosis.The diagnostic result of a smaller dust density is input into the machine learning algorithm; then the result for a larger dust density is predicted,and the predicted result is analyzed.By comparing the results of machine learning with that of fluid model,the reliability of the machine learning algorithm is further verified,and the properties of electron density and temperature of the dust plasma are further analyzed by an improved probe diagnosis method.In section 2,the formulas and principles used in the simulation are introduced,and the machine learning algorithm is applied.In section 3,the experimental device and the process of carrying out the experiment are explained in detail,along with the specific research methods.In section 4,the results of the experiment are analyzed in detail and are compared with the results of a dust-free plasma.Finally,in section 5,conclusions are presented.

    Figure 1.Schematic diagram of discharge device: (a) anode,(b) cathode,(c) dust particle,(d) Langmuir probe.

    2.Setting up the experiment

    In this section,the plasma generator,parameter selection,and some early data processing methods are introduced.

    2.1.Dusty plasma generator and parameter selection

    In order to obtain results of the initial dusty plasma probe diagnosis,the dusty plasma generator used by Ding [21] is adopted,as shown in figure 1.The experimental device can completely trap the dust particles in the curved part of the tube and thereby control the distribution of dust particles in the plasma.Because the density of dust particlesndis difficult to control accurately in the experiment,it is impossible to analyze accurately the influence of dust density on the experimental results.But by injecting a known amount of dust particles in this experimental device,the density of local dust particles can be changed regularly with changing the pressure and voltage,although the density of dust cannot be accurately known.Furthermore,accurate collection of probe data is realized,which provides better data for the prediction of the algorithm.

    Figure 1 gives the overall structure of the plasma generator.It is bent 40 cm glass tube with an inside diameter of 3 cm.The electrode spacing is 25 cm.Some dust particles are placed in the glass tube,and after the discharge starts,they become suspended in the plasma to form a dusty plasma.The dust particles are made of aluminum oxide,there are about 200–300 dust particles in the bend.The dust particles are spherical and have a diameter of 5 μm.The plasma gas is helium,and DC glow discharge is used as the plasma environment in which the dust is suspended.The probe is at the curved part of the glass tube to measure the dusty plasma density and temperature in the positive column in that area.The probe used for measurement is the Impedans commercial probe system.By using high temperature to soften the wall of the glass tube,and passing the probe through the wall,the air tightness of the device is not affected.The plasma powersupply is a CE 1500 005T programed power-supply,which can directly read the power-supply current and voltage and continuously adjust its output parameters.The maximum power-supply voltage is 1500 V,and enough data can be obtained for machine learning training and verification.A 100 kW resistor is connected in series in the circuit.

    In the probe diagnosis of plasma [22],due to the difficulty in measuring discharge current,the pressure and the total voltage of the circuit were selected as the input parameters of the algorithm for analysis.When diagnosing dusty plasma,by improving the accuracy of discharge current diagnosis,more basic discharge current can be selected as the input parameter.Therefore,discharge current and gas pressure are used as input parameters,and electron temperature and electron density are used as output parameters.The diagnostic results at a specific dust particle density are used to train the machine learning algorithms,in order to obtain diagnostic results at other dust particle densities.

    2.2.Implementation details of machine learning

    Because of its scalability and data-fitting ability,the multilayer perceptron (MLP) algorithm,with excellent performance in machine learning,was selected.The number of input nodes of the multilayer perceptron,=d2,corresponds to the pressure and voltage of the plasma.Similarly,the number of nodes in the output layer,=q2,corresponds to the electron temperature and electron density.Through a large number of experimental measurements,the model achieves the best performance when the number of network layers is =l1.The optimal number of nodes in each hidden layer ish1=20,h2=40,h3=40,andh4=20.The code is implemented by Pytorch 1.0 in Python,and the computing device is a desktop computer with Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz and NVIDIA GeForce GTX 1060 3 GB.To achieve better convergence of the model and avoid gradient disappearance,Gaussian regularization is adopted for both input and output data.We take the electron density data measured by experiments as the true value as the standard to evaluate the accuracy of data prediction.

    The treatment method is as follows:

    wherexis the data vector to be regularized,xregis the result of regularization,andTis the length of the vector.To measure the accuracy of the predicted results,an accuracy calculation method Ac is designed:

    where(R∈0),1 is the maximum acceptable threshold,is the number of predicted data meeting condition equation(2)in the test phase.Ois the predicted result on the test set and is explained in detail in section 3.2.?Ois the true value of test data,andPtotalis the number of test data,while ?OandOare all the original values which are not regularized by equation (1).

    3.Theories of dusty plasma and machine learning

    After choosing the device to be used in the experiment and the selected parameters,the data obtained through the experiment need to be input into the machine learning algorithm for learning and training,and the predicted result needs to be compared with the simulation result of COMSOL Multiphysics software.In this section,the formulas for dusty plasma simulation and the machine learning algorithm that we used are introduced.

    3.1.Model formulation of dusty plasma

    We used Liang’s improved plasma fluid model [23] with the addition of the dust-charging process,and used helium as the gas.Simulations were performed using the finite element method in COMSOL Multiphysics software,which allows relatively simple solutions to complex problems in various fields.Below we briefly introduce the equations of the dusty plasma fluid model system.

    The absorption term of each charged particle by dust particles is added to the plasma particle continuity equation:

    where

    k=(e,i) represents electrons or ions,nkis the density of electrons or ions,Skrepresents the sources and sinks caused by the plasma chemical processes,Ikis the corresponding electron or ion charging current,Γkis the flux density,μkandDkare,respectively,the corresponding mobility and diffusion coefficients,andEis the electric field,zkis the number of charges of the charged particles in the plasma.

    Maxwellian electron energy distribution function was used for the calculation of rate constants in this work.The electron energy balance equation is written as

    where

    Hereneis the electron energy density and Γεis the heat flux density,εDis the electron energy diffusion coefficient.The first term on the right side of equation (6) expresses the thermal conductivity and the second term describes heat transfer due to electron drift in the electric fieldE.In equation (5),εSis the electron energy change due to the elastic and inelastic collisions.Energy loss of a single electron to a dust particle is assumed to beeφd.

    The spatial distribution of the electric field is determined by the electric potential,obtained from the modified Poisson equation

    whereε0is the vacuum dielectric constant.

    The dust particle radiusrd=5μm.Assuming that at the center of the dust particle area,the electron density isne=4.01×1015m?3,the ion density isni=4.03×1015m?3,and the concentration of neutral molecules isng=1.56×1022m?3.

    We use the above formula to simulate dusty plasmas with different pressures,different discharge currents,and different dust particle densities,and compare the results obtained with the results obtained by the algorithm to further illustrate the feasibility of the algorithm and analyze the properties of electron density and temperature of the dusty plasma.

    3.2.Theories of machine learning

    MLP,also known as artificial neural network,is a neural network composed of fully connected layers with at least one hidden layer.The output of each hidden layer of the multilayer perceptron is transformed by the activation function so that the neural network can acquire the ability to fit a nonlinear function.Specifically,a small batch of sampleX∈Rn×dis given,with batch sizenand number of inputsd.For a MLP ofllayers,the number of hidden layers is ?l1,and the number of neurons in each hidden layer ishi.We let the output of each hidden layer beHi∈Rn×hi,and the weight and bias parameters of a hidden layer be,respectively,Wi∈Rhi?1×hiandbi∈Rn×hi,so the output of the networkO∈Rn×qcan be written

    whereqis the number of neurons in the output layer andφis the activation function.In our experiment,LeakyRelu [24] is selected as the activation function to avoid the problem of a vanishing gradient.This is expressed as

    whereais hyperparameters,we follow the original value of LeakyRelu[24],which is set to 0.01 in the experiment.Mean square error (MSE) is the most commonly used loss function in regression problems.It is the mean of the sum of squares of the difference between the predicted value and the target value,and can be expressed as:

    whereLis the loss function and ?Ois the true value of training data.In order to avoid falling into a local optimum in the training process,momentum parameters are added into the batch gradient descent,and the parameter update rule of the network is whereη> 0 is the learning rate,μis the hyperparameter of momentum,and ?Lmse(θt)is the gradient at the tunable hyperparameterθt(includingWandB).

    Figure 2.Distribution of probe measurement data.

    4.Result

    In the experiment,the plasma parameters under different dust injection volume,discharge currents,and pressures were measured.Regarding the distribution of pressure and discharge current in the probe data,as shown in figure 2,repeated measurements were made for different dust injection volumes,and 10%of the data were selected as the test set,the rest of the data being the training set.In the end,the machine learning algorithm was used to predict the electron temperature and electron density in a larger parameter range.The specific results are shown in figure 3.By fixing the volume of dust injected,the parameters of voltage and pressure will affect the dust density.Although it is difficult to directly control the dust density,the effect of the continuously changing dust density on the experimental results can clearly be seen and the machine learning algorithm allows the dust density to be simply used as an input parameter in subsequent applications.

    Figure 4 shows the loss rate and accuracy rate of the machine learning algorithm as functions of the number of iterations.In figure 4(a),under the 10% standard,the accuracy rate of the electron density is finally stable at 92.23%,and under the 30% standard,the final accuracy can reach 100%,indicating that all data errors are less than 30%,according to the probe equation,the electron density can be calculated:

    whereAis the surface area of the probe,andIesis the electron saturation current.

    Figure 3.Distribution of predicted data: (a) electron density,(b) electron temperature.

    Figure 4.Various results as functions of the number of iterations.(a)Accuracy of electron density,(b)accuracy of electron temperature,(c)loss rates of electron density and electron temperature.

    In the diagnosis of dust plasma,due to the adhesion of dust particles to the surface of the probe,Awill be reduced,but the originalAis still used in the calculation process,which causes the calculated electron density to be less than the true value.This is the reason why the accuracy rate of the electron density cannot reach 100%.As shown in figure 5,in the dust plasma,the electron saturation current measured by the probe decreases slightly,and the voltage that reaches the saturation current increases.The accuracy of parameters is corresponding to the situation of the probe surface influenced by dust.

    For the electron temperature,according to the equation of the probe,the electron temperature can be calculated

    whereIpis the probe current,VBis the probe potential,and ΦPis the plasma space potential.

    Figure 5.I–V characteristic curve of the probe with free-dust and dust.

    Figure 6.Error of each group of verification data: (a) electron density,(b) electron temperature.

    There is noAterm in this equation,and it can be considered that the electron temperature diagnosis process is less affected by dust particles.Therefore,the machine learning algorithm can get good prediction results.One can see the expected results in figure 4(b).At the same time,for the same reason,the loss rate of electron temperature is also significantly lower than that of the electron density(figure 4(c)).

    To get the error of the test set,we divide the data into two parts.The detailed error of the data of the test set is shown in figure 6.Due to the influence of dust on the probe,the error of the electron temperature is significantly less than that of the electron density.But as can be seen in figure 7,for large-scale prediction data,the distribution of the prediction results in figures 7(b) and (d) is well summarized and reflects the distribution of training data in figures 7(a)and(c).Especially for the electron temperature,the distribution of exploration data in the training set is relatively insignificant,and machine learning algorithms can also achieve good prediction results.In the experimental results,the law of electron density and temperature changing with pressure and discharge current is not clear.At the same time,due to the random nature of dust pollution,the law is difficult to formulate.But machine learning algorithms can reproduce this law well and make it more obvious.At the same time,figure 6(a) shows the obvious periodic distribution of the error distribution in the test set.

    In order to study the periodic distribution of errors in detail,when the pressure is 120 Pa,discharge current is selected as the variable for studying the prediction data,and compared with the test set.Figure 8 shows that the difference between the predicted value and the measured value of the electron density gradually decreases when the discharge current increases.Combining with the experimental phenomenon shown in figure 8(c),it can be seen that when the discharge current increases,the dust density of the measuring part decreases.From equation (13) it can be concluded that when the dust density decreases,the surface area of the probe is less affected during the measurement,so the deviation between the measured value and the predicted value is also reduced.In the same way,the error of the electron temperature in figure 8(b) should remain stable(equation(14)),and the law of the prediction error changing with the discharge current is in good agreement with the experimental phenomenon and theory.One can compare the results of the modified plasma fluid model with the probe results after the machine learning correction.As shown in figure 9,compared with the predicted data and the simulated data,a better match is achieved.Evidently,machine learning has achieved a good prediction of electron density and electron temperature,and successfully demonstrated the influence of dust particles on the plasma diagnostic results.

    Figure 7.Comparison of predicted data and training data: (a) training data of electron density,(b) predicted data of electron density,(c) training data of electron temperature,(d) predicted data of electron temperature.

    5.Conclusions

    In the traditional probe diagnosis method,when diagnosing dust plasma,dust particles will be adsorbed on the surface of the probe during the diagnostic process,which causes the diagnostic result of the probe to deviate from the true value.The adsorption process of dust particles is random,so this effect cannot be corrected physically.For this reason,we extended the machine learning algorithm applied to the traditional probe theory to the probe diagnosis of dust plasma.

    Our probe diagnosis used dusty plasma and processed the measurements using machine learning algorithms.The results show that for the electron density,under the 10% standard,a high accuracy rate cannot be achieved,while the electron temperature has a better accuracy rate.Through the analysis of the principle of probe diagnosis,we believe that such a result conforms to the rule governing the influence of dust particles on the probe.When comparing the predicted results and the measured results in detail,we found that the error showed a periodic distribution.In order to try to understand the reason,the change of the error was observed in detail,with the discharge current as the independent variable.By comparing with the dust density in the dusty plasma experiment,the law of change of the error and the law of change of the dust density were in good agreement.Finally,the results are compared with the results of the fluid mechanics model,and better results are obtained than for the data measured by the probe.We conclude that the machine learning algorithm shows great advantages in the diagnosis of dusty plasma.While revealing the dust’s influence on plasma,it can also correct this influence to a certain extent,achieving a good correction effect on the probe.

    Figure 8.Differences in data:(a)electron density,(b)electron temperature.Image dust particle of different discharge currents:(c)5.9 mA,(d)8.8 mA.

    Figure 9.Comparisons of predictions and simulations.

    Acknowledgments

    The research has been financially supported by National Natural Science Foundation of China (Nos.11775062,11805130 and 11905125) and the Shanghai Sailing Program (Nos.19YF1420900 and 18YF1422200).

    ORCID iDs

    猜你喜歡
    王瑩
    Valley-dependent topological edge states in plasma photonic crystals
    鋼琴性能對音樂創(chuàng)作風(fēng)格的影響
    音樂探索(2022年2期)2022-05-30 21:01:37
    巧用比較策略,突破學(xué)生的學(xué)習(xí)難點
    王瑩作品
    王瑩作品賞析
    王瑩作品
    王瑩作品賞析
    萊儷青年藝術(shù)獎獲獎?wù)?王瑩:《租賃一平方米》的力量
    Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma
    王瑩作品
    亚洲精品国产av成人精品| 亚洲成色77777| 日本爱情动作片www.在线观看| 汤姆久久久久久久影院中文字幕| 久久久久久久久久成人| 欧美xxxx性猛交bbbb| 国产免费视频播放在线视频| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩精品成人综合77777| 97在线人人人人妻| 亚洲情色 制服丝袜| 亚洲欧洲国产日韩| 免费观看在线日韩| 王馨瑶露胸无遮挡在线观看| 夫妻午夜视频| 99热国产这里只有精品6| 国产黄频视频在线观看| 欧美三级亚洲精品| 亚洲国产精品999| 国产亚洲av片在线观看秒播厂| 国产亚洲一区二区精品| 亚洲av免费高清在线观看| 青青草视频在线视频观看| 亚洲av.av天堂| 久久国产乱子免费精品| 亚洲av欧美aⅴ国产| 久久免费观看电影| 亚洲成色77777| 欧美日本中文国产一区发布| 亚洲人成网站在线观看播放| 国产又色又爽无遮挡免| 国产成人精品一,二区| 18禁动态无遮挡网站| 美女视频免费永久观看网站| 水蜜桃什么品种好| 一本一本综合久久| 色婷婷久久久亚洲欧美| 国产精品久久久久久av不卡| 少妇裸体淫交视频免费看高清| 国国产精品蜜臀av免费| 亚洲天堂av无毛| 婷婷色麻豆天堂久久| 99视频精品全部免费 在线| 久久这里有精品视频免费| 欧美丝袜亚洲另类| 一二三四中文在线观看免费高清| 搡老乐熟女国产| 91久久精品国产一区二区三区| 亚州av有码| 免费观看av网站的网址| 国产成人一区二区在线| 91成人精品电影| 中文字幕人妻熟人妻熟丝袜美| 国产日韩欧美亚洲二区| 国产日韩欧美亚洲二区| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久大尺度免费视频| 欧美日韩av久久| 亚洲av免费高清在线观看| 精品卡一卡二卡四卡免费| 99九九线精品视频在线观看视频| 有码 亚洲区| 精品久久国产蜜桃| 国产精品欧美亚洲77777| 国产午夜精品久久久久久一区二区三区| 色94色欧美一区二区| 内射极品少妇av片p| 人妻 亚洲 视频| 丝袜喷水一区| 亚洲国产欧美日韩在线播放 | 久久这里有精品视频免费| 日韩电影二区| a级片在线免费高清观看视频| 亚洲国产精品国产精品| a级毛色黄片| 亚洲人与动物交配视频| 能在线免费看毛片的网站| 精品卡一卡二卡四卡免费| 丰满少妇做爰视频| 插阴视频在线观看视频| 午夜免费鲁丝| 免费久久久久久久精品成人欧美视频 | 韩国高清视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 你懂的网址亚洲精品在线观看| 大陆偷拍与自拍| 国产精品一区二区性色av| 国产精品一区二区在线观看99| h日本视频在线播放| 国产一区二区三区综合在线观看 | 一级a做视频免费观看| 国产男人的电影天堂91| 成人国产av品久久久| 精品久久久久久久久亚洲| 婷婷色综合大香蕉| 色婷婷av一区二区三区视频| 久久精品国产自在天天线| 日韩欧美 国产精品| 成年美女黄网站色视频大全免费 | 国产又色又爽无遮挡免| 欧美丝袜亚洲另类| 国产色婷婷99| 免费少妇av软件| 久热这里只有精品99| 老司机影院毛片| 亚洲欧美精品自产自拍| 亚洲精品自拍成人| 色吧在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产色片| 亚洲精品中文字幕在线视频 | 日本黄色日本黄色录像| 日本黄色日本黄色录像| 黑丝袜美女国产一区| av有码第一页| 最新的欧美精品一区二区| 一区二区av电影网| 一本色道久久久久久精品综合| 多毛熟女@视频| 青春草亚洲视频在线观看| 亚洲色图综合在线观看| 中文字幕精品免费在线观看视频 | 亚洲精品日韩在线中文字幕| 看非洲黑人一级黄片| 国产国拍精品亚洲av在线观看| 免费观看无遮挡的男女| 好男人视频免费观看在线| 日本黄色片子视频| 免费黄频网站在线观看国产| 久久久精品免费免费高清| 国产在线免费精品| 男的添女的下面高潮视频| 成人国产麻豆网| 日本vs欧美在线观看视频 | 久久久a久久爽久久v久久| 岛国毛片在线播放| 深夜a级毛片| 国产视频首页在线观看| 精品人妻偷拍中文字幕| 美女大奶头黄色视频| 丰满人妻一区二区三区视频av| 91精品国产国语对白视频| 韩国高清视频一区二区三区| 日韩电影二区| 黄色配什么色好看| 国产永久视频网站| 国内揄拍国产精品人妻在线| 9色porny在线观看| 夜夜骑夜夜射夜夜干| 少妇 在线观看| 香蕉精品网在线| 大又大粗又爽又黄少妇毛片口| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 日韩大片免费观看网站| 久久国产亚洲av麻豆专区| 亚洲国产最新在线播放| 国产日韩欧美视频二区| 久久久久网色| 欧美日韩av久久| 纯流量卡能插随身wifi吗| 蜜桃在线观看..| 久久精品国产亚洲av涩爱| 久久久午夜欧美精品| 亚洲自偷自拍三级| 久久青草综合色| 简卡轻食公司| 男女无遮挡免费网站观看| 高清黄色对白视频在线免费看 | 超碰97精品在线观看| 亚洲av综合色区一区| 久久精品国产亚洲网站| 黄色欧美视频在线观看| 国产在线免费精品| 婷婷色麻豆天堂久久| 2018国产大陆天天弄谢| 久久午夜福利片| 女的被弄到高潮叫床怎么办| 日韩在线高清观看一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 熟女电影av网| 边亲边吃奶的免费视频| 69精品国产乱码久久久| 国产欧美另类精品又又久久亚洲欧美| 国国产精品蜜臀av免费| 亚洲精品久久午夜乱码| 最近2019中文字幕mv第一页| 如何舔出高潮| 精品亚洲成国产av| 中文在线观看免费www的网站| 一个人看视频在线观看www免费| 美女大奶头黄色视频| 精华霜和精华液先用哪个| 桃花免费在线播放| 噜噜噜噜噜久久久久久91| 精品少妇内射三级| 五月天丁香电影| 国产日韩欧美亚洲二区| 少妇的逼水好多| 中国美白少妇内射xxxbb| 亚洲经典国产精华液单| 在线看a的网站| 中文欧美无线码| 美女国产视频在线观看| 日韩强制内射视频| 国产精品国产三级国产专区5o| 国产成人精品福利久久| 亚洲精品日韩av片在线观看| 亚洲精品色激情综合| 久久韩国三级中文字幕| 观看av在线不卡| 最新的欧美精品一区二区| 免费大片18禁| 成年av动漫网址| 少妇高潮的动态图| 少妇丰满av| 亚洲婷婷狠狠爱综合网| 伊人久久国产一区二区| 两个人的视频大全免费| 中国国产av一级| 丝瓜视频免费看黄片| 欧美日韩一区二区视频在线观看视频在线| 日韩大片免费观看网站| 久久久久精品性色| 欧美人与善性xxx| 99热国产这里只有精品6| 美女cb高潮喷水在线观看| 涩涩av久久男人的天堂| 亚洲经典国产精华液单| 亚洲av成人精品一二三区| 亚洲欧美日韩卡通动漫| 性色av一级| 精品一品国产午夜福利视频| 人妻少妇偷人精品九色| 一区二区三区乱码不卡18| 亚洲人成网站在线播| 亚洲成人av在线免费| 一级a做视频免费观看| 久热久热在线精品观看| 亚洲成色77777| 有码 亚洲区| 在线免费观看不下载黄p国产| av有码第一页| 亚洲精品色激情综合| 在线免费观看不下载黄p国产| 日韩在线高清观看一区二区三区| 男女啪啪激烈高潮av片| 亚洲国产欧美在线一区| 亚洲欧美清纯卡通| 少妇熟女欧美另类| 亚洲国产欧美在线一区| 精品少妇久久久久久888优播| 精品99又大又爽又粗少妇毛片| 中文字幕人妻丝袜制服| 国产亚洲午夜精品一区二区久久| 另类精品久久| 美女脱内裤让男人舔精品视频| 高清视频免费观看一区二区| 亚洲欧美精品专区久久| 99九九在线精品视频 | 蜜臀久久99精品久久宅男| 国产亚洲午夜精品一区二区久久| 最近手机中文字幕大全| 精品人妻一区二区三区麻豆| 国产成人精品久久久久久| 亚洲欧洲日产国产| 亚洲国产精品成人久久小说| 久热这里只有精品99| 又大又黄又爽视频免费| 亚洲成人一二三区av| 久久热精品热| 日韩亚洲欧美综合| 天堂中文最新版在线下载| 久久6这里有精品| 少妇被粗大的猛进出69影院 | 插逼视频在线观看| 18禁在线播放成人免费| 国产又色又爽无遮挡免| 各种免费的搞黄视频| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 久久午夜福利片| 三上悠亚av全集在线观看 | 欧美成人精品欧美一级黄| 大陆偷拍与自拍| 国产亚洲91精品色在线| 五月天丁香电影| 国产淫语在线视频| av在线观看视频网站免费| 王馨瑶露胸无遮挡在线观看| 久久久a久久爽久久v久久| 亚洲电影在线观看av| 多毛熟女@视频| 自线自在国产av| 边亲边吃奶的免费视频| 久久久久人妻精品一区果冻| 老司机影院成人| 又黄又爽又刺激的免费视频.| 久久久久久久久久久免费av| 自拍欧美九色日韩亚洲蝌蚪91 | 三级国产精品欧美在线观看| 国产视频首页在线观看| 亚洲av综合色区一区| 国产av一区二区精品久久| kizo精华| 亚洲国产av新网站| 国产美女午夜福利| 黑丝袜美女国产一区| av天堂久久9| 观看免费一级毛片| 国产精品偷伦视频观看了| 男男h啪啪无遮挡| 亚洲三级黄色毛片| 日本与韩国留学比较| 国模一区二区三区四区视频| 久久这里有精品视频免费| 午夜日本视频在线| 亚洲国产精品一区三区| av在线app专区| 中文天堂在线官网| 91精品伊人久久大香线蕉| 日韩欧美一区视频在线观看 | 下体分泌物呈黄色| 国产成人freesex在线| 黑人高潮一二区| 久久久久久久久久久免费av| 国产精品免费大片| 自线自在国产av| 久久免费观看电影| 一区二区三区免费毛片| 国产伦在线观看视频一区| 爱豆传媒免费全集在线观看| 男人狂女人下面高潮的视频| av.在线天堂| 久久综合国产亚洲精品| 久久久久久久大尺度免费视频| 高清午夜精品一区二区三区| 精品久久国产蜜桃| 成人午夜精彩视频在线观看| 免费av不卡在线播放| 亚洲中文av在线| 免费在线观看成人毛片| 美女视频免费永久观看网站| 久久婷婷青草| 亚洲中文av在线| 少妇人妻一区二区三区视频| 一级a做视频免费观看| 在线 av 中文字幕| 日韩av不卡免费在线播放| 又大又黄又爽视频免费| 在线观看国产h片| 久久精品久久久久久久性| 一个人免费看片子| 五月开心婷婷网| 精品一区二区免费观看| av国产久精品久网站免费入址| 蜜桃久久精品国产亚洲av| 有码 亚洲区| 麻豆成人午夜福利视频| 国产免费又黄又爽又色| 制服丝袜香蕉在线| 国产男人的电影天堂91| 大香蕉97超碰在线| tube8黄色片| 99精国产麻豆久久婷婷| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人手机| 久久精品国产亚洲av天美| 亚洲成色77777| 国产精品秋霞免费鲁丝片| 午夜福利视频精品| 高清毛片免费看| 成人免费观看视频高清| 国产黄频视频在线观看| √禁漫天堂资源中文www| 熟女人妻精品中文字幕| 午夜免费观看性视频| 自拍偷自拍亚洲精品老妇| 嫩草影院入口| 午夜免费男女啪啪视频观看| 日韩不卡一区二区三区视频在线| 黄色毛片三级朝国网站 | 老司机影院毛片| 我的女老师完整版在线观看| 亚洲精品日本国产第一区| 久热这里只有精品99| 这个男人来自地球电影免费观看 | 国产午夜精品一二区理论片| 日本与韩国留学比较| 亚洲av电影在线观看一区二区三区| 国产91av在线免费观看| 夫妻性生交免费视频一级片| 亚洲自偷自拍三级| 欧美xxxx性猛交bbbb| 97超碰精品成人国产| 日韩伦理黄色片| 国产淫片久久久久久久久| 另类亚洲欧美激情| 日本与韩国留学比较| 久久韩国三级中文字幕| 久久精品国产亚洲av天美| av天堂中文字幕网| 十分钟在线观看高清视频www | 妹子高潮喷水视频| 大陆偷拍与自拍| 在线观看三级黄色| 久久精品夜色国产| 国产在线视频一区二区| 日本wwww免费看| 亚洲综合精品二区| 精品视频人人做人人爽| 免费观看a级毛片全部| 久久韩国三级中文字幕| 国产成人精品一,二区| 国产永久视频网站| 一级毛片久久久久久久久女| 久久久久久久久久久丰满| 大话2 男鬼变身卡| 高清av免费在线| 久久人人爽人人片av| 亚洲国产精品999| 日韩中字成人| 丰满少妇做爰视频| 国产日韩欧美在线精品| 男人舔奶头视频| 亚洲精品久久午夜乱码| 内地一区二区视频在线| 日本免费在线观看一区| 精品久久国产蜜桃| 亚洲精品456在线播放app| 国产黄片美女视频| 免费不卡的大黄色大毛片视频在线观看| 国内精品宾馆在线| 日韩欧美一区视频在线观看 | 精品国产国语对白av| 亚洲第一av免费看| 亚洲av中文av极速乱| 99九九在线精品视频 | 十分钟在线观看高清视频www | 观看免费一级毛片| a级毛片在线看网站| 一区二区三区四区激情视频| 在线观看人妻少妇| 国产精品国产三级专区第一集| 久久6这里有精品| 午夜免费观看性视频| 最黄视频免费看| 老司机亚洲免费影院| 一个人看视频在线观看www免费| 免费不卡的大黄色大毛片视频在线观看| 国产黄色视频一区二区在线观看| 少妇被粗大的猛进出69影院 | 一级a做视频免费观看| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 久久影院123| 极品少妇高潮喷水抽搐| 天天躁夜夜躁狠狠久久av| 啦啦啦中文免费视频观看日本| 欧美精品高潮呻吟av久久| 国产永久视频网站| 中国国产av一级| 久久国产精品男人的天堂亚洲 | 老司机亚洲免费影院| 一个人看视频在线观看www免费| 午夜激情久久久久久久| 国产欧美日韩一区二区三区在线 | 国产欧美亚洲国产| 啦啦啦在线观看免费高清www| 婷婷色av中文字幕| 精品国产露脸久久av麻豆| 青春草亚洲视频在线观看| 老熟女久久久| 亚洲精品,欧美精品| 曰老女人黄片| 97精品久久久久久久久久精品| 最近中文字幕2019免费版| 亚洲情色 制服丝袜| 精品久久久噜噜| 男人舔奶头视频| 高清欧美精品videossex| 日韩,欧美,国产一区二区三区| 97在线视频观看| 高清毛片免费看| 一区二区三区精品91| 久久国内精品自在自线图片| 亚洲,欧美,日韩| 在线观看三级黄色| 老熟女久久久| 国产一区二区三区av在线| 夜夜骑夜夜射夜夜干| 伦理电影大哥的女人| 9色porny在线观看| 涩涩av久久男人的天堂| 纵有疾风起免费观看全集完整版| 91久久精品国产一区二区成人| 日韩视频在线欧美| 亚洲美女视频黄频| 另类精品久久| 国产精品久久久久久久电影| 国产精品一区二区在线不卡| 亚洲人成网站在线播| 制服丝袜香蕉在线| 久久综合国产亚洲精品| 午夜精品国产一区二区电影| 三级国产精品欧美在线观看| 亚洲情色 制服丝袜| 亚洲三级黄色毛片| 观看av在线不卡| 久久久久精品性色| .国产精品久久| 成人18禁高潮啪啪吃奶动态图 | 免费不卡的大黄色大毛片视频在线观看| 亚洲成人手机| 国产伦理片在线播放av一区| 婷婷色综合大香蕉| 久久午夜福利片| 美女视频免费永久观看网站| 在线看a的网站| 热re99久久国产66热| 高清视频免费观看一区二区| 欧美精品国产亚洲| 又爽又黄a免费视频| 婷婷色麻豆天堂久久| 老司机影院成人| 久久女婷五月综合色啪小说| 免费观看性生交大片5| 国产伦精品一区二区三区四那| xxx大片免费视频| 久久精品国产a三级三级三级| 国产 一区精品| 午夜激情福利司机影院| 交换朋友夫妻互换小说| 国产亚洲精品久久久com| h日本视频在线播放| 久久午夜综合久久蜜桃| 久久国产精品男人的天堂亚洲 | 女的被弄到高潮叫床怎么办| 免费高清在线观看视频在线观看| av女优亚洲男人天堂| 插逼视频在线观看| 嫩草影院入口| 欧美激情极品国产一区二区三区 | 亚洲第一av免费看| 亚洲av.av天堂| 在线亚洲精品国产二区图片欧美 | 两个人的视频大全免费| 亚洲成人手机| 免费大片黄手机在线观看| 我要看日韩黄色一级片| 99热这里只有是精品50| 又大又黄又爽视频免费| 一级av片app| av在线观看视频网站免费| 久久国内精品自在自线图片| 国产男女超爽视频在线观看| 91精品国产国语对白视频| 国产在线免费精品| 18禁在线播放成人免费| 精品一品国产午夜福利视频| 在线观看三级黄色| 免费黄频网站在线观看国产| 搡女人真爽免费视频火全软件| 晚上一个人看的免费电影| 久久99蜜桃精品久久| 少妇人妻精品综合一区二区| av网站免费在线观看视频| 麻豆成人午夜福利视频| 亚洲av欧美aⅴ国产| 亚洲欧美清纯卡通| 久久久久久久久久人人人人人人| 国产精品久久久久久av不卡| 黄色一级大片看看| 啦啦啦中文免费视频观看日本| 内射极品少妇av片p| 嫩草影院新地址| 日韩,欧美,国产一区二区三区| 人人妻人人添人人爽欧美一区卜| 人人妻人人爽人人添夜夜欢视频 | 亚洲成人手机| 久久久国产精品麻豆| 日本爱情动作片www.在线观看| 欧美+日韩+精品| 亚洲情色 制服丝袜| 亚洲性久久影院| 偷拍熟女少妇极品色| 亚洲,欧美,日韩| 高清不卡的av网站| 欧美日本中文国产一区发布| av卡一久久| 亚洲av二区三区四区| 最后的刺客免费高清国语| 亚洲经典国产精华液单| 中文字幕av电影在线播放| 久久久国产精品麻豆| av国产久精品久网站免费入址| 国产熟女欧美一区二区| 日韩亚洲欧美综合| 人妻夜夜爽99麻豆av| 久久久久国产精品人妻一区二区| 熟女电影av网| 免费观看性生交大片5| 亚洲性久久影院| 9色porny在线观看| 十八禁网站网址无遮挡 | 亚洲美女搞黄在线观看| 肉色欧美久久久久久久蜜桃| 视频中文字幕在线观看| 亚洲国产精品999| 国产精品人妻久久久影院| av免费在线看不卡| 亚洲av在线观看美女高潮| 桃花免费在线播放| 成人美女网站在线观看视频|