• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Reactive Power Compensation of Distribution Network to Prevent Reactive Power Reverse

    2021-09-07 06:29:44XINGJieCAORuilin曹瑞琳QUANZhaolong權(quán)釗龍YUANZhiqiang袁智強(qiáng)

    XING Jie(邢 潔), CAO Ruilin(曹瑞琳), QUAN Zhaolong(權(quán)釗龍), YUAN Zhiqiang(袁智強(qiáng))

    1 College of Information Science and Technology, Donghua University, Shanghai 201620, China

    2 Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China

    3 Shanghai Electric Power Design Institute Co., Ltd., Shanghai 200025, China

    Abstract: The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years. In severe cases, it will endanger the security and stability of power grid. This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse. Firstly, an integrated reactive power planning (RPP) model with power factor constraints is established. Capacitors and reactors are considered to be installed in the distribution system at the same time. The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period. Nodal power factor limits and reactor capacity constraints are new constraints. Then, power factor sensitivity with respect to reactive power is derived. An improved genetic algorithm by power factor sensitivity is used to solve the model. The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit. Finally, the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.

    Key words: reactive compensation planning; high voltage distribution network; power actor; improved genetic algorithm

    Introduction

    The optimal reactive power planning (ORPP) is mainly to determine the amount and location of shunt reactive power compensation devices needed for minimum cost while keeping an adequate voltage profile[1-3]. The ORPP is a typical nonlinear optimization problem with a large number of variables and constraints[4].

    In some studies, fitness functions suitable for multi-objective optimization were constructed, which introduced the numbers of control adjustment or considered multi-area interconnected systems[5-6]. Many efforts have been undertaken using classical optimization techniques[7-9]. Compared with the conventional optimization algorithm, intelligent optimization algorithms have attracted much more attention due to their advantages such as ignoring gradient of optimization model and dealing with discrete variables easily[10-14]. In order to solve the problem of large calculation quantity and long search time for numerous compensation points in distribution network, sensitivity analysis[3]and partition coefficient are used to reduce the candidates before searching. In addition, conventional reactive power planning (RPP) model based on deterministic load is expanded to that of uncertainty operating modes, in order to improve the adaptability of reactive power planning results[15-17]. However, most studies on ORPP are based on the power grid of overhead transmission lines. The capacitance of overhead lines is much smaller than that of underground cables at the same voltage, therefore, the capacitive reactive power reversal is not considered in ORPP[18].

    At present, the urban high voltage distribution network shows new characteristics. On the one hand, the load peak-valley difference of power grid increases significantly; on the other hand, due to the restriction of resource and environment, the newly-built lines are mainly large-section underground cables and the old overhead lines are gradually changed to the underground cables. With the further expansion of the scale of high-voltage distribution network, redundant capacitive reactive power flows back to the higher voltage grid under low load condition. It not only raises the system voltage and challenges the voltage regulation ability of substation, but also reduces the stability margin of under excited generator in the power grid, which affects the security and stability of power grid[19]. In the power grid, reactive power compensation is proceeded according to hierarchical balance. For a long time, the redundant capacitive reactive power of 110 kV grid is compensated by 35 kV or 10 kV reactors in 220 kV substations. There are usually no reactors in 110 kV substations. On the other hand, the main purpose of 110 kV high voltage reactor installed at long transmission line is to limit overvoltage rather than to balance reactive power. The centralized installation of capacitive and inductive compensation in 220 kV and above substations has gradually failed to meet the requirements of distribution network development[20]. Considering the difficulty of project implementation and practical economy, it is an effective and feasible method to integrate capacitors and reactors in the 10 kV sides of 110 kV substations.

    Taking Shanghai power grid as an example, in 2018, the daily maximum peak-valley difference reached 12 630 MW, accounting for 48.5% of daily maximum load. The total length of 110 kV underground cables in Shanghai power grid was 1 611 km, accounting for 42% of all 110 kV lines. Under the new development trend, the RPP would gradually become the coordinated planning of capacitive and inductive reactive compensation for relieving capacitive reactive power excess being caused by cables at low load condition. Meanwhile, the inequality constraints mainly include voltage constraints, capacitor capacity limits and other traditional constraints in conventional ORPP. However, in the current power grid, excess capacitive reactive power flows back to active power supply source, which often leads to the power factor exceeding the limit at the measurement point of distribution station. Consumers who exceeded the power factor limit have to pay punitive electric bill[21]. Therefore, it is helpful to solve the reactive power reversal and unqualified power factor under low load condition that the power factor constraint is considered into the ORPP.

    This paper proposes an ORPP method considering power factor constraints in high voltage distribution network. This paper is organized as follows. Section 1 gives a comprehensive ORPP model with power factor constraints for optimizing the sizing and location of reactors and capacitors. The nodal power factor constraints are added into the mathematical model, which is used to solve the problems of reactive power reversal and power factor exceeding the limits in distribution network. Section 2 gives a brief formula derivation of the sensitivity of power factor to reactive power. Section 3 presents an improved genetic algorithm (IGA) by power factor sensitivity (PFS), in which the traditional genetic algorithm (GA) is improved by taking PFS as the guiding strategy for forming initial population. In section 4, the test and validation of model and algorithm are conducted on test systems. Finally, section 5 concludes the work.

    1 RPP Model Considering Power Factor Constraints

    1.1 Objective function

    The objective of the RPP is to minimize the total cost of active power loss and compensators during the planning period[2].The objective function is shown as

    (1)

    wheref1is the capacity cost of compensators, which are capacitor investment and reactor investment;f2is the cost of active power loss of distribution network;C1andC2are capacitor’s cost coefficient of unit capacity and reactor’s cost coefficient of unit capacity, respectively;QCiandQLiare the capacity of reactive power resources installed at busi;Tis the planning period; τ is the electricity price per kwh;tis the time of operation;Ploss1andPloss2are the active power loss of network and transformers;NCandNLare the numbers of installed capacitors and reactors.

    1.2 Conventional constraints

    Because the slack bus is the only reactive power source except compensation in the distribution network, the power flow equation is shown as

    (2)

    wherePiandQiare the injected active power and reactive power at busi;UiandUjare the voltage magnitudes of busiand busj;Gijis the conductance between busiandj;Bijis the transfer susceptance between busiandj;δijis the voltage angle difference between busiandj;nis the total number of buses;αiandβiare the switch variables with a value of 0 or 1, which decide the operation of capacitors or reactors. Because the capacitors and reactors cannot run at the same time, variablesαiandβicannot be taken as 1 simultaneously.

    Constraints of voltage magnitude and transmission line loading are as follows:

    (3)

    (4)

    1.3 Constraints of power factors and compensators

    1.3.1Powerfactoraffectedbyreactivepowerflowreversing

    In high voltage distribution network, the nodal power factor is measured at the coupling point of substation, which is determined by the suppling load and the power transferred to other substations. Due to the radial structure, the power factor of bus can be calculated by apparent power at the end of incoming line. The nodal power factor and reactive power distribution are different corresponding to overhead lines and underground cables being used in distribution network, even if there is the same active power loss.

    Fig. 1 Schematic diagram of chain connection distribution network

    As mentioned above, it is necessary to add power factor constraint and consider coordinating reactors and capacitors on the traditional RPP model which mainly focuses on capacitor compensation, so as to solve the problem of reactive power reversal and power factor exceeding the limit under the light load period.

    1.3.2Constraintsofpowerfactorandreactivepowercompensation

    Capacity constraints of reactive power compensation are shown as

    (5)

    (6)

    The constraint of power factor is shown as

    (7)

    (8)

    where distributed generation (DG) is not considered in the proposed model, so there is no active power sent to grid andPiis positive; sgn (Qi) is “1” whenQiis absorbed by load, otherwise it is “-1” and negative sign is used to indicate the reverse direction of reactive power flow. In this way, compensation schemes with reactive power reverse are excluded from the feasible solutions because they cannot meet power factor constraints. The new added constraint prevents reactive power flow reversely.

    2 IGA for the Proposed Model

    GA is an adaptive search algorithm simulating biological evolution, which does not need the gradient information of model. GA can obtain the global optimal solution in probability through the operation of selection, crossover and mutation[14].

    In this paper, the traditional GA is improved according to the characteristics of the planning model.

    2.1 Chromosome code mapping to Gray code

    In this paper, the traditional GA is improved according to the characteristics of the planning model. In order to save memory space, improve computing speed, and avoid Hamming cliff problem approaching the optimal solution, the definition domain of discrete control variables is mapped to gray code. In this way, the approximation can be avoided when the optimal chromosome is decoded between adjacent control variables. And the Gray code can also prevent probability density from being affected by the invalid solution in selection process, because the number of chromosomes produced by traditional binary code is larger than that of feasible solutions.

    2.2 Forming effective initial population

    2.2.1PFSwithrespecttoReactivePower

    The PFS is obtained by the partial derivative of power factor to the reactive power injection at the end of branch. PFS can reflect the influence of reactive compensation variation on nodal power factor. It can be seen from Fig. 1 that the power factor of busiis not only determined by the suppling load, but also affected by the load of other buses connected with it. The PFS of nodeito reactive power of network is shown as

    (9)

    where ?cosφi/?Piand ?cosφi/?Qican be calculated according to the power factor definition formula; ?Pi/?Qand ?Qi/?Qare the partial derivatives of injection power at busiwith respective to reactive power vector, which can be calculated by ?Ui/?Qj, ?Uj/?Qj, ?δi/?Qjand ?δj/?Qjfrom Jacobi matrix.

    2.2.2FormingeffectiveinitialpopulationwithPFSselectionstrategy

    When an initial population is formed, the reactive power compensations of chromosomes which exceed the power factor limits, are adjusted to meet the power factor constraints according to the results of PFS.

    Initial population is generated randomly in control variable domain. Then, for each chromosome that do not meet the power factor constraint, the sensitivities of over-limit power factor with respect to gene segments (compensation locations) are calculated according to Eq. (7) and sorted by their absolute values. The reactive power compensation with the largest PFS is adjusted by the direction of sensitivity change. If the compensation capacity is at the boundary, the reactive power compensation adjustment is carried out on the gene segment with the second largest PFS value until the power factor meets the constraints.

    2.3 Algorithm flow

    The main steps of the IGA are as follows.

    Step1Input network data and set parameters of IGA, such as maximum generation, population size, crossover probability and mutation probability.

    Step2Form initial population.

    Step3Reproduce chromosomes into a “mating pool” according to their fitness values by roulette wheel.

    Step4Perform crossover to each couple of chromosomes in the “mating pool” according to the crossover probability. Apply crossover operation successfully if power factors meet limits; otherwise keep chromosomes unchanged.

    Step5Perform mutation according to the mutation probability. Apply mutation operation successfully if power factors meet limits; otherwise keep chromosomes unchanged.

    Step6Stop the procedure and output the results if the convergence criterion is satisfied; otherwise go back to Step 3.

    3 Case Study

    In this section, the effectiveness of the proposed model and algorithm is tested using IEEE 14-bus test system. The system configuration is shown in Fig. 2 and the line data of system can be found in Appendix.

    Fig. 3 Capacity of reactive power compensation

    The network voltage is 110 kV. The limits of voltage magnitude are taken between 0.94 and 1.06 (per unit value) for all buses except the slack bus1. The capacity of each transformer is 50 MVA. Its load lossPkis 194 kW and short circuit impedance is 10.5%. At light load condition, the active and reactive power of buses are shown in Appendix. The reactive power compensation of each bus is grouped into 3 Mvar and 5 Mvar according to the actual equipment capacity.

    The IGA program in this paper is realized using MATLAB. The parameters set in algorithm are as follows: population size is 50, maximum generation is 15, crossover probability is 0.8 and mutation probability is 0.09. In the proposed RPP model, the planning period is 10 a, electricity price is 0.45 CNY/(kW·h), the unit capacity price of capacitor is 50 CNY/kvar, the unit capacity price of reactor is 80 CNY/kvar, the light load availability hours are 2 600 h and the range of power factor is [0.9, 1.0]. Because the use of 10 kV reactor in 110 kV substation has not been normalized, the price of reactor per unit capacity is higher than that of capacitor.

    In initial network without any reactive power compensation, the reactive power flowing into the slack bus is 18.16 Mvar and the total number of buses that violate power factor constraints is 3.

    The results of the proposed method in this paper are shown in Table 1.

    The results in Table 1 show that the objective function is 567×104CNY and the capacities of capacitors and reactors are respectively 6 Mvar and 26 Mvar. In this paper, the coordinated planning of reactor and capacitor is considered, which eliminates the problem of power factors exceeding the limits and reduces the reactive power of 18.16 Mvar to the upper power grid. Considering the huge scale of the actual high-voltage distribution network, the optimization results will be more obvious, which can effectively reduce the voltage regulation pressure of power grid.

    Table 1 Compensation results of the proposed RPP model

    Table 2 shows the improvement effect on reactive power reversal and power factors exceeding the limits in the proposed planning scheme. The negative sign indicates that the reactive power flows back into the bus.

    From the comparison in Table 2, it can be found that several nodal power factors in the original network are lower than 0.900, such as bus5 and bus9, and there is reactive power reverse in some buses, such as bus2, bus6 and bus11. The optimal results of RPP considering power factor constrains and coordination of capacitors and reactors, can avoid reactive power reversal and power factor exceeding the limit.

    Table A1 Loads of buses

    Table A2 Line parameters

    Figure 3 shows the optimal sizing of capacitors and reactors at low voltage buses of substations. In order to express clearly, shunt capacitors compensation is positive and reactor compensation is negative.

    The comparison of voltage profile is shown in Fig. 4. It can be found that the voltage profile of the proposed RPP is improved, which is much better than that of original network. The maximum voltage magnitude is reduced and the voltage gap is smaller. The sample standard deviations of two voltage fluctuation curves are 0.108 9 and 0.039 9, respectively. The results show that the network voltage fluctuation is smaller when reactive power compensation is carried out according to the planning scheme.

    Fig. 4 Voltage profile comparison

    Fig. 5 Convergence curve of IGA

    Figure 5 shows the convergence characteristics of the objective function of the proposed IGA method.

    4 Conclusions

    In this paper, an improved RPP model with power factor constraints is proposed, in which capacitors and reactors are considered coordinately. The objective function is the minimization of real power loss and compensation cost during the planning period and new constraints such as nodal power factor limits and reactor capacity constraints are taken into account. Then, PFS with respect to reactive power is derived. An IGA by PFS is used to solve the model. Finally, the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network. The results show that the proposed method can avoid reactive power reversal and power factor over-limit in the conditions of light load and large-scale underground cables in the high-voltage distribution network.

    午夜免费男女啪啪视频观看| 天天操日日干夜夜撸| 新久久久久国产一级毛片| 精品一品国产午夜福利视频| 国产伦在线观看视频一区| 人妻制服诱惑在线中文字幕| 久久99一区二区三区| 91久久精品电影网| 日韩一本色道免费dvd| 国产午夜精品久久久久久一区二区三区| av播播在线观看一区| 少妇人妻 视频| 国产欧美另类精品又又久久亚洲欧美| 国产精品女同一区二区软件| 男人和女人高潮做爰伦理| 三上悠亚av全集在线观看 | 国产精品一区二区三区四区免费观看| 99国产精品免费福利视频| 国产伦在线观看视频一区| 亚洲精华国产精华液的使用体验| 国产精品久久久久久久久免| 在线 av 中文字幕| 国产精品一区www在线观看| 丝袜脚勾引网站| 人人妻人人添人人爽欧美一区卜| www.av在线官网国产| 久久久久国产网址| h日本视频在线播放| 国产av精品麻豆| 久久热精品热| 美女主播在线视频| 日韩强制内射视频| 在线 av 中文字幕| 新久久久久国产一级毛片| 久热这里只有精品99| 一级毛片黄色毛片免费观看视频| 欧美日韩在线观看h| www.色视频.com| 欧美性感艳星| 日韩 亚洲 欧美在线| 欧美成人精品欧美一级黄| 人妻系列 视频| 在线观看一区二区三区激情| 亚洲国产日韩一区二区| 岛国毛片在线播放| 成人亚洲精品一区在线观看| 夜夜看夜夜爽夜夜摸| 哪个播放器可以免费观看大片| 九色成人免费人妻av| 在线观看免费高清a一片| 国产日韩欧美视频二区| 欧美性感艳星| 精品人妻偷拍中文字幕| 在线天堂最新版资源| 国产黄频视频在线观看| 中国三级夫妇交换| 丰满乱子伦码专区| 热99国产精品久久久久久7| 日韩免费高清中文字幕av| av女优亚洲男人天堂| 女的被弄到高潮叫床怎么办| 在线播放无遮挡| 美女脱内裤让男人舔精品视频| 在线观看免费日韩欧美大片 | 肉色欧美久久久久久久蜜桃| 少妇被粗大猛烈的视频| 久久久久人妻精品一区果冻| 国产精品一区www在线观看| 在线观看一区二区三区激情| 女性生殖器流出的白浆| 久久久国产精品麻豆| 久久久午夜欧美精品| 久久久久视频综合| 一区二区三区四区激情视频| 在现免费观看毛片| 国产在线一区二区三区精| 日韩在线高清观看一区二区三区| 寂寞人妻少妇视频99o| 黄片无遮挡物在线观看| 26uuu在线亚洲综合色| 黑人高潮一二区| 亚洲欧美清纯卡通| av在线app专区| 国产在线视频一区二区| 91aial.com中文字幕在线观看| a级片在线免费高清观看视频| 成人亚洲欧美一区二区av| 2022亚洲国产成人精品| 中国三级夫妇交换| 一本久久精品| 欧美日韩亚洲高清精品| a级片在线免费高清观看视频| av网站免费在线观看视频| 99久久中文字幕三级久久日本| 精品少妇久久久久久888优播| 午夜福利影视在线免费观看| 免费在线观看成人毛片| 国产无遮挡羞羞视频在线观看| 极品少妇高潮喷水抽搐| av专区在线播放| 熟女电影av网| 亚洲天堂av无毛| a级毛片免费高清观看在线播放| 狂野欧美激情性xxxx在线观看| 18禁裸乳无遮挡动漫免费视频| 国产黄片视频在线免费观看| 国产成人aa在线观看| 亚洲精品乱码久久久v下载方式| 大又大粗又爽又黄少妇毛片口| 高清视频免费观看一区二区| 99国产精品免费福利视频| 自线自在国产av| 午夜91福利影院| 亚洲av电影在线观看一区二区三区| 桃花免费在线播放| 日韩av不卡免费在线播放| 黄色欧美视频在线观看| 国产乱人偷精品视频| 午夜福利,免费看| 成人免费观看视频高清| 五月开心婷婷网| 亚洲精品视频女| 欧美日韩在线观看h| 有码 亚洲区| 亚洲欧美日韩卡通动漫| 热re99久久精品国产66热6| 大又大粗又爽又黄少妇毛片口| 国产精品人妻久久久久久| 久久久久久久久久久免费av| 久久热精品热| 各种免费的搞黄视频| 一本色道久久久久久精品综合| 久久6这里有精品| av女优亚洲男人天堂| 国产欧美日韩一区二区三区在线 | 久久精品国产亚洲网站| 久久精品国产亚洲av天美| 久久久a久久爽久久v久久| 久久久久久久久久人人人人人人| 中文欧美无线码| 国产欧美日韩综合在线一区二区 | 精品国产国语对白av| 国产爽快片一区二区三区| 亚洲久久久国产精品| 亚洲电影在线观看av| 三级国产精品欧美在线观看| 美女主播在线视频| 黄色怎么调成土黄色| 欧美xxxx性猛交bbbb| 成年av动漫网址| 国产免费又黄又爽又色| 日韩在线高清观看一区二区三区| 午夜免费男女啪啪视频观看| 日本欧美视频一区| 久久久久久久久久人人人人人人| av福利片在线| 亚洲内射少妇av| 久久 成人 亚洲| 青春草国产在线视频| a级一级毛片免费在线观看| 亚洲成人av在线免费| av播播在线观看一区| 精品午夜福利在线看| 亚洲国产最新在线播放| 三级国产精品片| 一级毛片aaaaaa免费看小| 亚洲成人av在线免费| 亚洲国产av新网站| 免费大片18禁| 久久精品国产亚洲网站| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 久久久久国产网址| 中文字幕人妻丝袜制服| 亚洲精品乱码久久久久久按摩| 亚洲欧洲国产日韩| 午夜久久久在线观看| 日本欧美国产在线视频| 自线自在国产av| a级片在线免费高清观看视频| 亚洲欧美精品自产自拍| 搡女人真爽免费视频火全软件| 青春草亚洲视频在线观看| 五月天丁香电影| 麻豆精品久久久久久蜜桃| 亚洲国产色片| 亚洲第一av免费看| 大话2 男鬼变身卡| 久久久国产一区二区| av女优亚洲男人天堂| 午夜视频国产福利| 高清黄色对白视频在线免费看 | 九色成人免费人妻av| 大香蕉97超碰在线| 亚洲国产毛片av蜜桃av| 日本欧美国产在线视频| 99热这里只有是精品50| av.在线天堂| 亚洲一级一片aⅴ在线观看| 五月天丁香电影| 欧美97在线视频| av专区在线播放| 国产成人精品久久久久久| 18禁裸乳无遮挡动漫免费视频| 亚洲国产最新在线播放| 在线亚洲精品国产二区图片欧美 | 色视频www国产| 久久久欧美国产精品| 午夜日本视频在线| 97在线视频观看| 99久久精品国产国产毛片| 极品少妇高潮喷水抽搐| av天堂中文字幕网| 最近最新中文字幕免费大全7| 最近手机中文字幕大全| 久久国产精品男人的天堂亚洲 | 女性被躁到高潮视频| 久久这里有精品视频免费| 这个男人来自地球电影免费观看 | 91久久精品电影网| 2018国产大陆天天弄谢| a 毛片基地| 国产av一区二区精品久久| 两个人的视频大全免费| 2018国产大陆天天弄谢| 人妻少妇偷人精品九色| 少妇被粗大的猛进出69影院 | 男男h啪啪无遮挡| 成人二区视频| 黄色一级大片看看| 婷婷色综合大香蕉| 黄色怎么调成土黄色| 中文字幕制服av| 五月开心婷婷网| 七月丁香在线播放| 黄色毛片三级朝国网站 | 街头女战士在线观看网站| 午夜激情久久久久久久| 国内精品宾馆在线| 美女中出高潮动态图| 一级,二级,三级黄色视频| 国产视频首页在线观看| 久热久热在线精品观看| 国产av精品麻豆| a级毛片免费高清观看在线播放| 国产精品嫩草影院av在线观看| 91精品一卡2卡3卡4卡| 久久久久久久久久久久大奶| 久久青草综合色| 国产亚洲av片在线观看秒播厂| 男女免费视频国产| 久久久久视频综合| 亚洲精品第二区| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 一本一本综合久久| 18+在线观看网站| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| 青春草视频在线免费观看| 免费人妻精品一区二区三区视频| 亚洲,一卡二卡三卡| 老女人水多毛片| 22中文网久久字幕| 激情五月婷婷亚洲| 亚洲av不卡在线观看| 熟女电影av网| 伦理电影免费视频| 亚洲国产欧美日韩在线播放 | 18禁在线无遮挡免费观看视频| 在线观看人妻少妇| 天天操日日干夜夜撸| 九色成人免费人妻av| 国产精品99久久99久久久不卡 | 如何舔出高潮| 国产av精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91 | av又黄又爽大尺度在线免费看| 国产一级毛片在线| 中文欧美无线码| 精品人妻熟女av久视频| 午夜福利网站1000一区二区三区| 一区二区三区乱码不卡18| 亚洲久久久国产精品| √禁漫天堂资源中文www| 丁香六月天网| 亚洲伊人久久精品综合| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区 | 亚洲熟女精品中文字幕| 国产中年淑女户外野战色| 大陆偷拍与自拍| 91在线精品国自产拍蜜月| 精品亚洲成a人片在线观看| 制服丝袜香蕉在线| 免费观看的影片在线观看| 五月开心婷婷网| 久久人人爽av亚洲精品天堂| 亚洲三级黄色毛片| 色婷婷av一区二区三区视频| 亚洲成人一二三区av| 91午夜精品亚洲一区二区三区| 亚洲综合精品二区| 久久久久久久久久人人人人人人| 大片免费播放器 马上看| 人妻一区二区av| 国产精品三级大全| 精品久久久噜噜| 日日撸夜夜添| 99久久人妻综合| 日本av免费视频播放| 亚洲精品第二区| 亚洲精品aⅴ在线观看| 亚洲综合精品二区| 欧美日韩一区二区视频在线观看视频在线| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 国产高清国产精品国产三级| 成人午夜精彩视频在线观看| 国产成人精品婷婷| 青春草视频在线免费观看| 亚洲一级一片aⅴ在线观看| 黑人巨大精品欧美一区二区蜜桃 | 男女啪啪激烈高潮av片| 狂野欧美白嫩少妇大欣赏| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| 精品一区二区三区视频在线| 成年美女黄网站色视频大全免费 | 丁香六月天网| 一本—道久久a久久精品蜜桃钙片| 亚洲不卡免费看| 久久精品国产自在天天线| 婷婷色av中文字幕| av免费观看日本| 人妻系列 视频| 伊人亚洲综合成人网| 日本欧美国产在线视频| 国产免费福利视频在线观看| 中文字幕精品免费在线观看视频 | 久久国产精品男人的天堂亚洲 | 在线观看人妻少妇| 亚洲精品久久久久久婷婷小说| 午夜福利影视在线免费观看| 国产av一区二区精品久久| 久久精品久久久久久噜噜老黄| 少妇猛男粗大的猛烈进出视频| av专区在线播放| 五月伊人婷婷丁香| 2021少妇久久久久久久久久久| a级片在线免费高清观看视频| 国产有黄有色有爽视频| 久久精品国产鲁丝片午夜精品| 精品少妇黑人巨大在线播放| 国产欧美日韩综合在线一区二区 | 久久精品久久久久久久性| 国产男女超爽视频在线观看| 亚洲美女视频黄频| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆| 男女边摸边吃奶| 日日爽夜夜爽网站| 亚洲人成网站在线观看播放| 97超视频在线观看视频| 国产精品伦人一区二区| 一级毛片黄色毛片免费观看视频| 欧美日韩视频高清一区二区三区二| 亚洲精品一区蜜桃| 国产真实伦视频高清在线观看| 久久青草综合色| 亚洲国产成人一精品久久久| 伊人久久精品亚洲午夜| 人妻一区二区av| 最黄视频免费看| 嫩草影院新地址| 9色porny在线观看| 丰满少妇做爰视频| 日韩一区二区三区影片| 久久av网站| 哪个播放器可以免费观看大片| 免费av中文字幕在线| 老司机影院成人| 久久国产精品男人的天堂亚洲 | 五月开心婷婷网| 亚洲自偷自拍三级| 午夜福利影视在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 一级黄片播放器| 成年美女黄网站色视频大全免费 | 亚洲va在线va天堂va国产| 中文字幕人妻熟人妻熟丝袜美| 亚洲熟女精品中文字幕| 国产黄色视频一区二区在线观看| 久久久久久久久久人人人人人人| 九色成人免费人妻av| 99热这里只有精品一区| 男女免费视频国产| 日本爱情动作片www.在线观看| 欧美97在线视频| 国产精品秋霞免费鲁丝片| 秋霞在线观看毛片| 国产熟女欧美一区二区| 色视频在线一区二区三区| 80岁老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图 | 国产精品.久久久| 91精品伊人久久大香线蕉| 亚洲av二区三区四区| 精品少妇内射三级| 人体艺术视频欧美日本| 亚洲精品日本国产第一区| 欧美精品一区二区大全| 免费黄色在线免费观看| 午夜av观看不卡| 国产一级毛片在线| 亚洲国产av新网站| 日本欧美视频一区| 国产精品免费大片| 18+在线观看网站| 久久人人爽av亚洲精品天堂| 黄色一级大片看看| 国产在视频线精品| 午夜福利网站1000一区二区三区| 久久人人爽人人片av| 日本与韩国留学比较| 亚洲精品456在线播放app| 哪个播放器可以免费观看大片| 久久久久久久国产电影| 国产成人91sexporn| 国产一区有黄有色的免费视频| 黑人高潮一二区| 成人综合一区亚洲| 我要看日韩黄色一级片| 伊人久久精品亚洲午夜| 国模一区二区三区四区视频| 纵有疾风起免费观看全集完整版| 秋霞在线观看毛片| 少妇被粗大猛烈的视频| 观看免费一级毛片| 男女边吃奶边做爰视频| 内射极品少妇av片p| 91久久精品国产一区二区成人| 色94色欧美一区二区| 亚洲国产最新在线播放| 国产女主播在线喷水免费视频网站| 久久久久国产精品人妻一区二区| 亚洲精品,欧美精品| 特大巨黑吊av在线直播| 久久ye,这里只有精品| 亚洲欧美成人精品一区二区| 日日摸夜夜添夜夜爱| 黄色一级大片看看| 久久6这里有精品| 久久精品国产亚洲av涩爱| 狂野欧美激情性xxxx在线观看| 亚洲第一av免费看| 国产极品粉嫩免费观看在线 | 国精品久久久久久国模美| 熟女av电影| 精品久久久久久久久av| 乱码一卡2卡4卡精品| 一区二区av电影网| 中文字幕亚洲精品专区| 成人黄色视频免费在线看| 青春草国产在线视频| 性高湖久久久久久久久免费观看| 大片免费播放器 马上看| 午夜福利在线观看免费完整高清在| 精品人妻熟女av久视频| 一区在线观看完整版| 99久久人妻综合| 自拍欧美九色日韩亚洲蝌蚪91 | 91精品伊人久久大香线蕉| 精品国产露脸久久av麻豆| 久久韩国三级中文字幕| 精品酒店卫生间| 日韩成人av中文字幕在线观看| 蜜桃在线观看..| 国产精品欧美亚洲77777| 中文字幕久久专区| 黑人高潮一二区| 涩涩av久久男人的天堂| 日日撸夜夜添| 中文在线观看免费www的网站| 黄片无遮挡物在线观看| 亚洲成人手机| 一区二区三区乱码不卡18| 啦啦啦中文免费视频观看日本| av线在线观看网站| 日韩欧美 国产精品| 九色成人免费人妻av| 一级黄片播放器| 黄色配什么色好看| 一本—道久久a久久精品蜜桃钙片| 国产精品99久久99久久久不卡 | 在线看a的网站| 插阴视频在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 最近手机中文字幕大全| 大话2 男鬼变身卡| 一级av片app| 97超视频在线观看视频| 亚洲无线观看免费| 最近手机中文字幕大全| 国产精品福利在线免费观看| 91成人精品电影| 91久久精品国产一区二区三区| 日韩,欧美,国产一区二区三区| 婷婷色综合www| 国产精品国产三级专区第一集| 国产深夜福利视频在线观看| √禁漫天堂资源中文www| 免费大片黄手机在线观看| 午夜福利影视在线免费观看| 免费高清在线观看视频在线观看| 国产深夜福利视频在线观看| 激情五月婷婷亚洲| 国产黄片美女视频| 久久精品夜色国产| 26uuu在线亚洲综合色| 又黄又爽又刺激的免费视频.| 欧美精品国产亚洲| 两个人免费观看高清视频 | 国产成人午夜福利电影在线观看| 观看美女的网站| 国产成人精品福利久久| 久久国产亚洲av麻豆专区| 性高湖久久久久久久久免费观看| 欧美日韩国产mv在线观看视频| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 国产熟女欧美一区二区| 热99国产精品久久久久久7| 高清黄色对白视频在线免费看 | 天天躁夜夜躁狠狠久久av| 亚洲国产精品成人久久小说| 男人舔奶头视频| 中文字幕亚洲精品专区| 色哟哟·www| 免费大片黄手机在线观看| 麻豆成人午夜福利视频| 精品国产乱码久久久久久小说| 亚洲三级黄色毛片| 国产成人免费无遮挡视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av蜜桃| 国产亚洲欧美精品永久| 免费大片黄手机在线观看| 亚洲欧美中文字幕日韩二区| 久久精品国产自在天天线| 一级毛片aaaaaa免费看小| 91在线精品国自产拍蜜月| 边亲边吃奶的免费视频| 精品99又大又爽又粗少妇毛片| 亚洲欧洲日产国产| 性高湖久久久久久久久免费观看| 久久精品夜色国产| 国产成人免费观看mmmm| 久久亚洲国产成人精品v| 美女cb高潮喷水在线观看| 亚洲美女黄色视频免费看| 国产成人精品一,二区| 国产高清有码在线观看视频| 两个人的视频大全免费| 内地一区二区视频在线| 欧美少妇被猛烈插入视频| 国产男女超爽视频在线观看| 天堂俺去俺来也www色官网| 亚州av有码| 久久久久久久久久成人| 成年人午夜在线观看视频| 精品久久久久久久久亚洲| 国产欧美日韩精品一区二区| 精品国产国语对白av| 只有这里有精品99| 精品久久久噜噜| 卡戴珊不雅视频在线播放| 久久免费观看电影| 中文在线观看免费www的网站| 在线观看美女被高潮喷水网站| 亚洲av日韩在线播放| 久久久久久人妻| 久久久精品94久久精品| 精品国产露脸久久av麻豆| 亚洲精品中文字幕在线视频 | 中文字幕人妻熟人妻熟丝袜美| 久久人人爽av亚洲精品天堂| 国产成人精品无人区| 丝瓜视频免费看黄片| 成人18禁高潮啪啪吃奶动态图 | 国产一区二区三区av在线| 美女中出高潮动态图| 美女内射精品一级片tv| 国产亚洲5aaaaa淫片| 精品久久久噜噜| 毛片一级片免费看久久久久| freevideosex欧美| 99热这里只有是精品50| 一二三四中文在线观看免费高清| 午夜日本视频在线| 99热这里只有是精品50| 国产成人免费无遮挡视频| 日产精品乱码卡一卡2卡三| 久久国产精品男人的天堂亚洲 | 嫩草影院新地址| 在线观看av片永久免费下载| 国产乱人偷精品视频| 亚洲精品久久午夜乱码| 日韩av不卡免费在线播放| tube8黄色片| 在线观看免费高清a一片| 免费人妻精品一区二区三区视频| 中文字幕久久专区| 午夜91福利影院| 国产熟女午夜一区二区三区 |