• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface Modification of Electrospun Poly(L-lactide)/Poly(?-caprolactone) Fibrous Membranes by Plasma Treatment and Gelatin Immobilization

    2021-09-07 02:52:28SHITongna史同娜SHIZhenjiang施鎮(zhèn)江ZHUBingjie朱冰潔WUWenhua吳文華
    關(guān)鍵詞:文華鎮(zhèn)江

    SHI Tongna(史同娜), SHI Zhenjiang(施鎮(zhèn)江), ZHU Bingjie(朱冰潔), WU Wenhua(吳文華)

    National Demonstration Center for Experimental Materials Science and Engineering Education, Donghua University, Shanghai 201620, China

    Abstract: Biopolymer fibers have great potential for technical applications in biomaterials. The surface properties of fibers are of importance in these applications. In this study, electrospun poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL) membranes were modified by cold plasma treatment and coating gelatin to improve the surface hydrophilic properties. The morphologies of the fibers were observed by scanning electron microscopy (SEM). Atomic force microscopy (AFM) was employed to show the surface characteristics of the fibers. The chemical feature of the fibrous membrane surfaces was examined by X-ray photoelectron spectroscopy (XPS). The surface wettability of the fibrous membrane was also characterized by water contact angle measurements. All these results show that plasma treatment can have profound effects on the surface properties of fibrous membranes by changing their surface physical and chemical features. Gelatin-PLLA/PCL membrane has great potential in applications of tissue engineering scaffolds.

    Key words: surface property; modification; electrospun fiber; plasma treatment; chemical feature; morphology; wettability

    Introduction

    Tissue engineering is rapidly growing into an increasingly important field in regenerative medicine. One of the significant challenges for tissue engineering is to design and fabricate suitable biodegradable scaffolds that are suitable for cell adhesion, growth, proliferation and differentiation, and can guide process of tissue formation[1-2]. Polymer-based nanofibers are considered as a potential material applied in filtration, tissue engineering, and fuel cell[3]. Electrospinning is a well-established process for fabrication of polymeric nanofibers used in scaffolds with high surface areas, large volume-to-mass ratios, and high porosities[4-6]. Recently, polylactone-type biodegradable polymers, such as poly(L-lactide) (PLLA), poly(?-caprolactone) (PCL) and their copolymer poly(L-lactide-co-?-caprolactone) (PLLACL), have been extensively studied as scaffold materials[7-11], since polylactone-type biodegradable polymers possess good mechanical properties, non-toxicity, and adjustable degradation rates. However, the poor hydrophilicity of the polymers affects cells to attach and grow on them when the polymers are used as scaffold materials.

    Plasma treatment is a very promising and frequently used technique for the chemical and physical modification to increase hydrophilicity, which is suitable for most of the materials, especially polymers and polymer fibers[12-13]. Typical plasma treatments with oxygen, ammonia or air can generate carboxyl groups or amine groups on the surface[14-16]. In addition, a variety of extracellular matrix (ECM) protein components, such as gelatin, collagen, laminin and fibronectin, have been immobilized onto the plasma-treated surface to enhance cellular adhesion and proliferation[17-18]. Gelatin is a mixture of proteins which is obtained by hydrolysis of collagen, and it is widely used in tissue engineering due to its biocompatibility, biodegradability and easy availability[19-22]. Gelatin is nonimmunogenic compared with its precursor and can promote cell adhesion, migration, differentiation and proliferation[23-24].

    In this study, the PLLA/PCL (mass ratio was 70∶30) membrane was prepared by electrospinning. However, being synthetic biomaterials, PLLA/PCL membrane is not a good substrate for cell adhesion because of the hydrophobic surface and lacking of functional groups. Thus, Helium (He) plasma treatment was used to modify the electrospun PLLA/PCL membrane, and gelatin was coated onto the He-plasma-treated PLLA/PCL membrane. The fibrous membranes before and after modification were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements.

    1 Experiments

    1.1 Materials preparation

    PLLA (Mn=150 000) and PCL (Mn=50 000) were obtained from Sigma-Aldrich Company, Shanghai, China. The polymer solution concentration of 3% (mass percentage) was prepared by dissolving the polymers (the mass ratio of PLLA to PCL was 70∶30) in chloroform. The solution was spun from a 10 mL syringe with a needle of 0.7 mm in diameter. Upon applying a high voltage (10 kV), a fluid jet was ejected from the capillary. As the jet accelerated towards a grounded collector, the solvent evaporated and sub-micron fibers were deposited on an aluminium foil. The distance between the needle and the grounded collector was 20 cm. The PLLA/PCL membrane was dried in a vacuum oven at 37 ℃ for 24 h to remove the residual solvent.

    1.2 Surface modification

    Plasmas were excited with a capacitively coupled 13.56 MHz radio frequency generator capable of delivering a continuously varying power output from 0 to 500 W. The base pressure of the plasma chamber was down to 0 Pa, and the He gas was fed to the chamber until the pressure reached the working pressure of 20 Pa. The electrospun PLLA/PCL fibers were treated at 45 W with He plasma for 2 min. The plasma treated sample was further exposed to the air for 10 min before coating gelatin.

    Anchorage of gelatin was performed by immersing the He-plasma-treated PLLA/PCL sample in 10% (mass percentage) gelatin solution for 12 h at 37 ℃. Then the gelatin-PLLA/PCL sample was washed by distilled water for three times and dried overnight in a vacuum oven. And then it was stored in a desiccator for 12 h at 37 ℃.

    1.3 Morphology observation by SEM

    The original and surface-modified fibrous membranes were characterized by a JSM-5600LV SEM (JEOL, Japan). Prior to SEM examination, a conductive thin gold film was deposited on the specimen surface.

    1.4 Surface structure tested by AFM

    All AFM images were obtained in ambient atmosphere at room temperature with a Nanoscope Ⅳ(Veeco, USA) microscope. The scanning was carried out in contact mode AFM. Each fiber sample was mounted to double-sided tape on magnetic AFM sample stubs.

    1.5 Elemental analysis by XPS

    Changes of the chemical bond environment of the treated samples were examined using the ESCALAB 200R XPS system (V.G Scientific Co., U.K.). Al Kα line (300 W) was used as a source of excitation. The XPS measurements used an Al Kα X-ray source with an optimum energy resolution 0.47 eV. The pressure in the analysis chamber was maintained at 5×10-6Pa.

    1.6 Water contact angle measurement

    The contact angle between water droplets and the surface was measured using a contact anglemeter (Dataphysics Co., Germany) at room temperature. The water droplets made of 3 μL distilled water were dropped at six different spots on each sample, and the average value was adopted.

    2 Results and Discussion

    2.1 Surface morphologies of original and modified PLLA/PCL membranes

    Surface morphology of various PLLA/PCL membranes was observed by SEM technique as shown in Fig. 1. In Figs. 1(a) - (b), it can be seen that the fiber surfaces of original PLLA/PCL film are smooth. However, He-plasma-treated sample presents the formation of groove-like structures on the fiber surfaces as exhibited in Figs. 1(c) - (d). The surface roughness of the fibers is greatly increased by He plasma treatment compared with the surface roughness of untreated ones. This can be attributed to the etching effect of the He plasma treatment. As shown in Figs. 1(e)-(f), distribution of gelatin is much even on the surface of fibers after the PLLA/PCL film is pretreated by He plasma, and the gelatin exhibits as mesh-like structures because of the rough surface of the He-plasma-treated film and subsequent gelatin anchoring process.

    Fig.1 SEM observation of surface morphology of various fibrous membranes: (a) original PLLA/PCL membrane (×1 000); (b) original PLLA/PCL membrane (×5 000); (c) He-plasma-treated PLLA/PCL membrane (×1 000); (d) He-plasma-treated PLLA/PCL membrane (×5 000); (e) gelatin-PLLA/PCL membrane (×1 000); (f) gelatin-PLLA/PCL membrane (×5 000)

    2.2 Surface roughness of original and modified PLLA/PCL fibers

    Topographical examination by AFM indicates the changes in the surface morphology of electrospun PLLA/PCL fibers before and after modification, as shown in Fig. 2. The AFM image in Fig. 2(a) illustrates that the original fiber with diameter ranging from 500 nm to 1 000 nm has relative smooth surface. The image also reveals that the diameter is uneven along an individual fiber. The sample treated by He plasma at 45 W for 2 min in Fig. 2(b) presents nanosize pores and aggregates on the fiber surface, and also there are some protruding particles like dots on the surface. In Fig. 2(c), gelatin distributing on the surface of He-plasma-treated sample results in the formation of groove-like structures on the fiber surface. All these AFM results show the changes on the surface roughness in detail and are consistent with the SEM analysis in Fig. 1.

    Fig. 2 AFM images of original and modified PLLA/PCL fibers:(a) original PLLA/PCL fiber; (b) He-plasma-treated PLLA/PCL fiber; (c) gelatin-PLLA/PCL fiber

    2.3 Surface composition of untreated and treated PLLA/PCL fibrous membranes

    To confirm changes of surface compositions and introduction of additional functional groups, XPS analysis was carried out. XPS is the leading analytical technique for characterizing various chemical/physical forms of elements in surface structures. XPS is especially attractive since additional chemical information can be derived from the line positions of the corresponding peaks[25-26]. Figure 3 shows survey scan spectra and C1s spectra of pristine PLLA/PCL membrane, He-plasma-treated PLLA/PCL membrane and gelatin-PLLA/PCL membrane.

    As can be seen from Fig. 3(a), all XPS spectra have two separated peaks which correspond to C1s (about 285 eV) and O1s (about 532 eV). A distinct N1s peak at 420 eV in the He-plasma-treated PLLA/PCL membrane indicated that a very small amount of nitrogen was introduced on the surface after the plasma-treated sample exposing to air. And the N1s peak in the gelatin-PLLA/PCL membrane spectrum indicated that gelatin had been successfully introduced onto the fiber surface. In addition, all the peaks on the spectra moved to lower-binding energy from curve A to curve C in Fig. 3(a).

    Fig.3 XPS survey scan spectra and C1s spectra of various PLLA/PCL membranes: (a) full spectra; (b) C1s spectra

    Table 1 Surface composition of various samples measured by XPS

    2.4 Water contact angle analysis for untreated and treated PLLA/PCL membranes

    The effect of plasma treatment and coating gelatin on the hydrophilicity of the PLLA/PCL membrane was shown in Fig. 4. As seen in Fig. 4, the water contact angle of the original PLLA/PCL membrane is found to be about 133°. After He plasma treatment, it appears that the water contact angles of the surface decease from 130° to 0° in 40 s. This can be attributed to the polar groups of the fibers and the rough surfaces. It is evident that He plasma treatment considerably reduces the water contact angle on the membrane surface. He plasma treatment is an effective method to introduce oxygen containing groups (such as carboxyl and hydroxyl groups) onto polymer surfaces. This simple method was used in this work to improve the hydrophilicity and introduce carboxyl groups onto the PLLA/PCL membrane surface for the possibility of gelatin grafting in aqueous solution. After gelatin was attached to the He-plasma-treated surface, the water contact angles dropped rapidly from 105° to 0° in 12 s, which further indicated the carboxyl groups generated on the plasma-treated surface conjugated with gelatin.

    Fig. 4 Water contact angles of (a) original PLLA/PCL membrane; (b) He-plasma-treated PLLA/PCL membrane; (c) gelatin-PLLA/PCL membrane

    3 Conclusions

    This study has explored the effects of plasma treatment and gelatin coated on PLLA/PCL membranes. It has shown that plasma treatment can have profound effects on the surface properties of fibrous membrane by changing their surface physical and chemical features. Furthermore, gelatin was successfully anchored on the surface of electrospun PLLA/PCL membrane by He plasma treatment, as evident from a detailed physical and chemical characterization of gelatin-PLLA/PCL membrane. And the surface hydrophilicity of modified fibrous membrane has been greatly improved. The modification of electrospun fibers surface by plasma pretreatment and bound gelatin has great potential in applications such as biomaterials, sensors and medical devices, which is expected to carry out cell culture research in the next step.

    猜你喜歡
    文華鎮(zhèn)江
    移火柴棒
    鎮(zhèn)江大地 詩意棲居
    華人時刊(2021年13期)2021-11-27 09:19:22
    賽珍珠:我在鎮(zhèn)江有個家
    華人時刊(2020年17期)2020-12-14 08:13:00
    我的鎮(zhèn)江尋根之旅
    華人時刊(2020年17期)2020-12-14 08:12:54
    填 數(shù)
    陳文華
    寶藏(2018年6期)2018-07-10 02:26:36
    倪文華 作品
    鎮(zhèn)江學(xué)前教育體制改革的實踐探索
    鎮(zhèn)江是這樣調(diào)價的
    A?。裕颍椋幔睿纾欤濉。拢欤铮悖耄ㄒ粋€三角木塊)
    国产又色又爽无遮挡免| 亚洲精品aⅴ在线观看| 你懂的网址亚洲精品在线观看| 色播亚洲综合网| 欧美日韩在线观看h| 熟女人妻精品中文字幕| 亚洲国产精品sss在线观看| 久久久a久久爽久久v久久| 国产精品熟女久久久久浪| 亚洲自偷自拍三级| 你懂的网址亚洲精品在线观看| 日韩电影二区| 免费看av在线观看网站| 一区二区三区免费毛片| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕久久专区| 久久综合国产亚洲精品| 日韩中字成人| 亚洲色图av天堂| 天堂影院成人在线观看| 男人和女人高潮做爰伦理| 一级a做视频免费观看| 亚洲欧洲日产国产| 波野结衣二区三区在线| 国产在视频线在精品| 成人特级av手机在线观看| 国产精品一区二区在线观看99 | 免费看av在线观看网站| 久99久视频精品免费| 亚洲欧美成人综合另类久久久| 国产 一区 欧美 日韩| 美女cb高潮喷水在线观看| 亚洲欧美日韩卡通动漫| 日韩精品青青久久久久久| 国产精品国产三级国产专区5o| 免费av毛片视频| 91久久精品电影网| 免费av不卡在线播放| 久久久久性生活片| 免费电影在线观看免费观看| 国产精品一区二区性色av| 国产成人freesex在线| 99久久精品国产国产毛片| 成人特级av手机在线观看| 国产熟女欧美一区二区| 小蜜桃在线观看免费完整版高清| 高清毛片免费看| 激情五月婷婷亚洲| 午夜福利在线观看免费完整高清在| 亚洲天堂国产精品一区在线| 国产亚洲91精品色在线| 国产一区二区三区av在线| 天堂中文最新版在线下载 | 国产老妇女一区| 久热久热在线精品观看| 97精品久久久久久久久久精品| av在线观看视频网站免费| 国产午夜精品论理片| 国产精品伦人一区二区| 丝袜美腿在线中文| 久久99热这里只有精品18| 精品酒店卫生间| 亚洲av在线观看美女高潮| 最近的中文字幕免费完整| 日韩强制内射视频| av在线观看视频网站免费| 人妻一区二区av| 日本欧美国产在线视频| 国产精品爽爽va在线观看网站| 欧美bdsm另类| av.在线天堂| 国产伦理片在线播放av一区| 伊人久久国产一区二区| 三级毛片av免费| 免费观看无遮挡的男女| 1000部很黄的大片| 免费黄频网站在线观看国产| 中文字幕免费在线视频6| 亚洲av不卡在线观看| 人妻系列 视频| 在现免费观看毛片| 免费观看a级毛片全部| 国产精品99久久久久久久久| 亚洲人成网站高清观看| 亚洲美女搞黄在线观看| 狂野欧美激情性xxxx在线观看| 亚洲欧美一区二区三区黑人 | 少妇的逼水好多| 国产单亲对白刺激| 亚洲国产色片| 在线观看免费高清a一片| 男的添女的下面高潮视频| 三级国产精品欧美在线观看| 成人亚洲欧美一区二区av| 联通29元200g的流量卡| 国产人妻一区二区三区在| 2018国产大陆天天弄谢| 少妇人妻一区二区三区视频| 欧美极品一区二区三区四区| 成人漫画全彩无遮挡| 中文字幕av成人在线电影| 大又大粗又爽又黄少妇毛片口| 美女cb高潮喷水在线观看| 2021少妇久久久久久久久久久| 国产成年人精品一区二区| 国产av在哪里看| 亚洲精品aⅴ在线观看| 欧美日韩综合久久久久久| 麻豆成人av视频| 亚洲人成网站在线观看播放| 国产色婷婷99| 高清毛片免费看| 久久草成人影院| 麻豆精品久久久久久蜜桃| 亚洲精品久久午夜乱码| 中国国产av一级| 美女主播在线视频| 国产有黄有色有爽视频| 国产成人精品一,二区| 午夜福利视频精品| 熟妇人妻久久中文字幕3abv| 免费少妇av软件| 日韩av在线大香蕉| av播播在线观看一区| 日本-黄色视频高清免费观看| 久久精品国产亚洲网站| 色综合站精品国产| 91av网一区二区| 国产精品久久久久久久电影| 免费少妇av软件| 精品人妻熟女av久视频| 精品酒店卫生间| 成人欧美大片| 精品亚洲乱码少妇综合久久| 我的老师免费观看完整版| 一级毛片我不卡| 亚洲欧美精品专区久久| 亚洲在久久综合| 成人一区二区视频在线观看| 久久人人爽人人片av| 丰满人妻一区二区三区视频av| 成人亚洲精品一区在线观看 | 国产黄片视频在线免费观看| 午夜福利网站1000一区二区三区| 成年女人在线观看亚洲视频 | 色综合色国产| av在线老鸭窝| 国产人妻一区二区三区在| 国产av不卡久久| 亚洲av二区三区四区| 99久久九九国产精品国产免费| 免费看日本二区| 一区二区三区乱码不卡18| 激情五月婷婷亚洲| 婷婷色综合大香蕉| 熟女电影av网| 日韩视频在线欧美| 亚洲一区高清亚洲精品| 日韩成人av中文字幕在线观看| 国产精品综合久久久久久久免费| 亚洲国产精品国产精品| 99久国产av精品国产电影| 久久99热这里只有精品18| 美女主播在线视频| 夫妻性生交免费视频一级片| 天堂网av新在线| 日韩一区二区三区影片| 一个人观看的视频www高清免费观看| 深爱激情五月婷婷| 97人妻精品一区二区三区麻豆| 色网站视频免费| 成年女人在线观看亚洲视频 | 国产女主播在线喷水免费视频网站 | 亚洲av免费在线观看| 久久精品综合一区二区三区| 纵有疾风起免费观看全集完整版 | 午夜福利成人在线免费观看| 非洲黑人性xxxx精品又粗又长| 成年av动漫网址| 丝袜美腿在线中文| 狂野欧美激情性xxxx在线观看| 精品午夜福利在线看| 在线免费观看的www视频| 精品人妻偷拍中文字幕| 精品国内亚洲2022精品成人| 免费在线观看成人毛片| 国产免费视频播放在线视频 | 日本免费a在线| 国产精品一区二区性色av| 欧美日韩亚洲高清精品| 麻豆成人午夜福利视频| 国产精品一区二区三区四区久久| av播播在线观看一区| 只有这里有精品99| 中文字幕av成人在线电影| 免费av不卡在线播放| 国产成人精品一,二区| 超碰97精品在线观看| 亚洲欧美中文字幕日韩二区| 一级毛片久久久久久久久女| 久久久久久久久大av| 久久精品久久久久久噜噜老黄| 亚洲成人精品中文字幕电影| 一级爰片在线观看| 一二三四中文在线观看免费高清| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| 国产成人a区在线观看| 久久人人爽人人爽人人片va| 久久99蜜桃精品久久| 人妻夜夜爽99麻豆av| 国产伦在线观看视频一区| 欧美激情久久久久久爽电影| 亚洲欧美中文字幕日韩二区| 日韩国内少妇激情av| 超碰97精品在线观看| 免费看日本二区| 久久精品久久久久久久性| 男插女下体视频免费在线播放| 日韩欧美精品免费久久| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久亚洲| 纵有疾风起免费观看全集完整版 | 高清欧美精品videossex| 日韩强制内射视频| 日韩三级伦理在线观看| av在线观看视频网站免费| 国产免费一级a男人的天堂| 最近中文字幕2019免费版| 午夜精品一区二区三区免费看| 午夜精品国产一区二区电影 | 亚洲国产高清在线一区二区三| 亚洲,欧美,日韩| 99re6热这里在线精品视频| 国产淫语在线视频| videos熟女内射| 极品少妇高潮喷水抽搐| 精品亚洲乱码少妇综合久久| 中文资源天堂在线| 久久久精品免费免费高清| 久久久久久久大尺度免费视频| 一级av片app| 国产 亚洲一区二区三区 | 国产日韩欧美在线精品| 十八禁国产超污无遮挡网站| 免费黄网站久久成人精品| 国产单亲对白刺激| 少妇熟女欧美另类| 好男人在线观看高清免费视频| 性色avwww在线观看| 色播亚洲综合网| 日韩亚洲欧美综合| 简卡轻食公司| 国产亚洲精品久久久com| 嫩草影院新地址| 一级二级三级毛片免费看| 国产成年人精品一区二区| 国产伦精品一区二区三区视频9| 亚洲精品成人久久久久久| 久久久久九九精品影院| 久久6这里有精品| 亚洲av在线观看美女高潮| 秋霞在线观看毛片| 成人av在线播放网站| av卡一久久| 在线观看免费高清a一片| 亚洲av一区综合| 一个人免费在线观看电影| 亚洲精品乱久久久久久| 草草在线视频免费看| 亚洲精品成人久久久久久| 神马国产精品三级电影在线观看| 啦啦啦韩国在线观看视频| 国产乱人偷精品视频| 国产一级毛片在线| 久久草成人影院| 欧美日韩亚洲高清精品| 国产69精品久久久久777片| 久久精品国产亚洲网站| 中文字幕免费在线视频6| 亚洲最大成人手机在线| 欧美成人一区二区免费高清观看| 亚洲av电影在线观看一区二区三区 | 高清日韩中文字幕在线| 九九久久精品国产亚洲av麻豆| 久久久久久九九精品二区国产| .国产精品久久| 中文字幕久久专区| 免费观看精品视频网站| 免费观看精品视频网站| videos熟女内射| 中文在线观看免费www的网站| 水蜜桃什么品种好| 欧美zozozo另类| 在线观看免费高清a一片| 熟女人妻精品中文字幕| 日韩 亚洲 欧美在线| 国产精品一区www在线观看| 欧美性感艳星| 综合色av麻豆| 欧美一区二区亚洲| 五月天丁香电影| 成人性生交大片免费视频hd| 亚洲成人久久爱视频| 日韩欧美精品免费久久| 欧美日韩国产mv在线观看视频 | 国产精品爽爽va在线观看网站| 黄片wwwwww| 日韩大片免费观看网站| 国产视频首页在线观看| 日韩成人av中文字幕在线观看| 91久久精品国产一区二区成人| 亚洲va在线va天堂va国产| 丝袜美腿在线中文| 一本一本综合久久| 久久久久性生活片| 日本三级黄在线观看| 国产伦精品一区二区三区四那| 久久久欧美国产精品| www.av在线官网国产| 欧美成人午夜免费资源| 午夜精品一区二区三区免费看| 岛国毛片在线播放| 欧美最新免费一区二区三区| 九草在线视频观看| 日韩国内少妇激情av| 免费在线观看成人毛片| 超碰97精品在线观看| 观看免费一级毛片| 青春草国产在线视频| 亚洲四区av| 日韩不卡一区二区三区视频在线| 国产成人91sexporn| 中文精品一卡2卡3卡4更新| 国产成人免费观看mmmm| 免费无遮挡裸体视频| av.在线天堂| 97超碰精品成人国产| 内射极品少妇av片p| 人妻制服诱惑在线中文字幕| 久久久久久久亚洲中文字幕| 干丝袜人妻中文字幕| 亚洲精品国产av蜜桃| 能在线免费观看的黄片| 99热这里只有是精品在线观看| 亚洲精品中文字幕在线视频 | 亚洲精品自拍成人| 久久精品夜色国产| 国产亚洲av嫩草精品影院| 日韩欧美精品v在线| 久久久久免费精品人妻一区二区| 九草在线视频观看| 国产毛片a区久久久久| 九草在线视频观看| 精品不卡国产一区二区三区| 国产免费一级a男人的天堂| 国产精品人妻久久久久久| 免费大片黄手机在线观看| 成人亚洲欧美一区二区av| 我的老师免费观看完整版| 神马国产精品三级电影在线观看| 久久久久久久久久黄片| 一级a做视频免费观看| 日本一二三区视频观看| 免费看美女性在线毛片视频| a级毛片免费高清观看在线播放| av免费观看日本| 亚洲美女视频黄频| 床上黄色一级片| 国产精品日韩av在线免费观看| 美女国产视频在线观看| 有码 亚洲区| 一个人免费在线观看电影| 久99久视频精品免费| 99热全是精品| 亚洲精品久久午夜乱码| 在线 av 中文字幕| 国产单亲对白刺激| av国产久精品久网站免费入址| 欧美另类一区| 国产白丝娇喘喷水9色精品| 2021少妇久久久久久久久久久| 欧美xxxx性猛交bbbb| 亚洲精品日本国产第一区| 女人被狂操c到高潮| av黄色大香蕉| 午夜免费男女啪啪视频观看| 国产成人精品福利久久| 男的添女的下面高潮视频| 亚洲精品aⅴ在线观看| 搡女人真爽免费视频火全软件| 国产成年人精品一区二区| 卡戴珊不雅视频在线播放| 成年人午夜在线观看视频 | 九草在线视频观看| 男人舔奶头视频| 中国美白少妇内射xxxbb| 国产成人精品福利久久| 国产乱人视频| 亚洲av中文av极速乱| 伦理电影大哥的女人| 熟女电影av网| 亚洲精品自拍成人| 精品国产一区二区三区久久久樱花 | 欧美激情在线99| 亚洲国产精品成人久久小说| 久久精品国产亚洲网站| 九九爱精品视频在线观看| 午夜老司机福利剧场| 国产视频首页在线观看| 淫秽高清视频在线观看| 少妇裸体淫交视频免费看高清| 国产av国产精品国产| 蜜桃亚洲精品一区二区三区| 免费看不卡的av| 男的添女的下面高潮视频| 搡女人真爽免费视频火全软件| 久久久久久久久久久丰满| 久久鲁丝午夜福利片| 午夜福利网站1000一区二区三区| 国产成年人精品一区二区| 欧美成人一区二区免费高清观看| 久热久热在线精品观看| 国产综合懂色| 黄色日韩在线| 你懂的网址亚洲精品在线观看| 亚洲精品成人久久久久久| 亚洲国产av新网站| 91午夜精品亚洲一区二区三区| 久久久久久久午夜电影| 日韩欧美精品免费久久| 免费黄网站久久成人精品| 老女人水多毛片| 99久久九九国产精品国产免费| 我的老师免费观看完整版| 亚洲自拍偷在线| 我要看日韩黄色一级片| 丝袜美腿在线中文| 午夜福利成人在线免费观看| a级一级毛片免费在线观看| 人体艺术视频欧美日本| 国产免费福利视频在线观看| av免费在线看不卡| 国产高清国产精品国产三级 | 亚洲欧洲日产国产| 国内精品宾馆在线| 赤兔流量卡办理| 成人亚洲精品一区在线观看 | 国产女主播在线喷水免费视频网站 | 欧美一级a爱片免费观看看| 国产精品.久久久| 久久久久久九九精品二区国产| 99久久中文字幕三级久久日本| 波多野结衣巨乳人妻| 免费观看a级毛片全部| 搡女人真爽免费视频火全软件| 日本与韩国留学比较| 国产精品人妻久久久影院| 国产伦一二天堂av在线观看| 三级经典国产精品| 国产永久视频网站| h日本视频在线播放| av播播在线观看一区| 国产白丝娇喘喷水9色精品| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩东京热| 精品人妻视频免费看| 国产视频首页在线观看| 亚洲人与动物交配视频| 一级av片app| 蜜桃亚洲精品一区二区三区| 久久鲁丝午夜福利片| 国产av在哪里看| 亚洲国产欧美人成| 亚洲精品国产av成人精品| 国产在线一区二区三区精| 亚洲av二区三区四区| 国产一区二区在线观看日韩| www.色视频.com| 丰满少妇做爰视频| 午夜福利视频1000在线观看| 男插女下体视频免费在线播放| 蜜桃久久精品国产亚洲av| 日韩一区二区视频免费看| 日韩成人伦理影院| 日韩欧美 国产精品| 精品人妻视频免费看| 三级男女做爰猛烈吃奶摸视频| 亚洲精华国产精华液的使用体验| 国内少妇人妻偷人精品xxx网站| 中文精品一卡2卡3卡4更新| 嫩草影院入口| 美女高潮的动态| 天堂影院成人在线观看| 亚洲在线自拍视频| 国产色爽女视频免费观看| 国产探花极品一区二区| 亚洲精品久久久久久婷婷小说| 高清av免费在线| 国产黄色视频一区二区在线观看| 狠狠精品人妻久久久久久综合| 熟女电影av网| 国产精品一及| 精品久久久久久久末码| 精品久久久久久久久久久久久| 三级男女做爰猛烈吃奶摸视频| av免费观看日本| 日韩av在线大香蕉| 久久草成人影院| 尾随美女入室| 午夜免费男女啪啪视频观看| 欧美一级a爱片免费观看看| 身体一侧抽搐| 天堂√8在线中文| 午夜福利视频1000在线观看| 日本一二三区视频观看| 国产精品熟女久久久久浪| 观看免费一级毛片| 插逼视频在线观看| 国产成人91sexporn| 有码 亚洲区| 亚洲无线观看免费| 国产三级在线视频| 日本欧美国产在线视频| 欧美97在线视频| 日本黄大片高清| 97超视频在线观看视频| 男人和女人高潮做爰伦理| 一级av片app| 天天一区二区日本电影三级| av在线观看视频网站免费| 天堂√8在线中文| 亚洲成人久久爱视频| 亚洲欧美成人精品一区二区| 最近中文字幕2019免费版| 天美传媒精品一区二区| 亚洲av不卡在线观看| 久久久精品免费免费高清| 日韩国内少妇激情av| 国产免费视频播放在线视频 | 蜜桃久久精品国产亚洲av| 女人被狂操c到高潮| 人妻夜夜爽99麻豆av| 国产精品无大码| 国产黄片美女视频| 亚洲在线观看片| 国产又色又爽无遮挡免| 白带黄色成豆腐渣| 看免费成人av毛片| 国产不卡一卡二| 一个人免费在线观看电影| 久久精品国产亚洲av天美| 国产成人精品久久久久久| 淫秽高清视频在线观看| 欧美 日韩 精品 国产| 在线天堂最新版资源| 最近视频中文字幕2019在线8| 国产精品久久视频播放| 蜜桃久久精品国产亚洲av| 欧美三级亚洲精品| 五月伊人婷婷丁香| 性色avwww在线观看| 国产男女超爽视频在线观看| 日韩av免费高清视频| 久久久久久久大尺度免费视频| 夫妻性生交免费视频一级片| 夫妻午夜视频| 人妻少妇偷人精品九色| 日韩在线高清观看一区二区三区| 欧美+日韩+精品| 亚洲无线观看免费| 精品国产一区二区三区久久久樱花 | 亚洲欧洲国产日韩| 亚洲国产欧美人成| 免费看日本二区| 亚洲经典国产精华液单| 又大又黄又爽视频免费| 亚洲欧美日韩卡通动漫| 高清视频免费观看一区二区 | 国产免费又黄又爽又色| 一级爰片在线观看| ponron亚洲| 日本免费a在线| 欧美成人午夜免费资源| 国产视频内射| 特级一级黄色大片| 久久99精品国语久久久| 综合色丁香网| 极品教师在线视频| 国产久久久一区二区三区| 午夜福利在线观看免费完整高清在| 午夜福利在线观看吧| 观看免费一级毛片| freevideosex欧美| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站高清观看| 在线观看av片永久免费下载| 女人十人毛片免费观看3o分钟| 亚洲精品一区蜜桃| 亚洲av日韩在线播放| 午夜免费激情av| 高清视频免费观看一区二区 | 免费看美女性在线毛片视频| 女的被弄到高潮叫床怎么办| 日本午夜av视频| 国产精品久久久久久av不卡| 精品久久久久久久人妻蜜臀av| 99久久九九国产精品国产免费| 亚洲av免费在线观看| 性色avwww在线观看| 国产成人午夜福利电影在线观看| 日韩人妻高清精品专区| 九九久久精品国产亚洲av麻豆| 男插女下体视频免费在线播放| 国产在线男女|