• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conceptual design and heat transfer performance of a flat-tile water-cooled divertor target

    2021-09-10 09:26:52LeiLI李磊LeHAN韓樂PengfeiZI訾鵬飛LeiCAO曹磊TiejunXU許鐵軍NanyuMOU牟南瑜ZhaoliangWANG王兆亮LeiYIN殷磊andDamaoYAO姚達(dá)毛
    Plasma Science and Technology 2021年9期
    關(guān)鍵詞:曹磊李磊鵬飛

    Lei LI (李磊),Le HAN (韓樂),Pengfei ZI (訾鵬飛),Lei CAO (曹磊),Tiejun XU (許鐵軍),Nanyu MOU (牟南瑜),Zhaoliang WANG (王兆亮),Lei YIN (殷磊) and Damao YAO (姚達(dá)毛)

    Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak (EAST) need to remove a heat flux of up to ~20 MW m?2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure (TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height (H),width (W*),thickness (T),and spacing (L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows: H=5.5 mm, W*=25.8 mm, T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m?2 under the tungsten tile thickness<5 mm and the flow speed ≥7 m s?1.The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by ~13%and ~30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of 20 MW m?2 of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only ~930 °C.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors.

    Keywords: CFETR,heat transfer performance,parametric design and optimization,HHF tests,flat-tile divertor target

    1.Introduction

    Particle and power exhaust are key issues for the next-step fusion reactors.Divertors must be designed to handle power exhaust.The power handling capacity of divertors is less than or comparable to that of the international thermonuclear experimental reactor(ITER)design of 10 MW m?2under the DEMO operation condition.It is 5–7 MW m?2for a conventional monoblock design with tungsten (W) and ferritic steel as the plasma-facing and structure materials,including the water-cooling pipe,respectively [1],and will increase to the 10 MW m?2level for advanced target designs with helium-cooled W-alloy and oxide dispersion-strengthened(ODS)/ferritic steels [2].Studies have indicated that the power decay length λq,which is a crucial quantity related to the divertor peak load(qmax),is predicted as λq≈1 mm withIp=15 MA for the ITER[3].This value is much lower than the previous projected width of ≈5 mm,suggesting a significantly larger divertor peak load to the divertor target.Therefore,a new divertor structure that can sustain the power exhaust strike of fusion devices like the CFETR must be developed.

    The EAST machine achieved a 101.2 s H-mode discharge target in 2017,and its next goal is to achieve more than 400 s in H-mode discharges.Its future goal is to achieve 1000 s [4–6].Therefore,the divertor heat load will be over 15 MW m?2in the future [7,8].However,the current EAST divertor structure cannot meet the future plasma configuration.As shown in figure 1,the lower divertor in the EAST is covered by water-cooled graphite tiles with a power handling capability of ~2 MW m?2.Although the upper divertor is a water-cooled full-tungsten divertor with a power handling capability of ~10 MW m?2[9,10],it is far from the requirements of future heat loads on divertor targets.Notably,the ITER-like monoblock structure has been successfully applied to some tokamak devices,such as EAST,WEST,and JT-60SA; however,the structure has some limitations.For example,the process involving different bonding technologies is complicated.The hot radial pressing and hot isostatic pressing technologies are applied to W/Cu and CuCrZr/Cu bonding.Electron beam welding is used in connection to monoblock PFUs and the end box.Meanwhile,inconel legs are bonded on monoblock by brazing.The high temperature during bonding can result in structural degradation.The W/Cu bonding temperature is up to 900 °C,which is maintained for approximately 2 h,whereas the CuCrZr/Cu bonding temperature is 500°C–600°C,which is maintained for approximately 3 h [9,10].The circular cooling pipe in the monoblock does not have a better heat exchange efficiency than the rectangular cooling pipe.This kind of structure leads to its heat transfer capability being unable to reliably sustain the steady-state heat load more than 20 MW m?2during several seconds [9–14].The forced-cooled monoblock-type CFC target on JT-60SA could withstand a maximum heat flux of ~15 MW m?2for 100 s [15].The high-performance W monoblock mock-up in EUDA could be subjected to HHF tests of 300 cycles at 20 MW m?2,which is not enough for fusion devices [16–20].The helium-cooled tungsten divertor designed for DEMO-type fusion reactors has a good heat load removal capability of 10–15 MW m?2,but its disadvantage is a complicated structure [21,22].Therefore,searching for a new divertor target design is very important both for CFETR and EAST.

    Figure 1.Material distribution of the plasma-facing components in the EAST machine.

    Explosive welding technology (EWT) and brazing technology(BT)have been widely used in recent years,especially in the welding of different metal materials,because of their advantages of high welding strength,low cost,simple process,and high production efficiency.EWT can be used for manufacturing an ITER-grade 316 L(N)/CuCrZr hollow structural member and W/CuCrZr plasma-facing components[23–25].BT could be used for bonding tungsten tiles to heat sinks.EWT and BT are currently being applied to the 2.45 GHz lower hybrid wave (LHW) antenna limiter in the EAST.The LHW antenna performed well after a round of experiments in 2020.

    Complex water-cooled channels,such as HyperVapotron,rectangles,and arbitrary shapes,which help improve the heat exchange efficiency of the structure,can easily be obtained based on EWT.A structure with water-cooled channels forms a closed and complete cooling structure called the divertor target heat sink by EWT [26–30].The heat sink bonded by two metal plates can be of different material combinations,such as CuCrZr/316 L,ODS-Cu/ODS-steel,and ODS-Cu/clam.CuCrZr and ODS-Cu have good thermal conductivities and can be used as the upper heat sink plate.316 L,ODS-steel,and clam steel have good mechanical performances,an excellent welding ability,and a higher degradation temperature.They can also be used as the lower heat sink plate.The lower heat sink plate can play a strengthening role when the high temperature in the bonding process of CuCrZr/W or ODS-Cu/W induces a decrease of the mechanical performance of the upper heat sink plate.

    Section 2 presents the conceptual design for the flat-tile divertor target.The influence of the TTS variation parameters on the flat-tile divertor target’s HTP is studied through the parametric design and optimization method in section 3 to obtain the best design parameters of the TTS.The flat-tile divertor target’s HTP is investigated by numerical simulation calculations and HHF tests in sections 4 and 5,respectively.Finally,section 6 provides the summary and outlook of the study.

    2.Conceptual design for the flat-tile divertor target

    Figure 2 shows that the flat-tile divertor target is mainly composed of seven parts,namely tungsten or tungsten alloy tiles(A),oxygen-free copper(OFC)interlayer(B),upper heat sink plate(C),lower heat sink plate(D),outlet pipe(E),inlet pipe (F),and support legs (G).The overall size of the structure is 217×162×20 mm3.The thicknesses of A–D are 2 mm,1 mm,11 mm,and 6 mm,respectively.The heat sink consists of parts C and D combined by EWT.Part A is bonded to part C by BT.Part B is used as the interlayer between parts A and C.Part E,part F and part G are bonded to the lower heat sink plate using argon arc welding.

    Figure 2.Schematic diagram of the flat-tile divertor target structure.

    Figure 3 depicts the water-cooled channels with special TTS made in the upper heat sink plate before explosive welding.Figures 4 and 5 show the cross-section and longitudinal section schematic diagrams of the flat-tile divertor target,respectively.

    This study focuses on the divertor HTP,not the material itself; hence,suitable materials can be chosen according to materials science development.The candidate material for part A is pure tungsten or potassium-doped tungsten (KW).The candidate material combination for the heat sink is CuCrZr/316 L or ODS-Cu/ODS-steel or ODS-Cu/clam.The candidate materials for the outlet pipe,inlet pipe and support legs are the same as the lower heat sink.

    After investigation,it is found that there are few manufacturers in China that can produce KW,ODS-Cu,and ODS-steel in large quantities,and they are still in the research and development stage.In addition,the good material properties claimed by many manufacturers,such as thermal conductivity,yield strength,degradation temperature,and other physical parameters,were very different from those in our actual test results.At present,we have not obtained real and reliable material property parameters.Therefore,the material combination W/CuCrZr/316 L(N) was selected for research to study the HTP of the flat-tile divertor target.

    Figure 3.Heat sink with water-cooled channels.

    3.Parametric design and optimization

    The water-cooled channel dimensions wereH0=8 mm andW0=30 mm(figures 4 and 5).The TTS design parameters are as follows: heightH=3.5–5.5 mm; widthW*=20–28 mm;thicknessT=1–3 mm; and spacingL=4–11 mm.The design parameters were relevant to the TTS; thus,the computational model was simplified to the model shown in figure 6.The cooling medium was water,regardless of the boiling phase.The inlet temperature and the inlet flow speed are 22 °C and 2 m s?1,respectively.The green surface shown in figure 6 was loaded with a heat flux of 10 MW m?2.Table 1 shows the material properties used in the calculations.

    To eliminate the grid size influence on the calculation results,the grid independence was analyzed by setting the coarse,medium,and fine grids to 0.6 mm,0.4 mm,and 0.2 mm,respectively.The calculated results were very close;thus,the grid size was selected as 0.4 mm (figure 7).Table 2 lists the parametric design schemes and steady-state thermal analysis results.The response surface optimization tool in ANSYS was used to analyze and optimize the schemes.The screening optimization method was chosen.The number of samples was 5000.The optimization goal was to minimize the maximum temperature of all materials.

    The curves in figure 8 show the local sensitivity of the maximum temperature as the design parameters change.The response point represents the optimal design point.The abscissa α indicates the relative location of the design parameter within its value range.Let us take parameterTas anexample:T=2 mm,α=(T?1 mm)/(3 mm?1 mm)=(2 mm?1 mm)/(3 mm?1 mm)=0.5.The maximum temperature gradually decreased asHincreased.The maximum temperature first decreased to the lowest point and then continuously increased asW*orTorLincreased.Therefore,the design parameter size changes significantly affected the cooling efficiency of the structure.The optimal design parameters are as follows:H=5.5 mm;W*=25.8 mm;T=2.2 mm; andL=9.7 mm.Figure 9 and table 3 present the calculation results using the optimal parameters,which were better than those in table 2.

    Table 1.Thermal physical properties of the materials.

    Figure 4.Longitudinal section view of the flat-tile divertor target.

    Figure 5.Cross-section view of the flat-tile divertor target.

    Figure 6.Simplified computational model used for the parametric design and optimization.

    Figure 7.Mesh of the computational model.

    Table 2.Parametric design schemes and calculation results.

    Figure 10 shows the local sensitivity of the maximum temperature to different design parameters at the optimal response points.The greater the absolute value of the sensitivity,the greater the influence of the design parameter on the maximum temperature.The order of sensitivity from high to low isP3(T)>P4(L)>P2(W*)>P1(H).Therefore,the TTS thickness change had the greatest impact on the flat-tile divertor target’s HTP,followed by spacingLand widthW*.The least affected was the heightH.

    Figure 8.Local sensitivity curves of the maximum temperature as the design parameters change.

    4.Heat transfer performance

    The conceptual design for the flat-tile divertor tar get is mainly to provide support for the future EAST and CFETR divertors.Therefore,its HTP under 20 MW m?2must be studied.Figure 11 shows the calculated maximum tungsten surface temperature of the flat-tile divertor target at different flow speeds in the cooling channels (equivalent to the flow speeds in the Φ12 mm pipe).The maximum temperature gradually decreased as the flow speed increased; however,the relationship between the two was not linear,but similar to an exponential function.The improvement in the flat-tile divertor target HTP continuously became smaller as the flow velocity gradually increased.To obtain a fine removal of the 20 MW m?2heat flux,the flow speed should be ≥7 m s?1.Tungsten is currently used as a plasma-facing material for EAST divertors.It is also a candidate material for the CFETR divertors.A certain loss of tungsten material is observed during the operation of nuclear fusion tokamak devices.Accordingly,2 mm-thick tungsten tiles are sufficient for EAST divertors,but may not be enough for CFETR divertors.Therefore,as shown in figure 12,the HTP of the flat-tile divertor target under different tungsten tiles thicknesses was studied when the heat flux was up to 20 MW m?2(the flow velocity is ~7 m s?1,the inlet temperature is 22°C,and the inlet pressure is 1 MPa ).The maximum temperature linearly increased as the tungsten tile thickness increased.Meanwhile,the maximum temperature of Cu,CuCrZr,and 316 L decreased by only a few degrees celsius.Therefore,the influence of the tungsten tile thickness on the flat-tile divertor HTP was mainly reflected in the influence of the tungsten surface temperature,while the influence on Cu,CuCrZr,and 316 L was almost negligible.The maximum surface temperatures of W,Cu,CuCrZr,and 316 L are 1330 °C,509 °C,462 °C,and 177 °C,respectively,when the tungsten tile thickness reached 5 mm.The maximum temperature of W exceeded the allowable value of 1200 °C.The maximum temperature of Cu and CuCrZr slightly exceeded the allowable values of 500 °C and 450 °C,respectively.Therefore,the tungsten tile thickness did not exceed 5 mm when the heat flux reached 20 MW m?2.This analysis result was obtained under a peak heat flux width of 24 mm,which is larger than the predicted value of ~5 mm and may be narrower in the future.The allowable temperature of the materials may be greatly increased with the development of plasma-facing materials,such as KW and ODS-Cu.Therefore,this kind of flat-tile divertor target structure has great potential for handling the steady-state 20 MW m?2heat load.

    Figure 9.Temperature distribution calculated using the optimal parameters.

    Figure 10.Local sensitivity of the maximum temperature to different design parameters.

    Table 3.Calculated results using the optimal parameters.

    Figure 11.Maximum temperatures of the flat-tile divertor target under different flow velocities.

    Figure 12.Maximum temperatures of the flat-tile divertor target materials under different tungsten tile thicknesses at 20 MW m?2.

    Figure 13.Fluid velocity vector in the rectangular cooling channel of the flat-tile divertor target.

    Figure 14.Wall heat transfer coefficient of the rectangular cooling channel for the flat-tile divertor target.

    Figure 15.Wall heat transfer coefficient of the circular cooling channel for the flat-tile divertor mock-up.

    Figure 16.Wall heat transfer coefficient of the circular cooling pipe for the ITER-like monoblock.

    Figure 17.Temperature of the flat-tile divertor target with rectangular cooling channel (tungsten tile thickness: 4 mm).

    Figure 18.Temperature of the flat-tile divertor target with circular cooling channel (tungsten tile thickness: 4 mm).

    Figure 19.Temperature of the ITER-like monoblock with circular cooling pipe (distance from the W surface to the OFC: 4 mm).

    Figure 20.The flat-tile mock-up in the electron beam facility.

    Figure 13 shows the fluid velocity vector in the rectangular cooling channel.A strong disturbance zone was formed in the upper turbulence structure,which can improve the heat transfer efficiency.Heat was transferred to the lower smooth flow zone to be taken away by the water with a higher flow velocity.The heat transfer coefficient (HTC) range for the flat-tile divertor target with rectangular cooling channels is 32,608–65,669.1 W m?2K?1(figure 14),which is larger than the HTC for the flat-tile divertor target with circular cooling channels(31,520–64,450 W m?2K?1,see figure 15),and the HTC for the ITER-like monoblock with circular cooling pipe(31,407–42,370 W m?2K?1,see figure 16) under the same conditions of the heat flux (20 MW m?2),inlet flow velocity(~7 m s?1),and distance from the W surface to the OFC(4 mm).Compared with the circular cooling channel,the heat transfer efficiency of the rectangular cooling channel was increased by ~13% on average,and the maximum temperature was reduced by ~255°C(figures 17 and 18).Compared with the ITER-like monoblock,the heat transfer efficiency for the flat-tile divertor target with rectangular cooling channels increased by ~30% on average,and the maximum temperature decreased by ~776 °C (figures 17 and 19).

    5.High-heat flux tests (HHF)

    Figure 20 shows a kind of flat-tile divertor mock-up that contains nine thin tungsten tiles brazed to a copper alloy heat sink with 1 mm OFC as an interlayer.The flat-tile mock-up has a dimension of 163.5 mm (length)×44.5 mm(width)×22.5 mm (height).The W-tiles are 44.5 mm width,2 mm thickness and 11.5 mm axial length.The HHF tests of the flat-tile mock-up were performed using a 30 KW electron beam facility.The tungsten surface temperature was measured using a non-contact stationary digital infrared pyrometer and ranged from 300 °C to 2000 °C.

    Figure 21.The flat-tile mock-up after 1000 cycles of 20 MW m?2 heat load.

    Figure 22.Initial ultrasonic flaw detection image of the flat-tile mock-up.

    The scanning area of the tungsten surface was 42 mm×14 mm.The mock-up was loaded with 15 s on and 15 s off and actively cooled by water with an inlet temperature of ~25 °C and a flow speed of ~7 m s?1(inlet pipe of Φ12 mm).The absorbed power densityPabswas calculated using formula (1):

    where ρ is the water density (kg m?3);cis the specific heat of water (J kg?1K?1);Qis the flow rate (m3s?1); ΔTis the temperature difference between the outlet and inlet(°C);andS0is the scanned area of the mock-up surface(m2).The absorption coefficient ε is defined in formula (2):

    whereUis the acceleration voltage (kV),andIis the incident current (mA).

    The ε value is ~61%under different electron beam powers.The mock-up successfully withstood a heat load of 20 MW m?2for 1000 cycles without visible damage and deformation(figures 21–23).Figure 24 shows the surface temperature values of the mock-up under 1–1000 cycles of heat loads.The maximum surface temperature was ~820°C at the first cycle,which is in a good agreement with the numerical simulation calculation result(~810 °C,figure 25).The maximum surface temperature was stable at approximately 930 °C at the 200–1000th cycle,indicating no significant degradation of the mock-up HTP between the first and last cycles.The surface temperatures of the tested ITER-like monoblock mock-ups under 20 MW m?2heat flux were>2000°C[17].The surface temperatures of the flat-tile mock-ups for WEST divertor(W-tiles of 30 mm-width,2 mmthickness and 12 mm axial length) were typically ~1290 °C[31].Therefore,the heat removal capacity of this flat-tile mockup based on rectangular (hypervapotron) water-cooled channels has a great advantage over the ITER-like monoblock and the WEST flat-tile mock-up.

    Figure 23.Ultrasonic flaw detection image of the flat-tile mock-up after a heat load of 20 MW m?2 for 1000 cycles.

    Figure 24.Surface temperature values of the flat-tile mock-up under a cyclic heat load of 20 MW m?2 at the 1st,200th,400th,600th,800th,and 1000th cycles.

    Figure 25.Calculated temperature image of the flat-tile mock-up under the 20 MW m?2 heat load.

    6.Summary and outlook

    A conceptual design for the flat-tile divertor target with rectangular water-cooled channels and special TTS inside was proposed herein.The parametric design and response surface optimization method was applied to study and improve the HTP of the flat-tile divertor target.

    The research results indicated that the special TTS parameters greatly influenced the HTP of the flat-tile divertor target,and the influence degree wasT>L>W*>H.The optimal design parameters are as follows:H=5.5 mm;W*=25.8 mm;T=2.2 mm; andL=9.7 mm.

    The HTP of the optimized flat-tile divertor target was studied by numerical simulation calculations and HHF tests.The numerical simulation calculations showed that the heat transfer efficiency for the flat-tile divertor target with rectangular cooling channels was ~13% and ~30% higher than that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.A flat-tile divertor mock-up was manufactured through EWT and BT,and tested on an electron beam facility.The HHF test results indicated no obvious HTP degradation and no visible damage and deformation of the mockup during the 1000 cycles of 20 MW m?2heat load.The surface temperature of the mock-up ranged from ~820 °C to ~930 °C during the 1st to the 1000th cycles,which is in a good agreement with the numerical simulation results.However,the HTP of the flat-tile divertor target was greatly improved by the parametric design and response surface optimization method,and was better than the ITER-like divertor monoblock and the WEST flat-tile divertor mock-ups.

    This work is pre-research work for the CFETR and future EAST divertors.The conceptual design of the flat-tile divertor target is currently applied in the engineering design for the CFETR flat-tile divertor targets(figure 26).The latest plan for the upgrade of the EAST lower divertors is that three-quarters of the lower divertors are designed to be an ITER-like monoblock structure similar to the EAST upper divertors,and the other quarter is designed to be a flat-tile divertor structure(figure 27).These are in the manufacturing process,and are expected to be installed in EAST in the first half of 2021.

    Figure 26.The flat-tile outer divertor target for CFETR.

    Figure 27.The model and prototype components of the flat-tile outer divertor target for EAST.

    Acknowledgments

    The study was supported by the National MCF Energy R&D Program (No.2018YFE0312300),the National Key Research and Development Program of China (No.2017YFA0402500),and the Science Foundation of the Institute of Plasma Physics,Chinese Academy of Sciences(No.Y45ETY2302).

    ORCID iDs

    猜你喜歡
    曹磊李磊鵬飛
    MAPS PRESERVING THE NORM OF THE POSITIVE SUM IN Lp SPACES*
    一葉知秋
    科教新報(2022年35期)2022-05-30 22:17:42
    黛云
    寶藏(2021年7期)2021-12-06 03:31:12
    天花亂墜
    寶藏(2021年4期)2021-12-02 21:49:57
    奔騰
    寶藏(2021年4期)2021-12-02 21:49:57
    佛緣
    寶藏(2021年4期)2021-05-27 08:10:52
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    亚洲国产欧美网| 国产黄a三级三级三级人| 国产黄色小视频在线观看| 欧美人与性动交α欧美精品济南到| 午夜久久久在线观看| 韩国av一区二区三区四区| 久久精品91蜜桃| 国产主播在线观看一区二区| 久久中文字幕人妻熟女| x7x7x7水蜜桃| 人人妻人人看人人澡| 老汉色∧v一级毛片| 午夜a级毛片| 日韩欧美免费精品| 久久精品国产99精品国产亚洲性色| 免费一级毛片在线播放高清视频| 日韩免费av在线播放| 婷婷六月久久综合丁香| cao死你这个sao货| 中出人妻视频一区二区| 国产亚洲精品一区二区www| 午夜视频精品福利| 亚洲精品粉嫩美女一区| 男人操女人黄网站| 男女那种视频在线观看| 国产午夜福利久久久久久| 国产蜜桃级精品一区二区三区| 搡老妇女老女人老熟妇| 一卡2卡三卡四卡精品乱码亚洲| 国产伦在线观看视频一区| 自线自在国产av| 中文字幕人妻丝袜一区二区| 99在线视频只有这里精品首页| 亚洲欧洲精品一区二区精品久久久| 又黄又爽又免费观看的视频| 久久精品夜夜夜夜夜久久蜜豆 | 丝袜美腿诱惑在线| 最新在线观看一区二区三区| 不卡av一区二区三区| av天堂在线播放| 美女高潮到喷水免费观看| 欧美成狂野欧美在线观看| 亚洲欧洲精品一区二区精品久久久| 成年版毛片免费区| 国产精品久久久人人做人人爽| 亚洲av第一区精品v没综合| 国产视频内射| 熟妇人妻久久中文字幕3abv| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 99精品久久久久人妻精品| 黄片播放在线免费| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 国产成人影院久久av| 日本在线视频免费播放| 麻豆成人av在线观看| 国产又色又爽无遮挡免费看| 国产精品 国内视频| 欧美成人免费av一区二区三区| 又黄又粗又硬又大视频| 日韩精品免费视频一区二区三区| 中国美女看黄片| √禁漫天堂资源中文www| 老熟妇乱子伦视频在线观看| 久久天堂一区二区三区四区| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 国产午夜福利久久久久久| 久久久久久久久久黄片| 久99久视频精品免费| 免费观看精品视频网站| 此物有八面人人有两片| 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 精品不卡国产一区二区三区| 国产精品,欧美在线| 这个男人来自地球电影免费观看| xxx96com| 美女高潮喷水抽搐中文字幕| 女警被强在线播放| 熟妇人妻久久中文字幕3abv| 亚洲精品久久成人aⅴ小说| 日韩av在线大香蕉| 亚洲av电影不卡..在线观看| 亚洲欧美精品综合一区二区三区| 久久天堂一区二区三区四区| 午夜精品久久久久久毛片777| 国产99久久九九免费精品| 国产高清视频在线播放一区| 国产精品日韩av在线免费观看| 国产麻豆成人av免费视频| 人人妻人人看人人澡| 婷婷精品国产亚洲av在线| 听说在线观看完整版免费高清| 97超级碰碰碰精品色视频在线观看| 亚洲国产日韩欧美精品在线观看 | 狂野欧美激情性xxxx| 一本大道久久a久久精品| 无遮挡黄片免费观看| 日本免费a在线| 国产v大片淫在线免费观看| www日本在线高清视频| 国产又爽黄色视频| 黄片大片在线免费观看| 国产精品野战在线观看| 波多野结衣av一区二区av| 性色av乱码一区二区三区2| 欧美一级毛片孕妇| 国产视频一区二区在线看| 久久中文看片网| 午夜精品在线福利| 国产熟女xx| 亚洲国产毛片av蜜桃av| 1024视频免费在线观看| 99精品在免费线老司机午夜| 国产亚洲精品第一综合不卡| 日本免费a在线| 特大巨黑吊av在线直播 | 成年人黄色毛片网站| 看免费av毛片| 亚洲成人精品中文字幕电影| 这个男人来自地球电影免费观看| 真人做人爱边吃奶动态| 国产精品久久久av美女十八| 午夜免费激情av| 淫妇啪啪啪对白视频| 国产成人欧美| 国产亚洲精品久久久久5区| 久久久久久亚洲精品国产蜜桃av| 亚洲专区国产一区二区| 欧美激情极品国产一区二区三区| 老司机午夜福利在线观看视频| 成年版毛片免费区| 哪里可以看免费的av片| 久久草成人影院| 老司机在亚洲福利影院| 久久香蕉国产精品| 欧美一级毛片孕妇| 久久婷婷成人综合色麻豆| 国产亚洲欧美在线一区二区| 97超级碰碰碰精品色视频在线观看| 不卡av一区二区三区| 草草在线视频免费看| 在线观看午夜福利视频| 看黄色毛片网站| 村上凉子中文字幕在线| 久久久久国内视频| 亚洲av片天天在线观看| 色综合亚洲欧美另类图片| 大香蕉久久成人网| 亚洲午夜理论影院| 国产精品久久久人人做人人爽| 久久九九热精品免费| 成人一区二区视频在线观看| www日本黄色视频网| 免费搜索国产男女视频| 一级毛片精品| 一区福利在线观看| 女警被强在线播放| 国产精品1区2区在线观看.| 在线免费观看的www视频| 99精品久久久久人妻精品| 一本综合久久免费| 99精品欧美一区二区三区四区| 一进一出抽搐动态| 一二三四在线观看免费中文在| 深夜精品福利| 欧美成人免费av一区二区三区| 亚洲熟女毛片儿| 国产三级黄色录像| 午夜久久久在线观看| 在线观看www视频免费| 午夜福利免费观看在线| 久久久久精品国产欧美久久久| 色哟哟哟哟哟哟| 俄罗斯特黄特色一大片| 最新美女视频免费是黄的| 黄色 视频免费看| 久久久久久大精品| 高清在线国产一区| 最好的美女福利视频网| 黑丝袜美女国产一区| 国产极品粉嫩免费观看在线| 国产人伦9x9x在线观看| 国产激情偷乱视频一区二区| 亚洲一区中文字幕在线| 欧美+亚洲+日韩+国产| 成在线人永久免费视频| 日韩视频一区二区在线观看| 女警被强在线播放| 精品国产乱子伦一区二区三区| 欧美激情久久久久久爽电影| 久久国产精品男人的天堂亚洲| 日本免费a在线| 免费在线观看亚洲国产| 一本精品99久久精品77| 窝窝影院91人妻| 精品国产亚洲在线| 欧美日韩瑟瑟在线播放| 99国产精品99久久久久| 亚洲天堂国产精品一区在线| 精品高清国产在线一区| 久久国产精品人妻蜜桃| 亚洲av电影不卡..在线观看| 99热6这里只有精品| 欧美黑人巨大hd| 欧美性猛交╳xxx乱大交人| 亚洲精品美女久久久久99蜜臀| 日韩 欧美 亚洲 中文字幕| 此物有八面人人有两片| 妹子高潮喷水视频| 亚洲精品久久国产高清桃花| 非洲黑人性xxxx精品又粗又长| 丝袜人妻中文字幕| 亚洲七黄色美女视频| 成人免费观看视频高清| 免费电影在线观看免费观看| 午夜a级毛片| 亚洲国产精品sss在线观看| 国产高清视频在线播放一区| 在线观看免费视频日本深夜| 少妇熟女aⅴ在线视频| 一级毛片高清免费大全| 怎么达到女性高潮| 国产又黄又爽又无遮挡在线| 亚洲avbb在线观看| 国产日本99.免费观看| 久9热在线精品视频| 欧美黑人巨大hd| 日本a在线网址| 黄色视频,在线免费观看| 一二三四社区在线视频社区8| 国产欧美日韩一区二区三| 国产又色又爽无遮挡免费看| 国产三级在线视频| 此物有八面人人有两片| 99久久久亚洲精品蜜臀av| 亚洲成人免费电影在线观看| 国产精品99久久99久久久不卡| 99国产精品一区二区三区| 国产熟女xx| 午夜日韩欧美国产| 日日爽夜夜爽网站| 脱女人内裤的视频| 久久久久久久久免费视频了| 高清在线国产一区| svipshipincom国产片| 校园春色视频在线观看| 在线av久久热| 桃色一区二区三区在线观看| 免费在线观看成人毛片| 操出白浆在线播放| 中文字幕人妻熟女乱码| 一本一本综合久久| 一边摸一边抽搐一进一小说| 色精品久久人妻99蜜桃| 国产精品 国内视频| 老鸭窝网址在线观看| 欧美黑人巨大hd| 母亲3免费完整高清在线观看| 亚洲一码二码三码区别大吗| 国产高清有码在线观看视频 | 一二三四在线观看免费中文在| 午夜激情av网站| 成年版毛片免费区| 国产乱人伦免费视频| 国产精品一区二区精品视频观看| 国语自产精品视频在线第100页| 午夜激情av网站| 一级a爱视频在线免费观看| 精品福利观看| 一级a爱视频在线免费观看| 欧美精品亚洲一区二区| 国产精品1区2区在线观看.| 在线观看66精品国产| 精品不卡国产一区二区三区| 国产视频一区二区在线看| 在线观看www视频免费| 老汉色∧v一级毛片| 12—13女人毛片做爰片一| 国产爱豆传媒在线观看 | 亚洲全国av大片| 88av欧美| 女人被狂操c到高潮| 午夜福利成人在线免费观看| 久久久久国产一级毛片高清牌| 99久久综合精品五月天人人| 人妻久久中文字幕网| 法律面前人人平等表现在哪些方面| 国产精品永久免费网站| 正在播放国产对白刺激| 欧美久久黑人一区二区| 精品国产乱子伦一区二区三区| 久久热在线av| 91老司机精品| 国产99久久九九免费精品| 国产成人精品久久二区二区免费| 在线观看舔阴道视频| 99国产精品一区二区三区| 精品福利观看| 亚洲电影在线观看av| 久久久久久人人人人人| 精品人妻1区二区| 国产真人三级小视频在线观看| 男女做爰动态图高潮gif福利片| 1024香蕉在线观看| 亚洲熟妇熟女久久| 俄罗斯特黄特色一大片| 亚洲aⅴ乱码一区二区在线播放 | 中文在线观看免费www的网站 | 精品午夜福利视频在线观看一区| 日本在线视频免费播放| 我的亚洲天堂| 亚洲午夜理论影院| 欧美日韩瑟瑟在线播放| 一边摸一边做爽爽视频免费| 日韩欧美 国产精品| 色在线成人网| 他把我摸到了高潮在线观看| 亚洲熟妇熟女久久| 久久人妻福利社区极品人妻图片| 免费搜索国产男女视频| 国产av又大| 很黄的视频免费| 成人亚洲精品av一区二区| 欧美久久黑人一区二区| 中文字幕高清在线视频| 又黄又爽又免费观看的视频| 亚洲三区欧美一区| 欧美又色又爽又黄视频| avwww免费| 哪里可以看免费的av片| 制服丝袜大香蕉在线| 久久久久九九精品影院| 在线看三级毛片| 级片在线观看| 91在线观看av| 黑人巨大精品欧美一区二区mp4| 嫩草影视91久久| 国产高清激情床上av| 一二三四社区在线视频社区8| 国产精品精品国产色婷婷| 欧美成人一区二区免费高清观看 | 国产精品99久久99久久久不卡| 欧美日韩黄片免| 亚洲国产毛片av蜜桃av| 岛国视频午夜一区免费看| 听说在线观看完整版免费高清| 中亚洲国语对白在线视频| 日韩有码中文字幕| 熟女少妇亚洲综合色aaa.| 啦啦啦韩国在线观看视频| 色婷婷久久久亚洲欧美| 黄色 视频免费看| 国产真人三级小视频在线观看| 国产av不卡久久| 亚洲av熟女| 一级作爱视频免费观看| 亚洲第一欧美日韩一区二区三区| 一本精品99久久精品77| 亚洲午夜理论影院| 亚洲中文字幕日韩| 在线视频色国产色| 亚洲熟妇熟女久久| 中亚洲国语对白在线视频| 午夜老司机福利片| 国产片内射在线| 国产伦在线观看视频一区| 亚洲精品国产区一区二| 国产不卡一卡二| 亚洲av日韩精品久久久久久密| av超薄肉色丝袜交足视频| 国产人伦9x9x在线观看| 在线观看www视频免费| 精品国产一区二区三区四区第35| 久久精品影院6| 亚洲精华国产精华精| 久久久久久亚洲精品国产蜜桃av| 精品久久久久久久久久久久久 | 久久狼人影院| 一本久久中文字幕| 亚洲国产中文字幕在线视频| 一本大道久久a久久精品| 国产男靠女视频免费网站| 夜夜爽天天搞| 久久国产精品人妻蜜桃| 久久精品91蜜桃| 听说在线观看完整版免费高清| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影| 久久中文看片网| 国产亚洲欧美98| 亚洲一区二区三区色噜噜| 国产成人精品无人区| 丁香六月欧美| 国产私拍福利视频在线观看| 非洲黑人性xxxx精品又粗又长| 中文字幕精品免费在线观看视频| 99热只有精品国产| 欧美色欧美亚洲另类二区| 亚洲国产精品合色在线| 99国产综合亚洲精品| 欧美一级a爱片免费观看看 | 最好的美女福利视频网| 国产精品 国内视频| 亚洲av中文字字幕乱码综合 | 久久久精品国产亚洲av高清涩受| 岛国在线观看网站| 午夜免费观看网址| 国产色视频综合| 亚洲最大成人中文| 亚洲中文av在线| 欧美大码av| 亚洲av成人不卡在线观看播放网| 国产精品 国内视频| 夜夜躁狠狠躁天天躁| 动漫黄色视频在线观看| 久久人妻福利社区极品人妻图片| 国产亚洲欧美精品永久| 身体一侧抽搐| 啪啪无遮挡十八禁网站| 国产精品野战在线观看| 99re在线观看精品视频| 国产成人av教育| 亚洲三区欧美一区| 最近最新中文字幕大全免费视频| 天堂影院成人在线观看| 丁香欧美五月| 两人在一起打扑克的视频| 日本五十路高清| www国产在线视频色| 国产不卡一卡二| 黄色丝袜av网址大全| 国产91精品成人一区二区三区| 两个人看的免费小视频| 亚洲中文av在线| 搡老熟女国产l中国老女人| 亚洲欧美一区二区三区黑人| 麻豆成人av在线观看| 欧美成狂野欧美在线观看| 国内少妇人妻偷人精品xxx网站 | 最近在线观看免费完整版| 好男人电影高清在线观看| 在线看三级毛片| 精华霜和精华液先用哪个| 日本三级黄在线观看| 激情在线观看视频在线高清| 色播亚洲综合网| 国产视频一区二区在线看| 后天国语完整版免费观看| 成人国产一区最新在线观看| 亚洲一区高清亚洲精品| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3 | 欧洲精品卡2卡3卡4卡5卡区| 国产精品二区激情视频| netflix在线观看网站| 18禁美女被吸乳视频| 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区精品91| ponron亚洲| x7x7x7水蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 色精品久久人妻99蜜桃| 丝袜在线中文字幕| 久久久久久亚洲精品国产蜜桃av| 国产蜜桃级精品一区二区三区| 午夜免费鲁丝| 亚洲九九香蕉| 麻豆成人av在线观看| 最近在线观看免费完整版| 日韩欧美 国产精品| 嫁个100分男人电影在线观看| 中文字幕最新亚洲高清| 可以在线观看毛片的网站| 99在线人妻在线中文字幕| 别揉我奶头~嗯~啊~动态视频| 女同久久另类99精品国产91| 一个人观看的视频www高清免费观看 | 九色国产91popny在线| 男女做爰动态图高潮gif福利片| 亚洲avbb在线观看| 18禁黄网站禁片免费观看直播| 首页视频小说图片口味搜索| 最好的美女福利视频网| 老司机午夜十八禁免费视频| 日韩精品青青久久久久久| 日本一区二区免费在线视频| 亚洲第一av免费看| 91老司机精品| 日韩欧美免费精品| 亚洲成人免费电影在线观看| 免费在线观看亚洲国产| 男女做爰动态图高潮gif福利片| 免费在线观看日本一区| 18禁美女被吸乳视频| 亚洲三区欧美一区| 在线看三级毛片| 男女做爰动态图高潮gif福利片| 久久青草综合色| 制服丝袜大香蕉在线| 国产精品亚洲一级av第二区| x7x7x7水蜜桃| 久久99热这里只有精品18| 亚洲精品av麻豆狂野| 亚洲av第一区精品v没综合| 黄网站色视频无遮挡免费观看| 久久这里只有精品19| 日本 av在线| 成人一区二区视频在线观看| 两个人视频免费观看高清| 国产午夜福利久久久久久| 国产亚洲欧美98| 香蕉av资源在线| 热re99久久国产66热| 啪啪无遮挡十八禁网站| 国产精品免费视频内射| 又大又爽又粗| 亚洲三区欧美一区| 国产午夜精品久久久久久| 久久久国产成人免费| 国产一区二区三区视频了| 午夜激情福利司机影院| 91成人精品电影| 国产v大片淫在线免费观看| 国产免费av片在线观看野外av| 可以免费在线观看a视频的电影网站| 亚洲片人在线观看| 久久国产精品人妻蜜桃| 在线天堂中文资源库| 黄色毛片三级朝国网站| 欧美日韩中文字幕国产精品一区二区三区| 日日夜夜操网爽| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 国产精品自产拍在线观看55亚洲| 久久国产亚洲av麻豆专区| or卡值多少钱| 国产伦在线观看视频一区| 精品免费久久久久久久清纯| 成人国产综合亚洲| 久久天躁狠狠躁夜夜2o2o| 一级黄色大片毛片| 国产亚洲av嫩草精品影院| 悠悠久久av| 三级毛片av免费| 国产三级在线视频| 成人三级做爰电影| 在线永久观看黄色视频| 日本一本二区三区精品| 99在线人妻在线中文字幕| 99国产精品99久久久久| av在线天堂中文字幕| 757午夜福利合集在线观看| 日本 欧美在线| 精品一区二区三区视频在线观看免费| 久9热在线精品视频| 午夜福利在线在线| 亚洲欧美精品综合久久99| 两个人免费观看高清视频| 精品第一国产精品| 在线天堂中文资源库| 亚洲av片天天在线观看| 制服丝袜大香蕉在线| 白带黄色成豆腐渣| 欧美乱妇无乱码| 国产野战对白在线观看| 法律面前人人平等表现在哪些方面| 欧美黑人欧美精品刺激| 黑人操中国人逼视频| 狠狠狠狠99中文字幕| 曰老女人黄片| 午夜激情福利司机影院| 亚洲,欧美精品.| 欧美性长视频在线观看| 在线观看免费午夜福利视频| 久久99热这里只有精品18| 久久久久免费精品人妻一区二区 | 国产人伦9x9x在线观看| 免费观看人在逋| 黄色 视频免费看| 欧美中文综合在线视频| 天天添夜夜摸| 国产一区二区三区视频了| 亚洲精品国产一区二区精华液| 淫秽高清视频在线观看| 精品国产亚洲在线| 国产亚洲欧美精品永久| 91成年电影在线观看| 亚洲电影在线观看av| 色av中文字幕| 国产一区二区三区在线臀色熟女| 精品国产亚洲在线| 美女扒开内裤让男人捅视频| 久久久精品欧美日韩精品| 欧美日韩黄片免| 亚洲男人的天堂狠狠| 老汉色av国产亚洲站长工具| 成人精品一区二区免费| 欧美激情高清一区二区三区| 在线观看66精品国产| 一进一出抽搐动态| 国产精品久久久av美女十八| 欧美国产日韩亚洲一区| 99精品欧美一区二区三区四区| 人人妻人人看人人澡| 久久久精品欧美日韩精品| 欧美精品啪啪一区二区三区| 亚洲精品久久国产高清桃花| ponron亚洲| 国产成人精品无人区| 黑人巨大精品欧美一区二区mp4| 国产国语露脸激情在线看| 国产不卡一卡二|