• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relaxation of Selective Constraint on the Ultra-Large Mitochondrial Genomes of Arcidae (Mollusca: Bivalvia)

    2021-08-30 06:15:04SUNShaoLIQiandKONGLingfeng
    Journal of Ocean University of China 2021年5期

    SUN Shao’e, LI Qi, 2), *, and KONG Lingfeng

    Relaxation of Selective Constraint on the Ultra-Large Mitochondrial Genomes of Arcidae (Mollusca: Bivalvia)

    SUN Shao’e1), LI Qi1), 2), *, and KONG Lingfeng1)

    1),,,266003,2),,266237,

    The mitochondrial genomes (mitogenomes) are purportedly under selection for smallersize to improve their replication and translation efficiency. However, the mitogenomes of Arcidae species are larger than those of other bivalves, and are among the largest metazoan mitogenomes reported to date. In order to explore the differences of base composition and selective constraints between the large and small mitogenomes, we compared the mitogenomes of 9 large arcid mitogenomes and 77 small bivalves mitogenomes. Base composition analyses indicated that Arcidae mitogenomes have significantly greater GC skews in both their whole genomes and coding sequences. This result suggeststhat the replication of the large mitogenomes in Arcidae may be slower than those in other bivalves, exposing the parental strand to deamination for a longer time. Selection pressure analyses showed that the mitochondrial protein-coding genes of Arcidae species have significantly highera/s ratios than other bivalves, suggesting that they have accumulated more nonsynonymous nucleotide substitutions. Seven protein-coding genes (,,,and) show significant difference fora/s ratios between the Arcidae and non-Arcidae groups. However, these divergences are not observed in the nuclear gene within histone H3. From these observations, we concluded that the large mitogenomes of Arcidae species experienced more relaxed selective constraints. As some Arcidae species are more tolerant to hypoxia that can lead to low metabolic rate, the relaxed selective constraints of mitogenomes may be energy-related. This study provides new insights into the evolution of Arcidae mitogenomes.

    Arcidae; mitochondrial genome; genome size; relaxed selective constraint

    1 Introduction

    The mitochondrial genomes (mitogenomes) of most bi- laterian animals include a standard set of 13 protein-co-ding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22transfer RNA (tRNA) genes, and an A+T-rich region (Boore, 1999). Although there are exceptions, most mitogenomes size are from 14 to 17kb. Typically, few intergenic nucleo- tides exist except for a single large non-coding region, whichwere thought to contain elements that control the initia-tion of replication and transcription of the mitogenome (Boore, 1999; Lavrov, 2007). This consistency in gene con- tent across distantly related lineages, as well as the lack of intergenic spacers, suggests that the mitogenome is under selection for compact size (Rand and Harrison, 1986). Com- pared with nuclear genome, the mitogenome has several advantages including conserved gene content, maternal in- heritance, lack of extensive recombination, and relatively high nucleotide substitution rates (Boore, 1999; Curole and Kocher, 1999; Gissi., 2008). These advantages make it a good model for the studies of evolutionary genomics (Saccone., 1999; Gissi., 2008; Cameron, 2014).

    Molluscs, especially bivalves, usually display an extra- ordinary amount of variation in mitogenome structure and size, even with differences in the closely related species (Gissi., 2008; Simison and Boore, 2008). The size of the bivalve mitogenomes are highly variable, ranging from14622 in(Park and Ahn, 2015) to 46985bp in(Liu., 2013) in length. Several bivalve species have showed large sizes of mitogenomes (greater than 20kb). The mitogenome size of the deep sea scallopis up to 40725bp (Smith and Snyder, 2007) and the mitogenome of Zhikong scallopis 21695bp (Xu., 2011). The mitogenome size of Manila clamis 22676bp in female type and 21441bp in male type (Passamonti and Scali, 2001). The mitogenome of, Clavagellidae, is at least 31969bp long (Wil- liams., 2017). The size of Arcidae mitogenomes are more unusual, of which the largest mitogenome size is 46985bp () (Liu., 2013). The bivalve species have a sedentary lifestyle, with low meta- bolic rate (Sun., 2017). The previous researches pro- posed that the large mitogenome of bivalves perhaps experience weak purifying selection, which may be correlated with their low metabolic rates (Strotz., 2018; Kong., 2020).

    Ark shells are among the oldest bivalve lineages, rea- ching back to the lower Ordovician which is about 450Myr (Morton., 1998). The species of Arcidae are glo- bally distributed, predominantly in the tropical shallow wa- ters and warm temperate seas, containing approximately 260 species and 31 genera (Oliver and Holmes, 2006). Mi- togenomes of ark shell species are among the largest me- tazoan mitogenomes reported to date, ranging from 18 to 56kb in length (Kong., 2020). It has been argued that animal mitogenomes are characterized by a tightly packed collection of conserved genes and other functional ele-ments, accompanying with drastic mitogenome size reduc- tion in evolutionary history of animal (Burger., 2003; Schneider and Ebert, 2004; Signorovitch., 2007). Ar- cidae presented a challenge to the point of selection favoring compact genomes by virtue of large mitogenome size. In our previous studies, we found the mitogenome size is positively correlated with the combined length of,and, the length of, and the combined length ofand(Sun., 2016). Researchers have found the inverted repeat sequences might facilitate the mitogenome expansions (Kong., 2020). It has been believed that metabolic rates influence the selective con- straints acting on the mitogenome, and purify selection act on small genome size (Rand, 1993). However, the natural selection act on the large mitogenome of Arcidae remains unexplored.

    The large size of Arcidae mitogenomes lead to several questions. Firstly, whether the nucleotide compositions of large Arcidae mitochondrial DNA (mtDNA) are different from those of other bivalve species with small ones? Se- condly, what’s the difference in substitution rate of mtDNAbetween Arcidae and other bivalve species? Thirdly, do all the mitochondrial genes of Arcidae experience the same selection pressure? In order to address these questions, we conducted a comparative genomic analysis and test the roles of the evolutionary constraints on the mtDNA of Arcidae to provide a complete view of molecular evolution in the mtDNA.

    2 Materials and Methods

    2.1 Source of Data

    The mtDNA sequences (Table 1) and nuclear gene (his- tone H3) (Table 2) of bivalves were downloaded from Gen- Bank. All the mitochondrial protein-coding genes were ex- tracted from each mitogenome.

    2.2 Base Composition

    AT and GC skew were calculated according to the for- mula defined by Perna and Kocher (1995), AT skew=(A?T)/(A+T) and GC skew=(G?C)/(G+C), which provides an index of compositional asymmetry between strands. Skews were calculated for all sites, and also for fourfold degenerate sites, which are expected to be less constrain- ed (Reyes, 1998). We then compared these measures of nucleotide skew between Arcoidae and non-Arcoidae taxa. All statistical analyses were performed with IBM SPSS Statistics, release 19.0.0.1.

    Table 1 The mtDNA sequences of bivalves downloaded from GenBank

    ()

    ()

    SpeciesAccestion no.Ka/KsKaKsatp6cox-1cox-2cox-3cytbnd1nd2nd3nd4nd4lnd5nd6 Chlamys farreriEU7152520.0447 0.0635 1.4216 0.0919 0.0160 0.0688 0.0228 0.0640 0.0291 0.1366 0.0387 0.0374 0.0428 0.0729 0.0382 Mizuhopecten yessoensisAB2717690.0453 0.0571 1.2599 0.0529 0.0189 0.0532 0.0673 0.0564 0.0271 0.0809 0.0303 0.0326 0.0473 0.0454 0.0835 Argopecten irradiansEU0239150.0443 0.0340 0.7672 0.0065 0.0006 0.0887 0.0001 0.0087 –0.0278 0.6156 0.0135 0.0099 0.0439 – Argopecten purpuratusKF6012460.0240 0.0171 0.7128 0.0511 0.0031 0.0157 0.0001 0.0205 0.0372 ––0.0581 –0.0142 0.0405 Argopecten ventricosusKT1612610.0238 0.0061 0.2578 0.0094 0.0083 0.0146 0.0136 0.0408 0.0108 0.1215 0.0262 0.0087 0.0234 0.0373 0.3601 Pinctada margaritiferaHM4678380.0512 0.0648 1.2652 0.2361 0.0034 0.0963 0.0416 0.0429 0.0374 0.0354 0.0053 0.0518 0.0232 0.0419 0.0952 Pinctada maximaGQ4528470.0420 0.0596 1.4187 0.0689 0.0137 0.0321 0.0107 0.0168 0.0361 –0.0493 0.0155 0.0456 0.0071 0.0460 Mytilus trossulusGU9366250.0217 0.0119 0.5481 0.0152 0.0035 0.0026 0.0001 0.0113 0.0145 0.0683 –0.0494 0.0170 0.0424 0.0682 Mytilus californianusGQ5271720.0209 0.0100 0.4802 0.0340 0.0063 0.0078 0.0020 0.0128 0.0323 0.0367 0.0027 0.0186 0.0202 0.0390 0.0266 Mytilus edulisAY4847470.0042 0.0173 4.1351 0.0001 0.0167 0.0001 –0.7360 0.0001 0.4733 0.0001 0.2050 0.0001 0.0530 – Mytilus galloprovincialisAY4972920.0589 0.0006 0.0105 0.0001 0.0001 0.0537 0.0001 0.0001 0.0001 0.2241 0.0001 0.0476 0.0001 0.4803 0.0001 Mytilus coruscusKJ5775490.0406 0.0274 0.6756 0.0060 0.0023 0.0033 0.0076 0.0086 0.0204 0.0453 0.2561 0.1965 0.0226 0.0556 0.0245 Brachidontes exustusKM2336360.0187 0.0803 4.3003 0.0709 0.0101 0.0659 0.0300 0.0057 0.0208 0.0388 0.0121 0.0633 0.0275 0.0362 0.0509 Perna viridisJQ9704250.0328 0.1890 5.7562 0.0037 0.0154 0.0436 0.0477 0.0470 0.0233 0.0176 0.0200 0.0377 0.0017 0.0442 0.0547 Perna pernaKM6558410.0151 0.0801 5.3151 0.0402 0.0106 0.1130 0.0475 0.0013 0.0246 0.0164 0.0257 0.0366 0.0657 0.0140 0.0247 Musculista senhousiaGU0019540.0512 0.2326 4.5476 0.0687 0.0203 0.0706 0.0709 0.0287 0.0702 0.0792 0.0052 0.0777 0.0105 0.0540 0.0585 Meretrix petechialisEU1459770.0803 0.0001 0.0009 0.0000 0.0001 0.0001 0.0000 0.5377 –0.1904 0.0002 0.0002 0.0000 0.0000 0.0001 Meretrix lamarckiiGU0712810.0920 0.0059 0.0638 0.0780 0.0457 0.2167 0.1385 0.0828 0.0066 0.1492 0.0612 0.0442 0.1590 0.0790 0.0142 Meretrix meretrixGQ4635980.0332 0.0000 0.0005 0.2694 0.0000 0.0000 0.0001 0.0001 0.0000 0.0940 0.1328 0.0001 0.0001 0.1120 0.0588 Meretrix lusoriaGQ9033390.0602 0.0008 0.0129 0.0370 0.0251 0.0961 0.0195 0.0499 0.0222 0.0985 0.0001 0.2169 0.1643 0.0792 0.2989 Meretrix lyrataKC8323170.0573 0.0031 0.0541 –0.0473 0.0760 0.1010 0.0476 0.0259 0.1848 0.0084 0.0438 0.0793 0.0350 0.0995 Paphia euglyptaGU2692710.0274 0.0010 0.0375 0.0138 0.0085 0.0448 0.0227 0.0176 0.0327 0.0880 0.0178 0.0762 0.0001 0.0277 0.0646 Paphia undulataJF9692780.0276 0.0010 0.0345 0.0197 0.0088 0.0325 –0.0113 0.0316 0.0492 0.0106 0.0141 –0.0361 0.0311 Paphia textileJF9692770.0282 0.0008 0.0298 0.0208 0.0062 0.0703 0.0048 0.0213 0.0273 0.0315 0.0066 0.0395 0.0146 0.0479 0.0987 Paphia amabilisJF9692760.0600 0.0025 0.0411 0.0222 0.0598 0.0411 0.0369 0.0672 0.0266 0.0408 0.0270 0.0224 –0.0693 0.1035 Venerupis philippinarumAB0653750.0357 0.0078 0.2178 0.0598 0.0073 0.0228 0.0332 0.0277 0.0503 0.0608 0.0861 0.0227 1.1707 0.0070 0.3303 Saxidomus purpuratusKP4199330.0239 0.0031 0.1295 0.0216 0.0169 0.0567 0.0204 0.0452 0.0318 0.1331 0.0966 0.0174 0.0028 0.0184 0.1631 Solenaia oleivoraKF2963200.0556 0.0016 0.0286 0.0426 0.0017 0.0373 0.0269 0.0368 0.0359 0.1227 0.0841 0.0649 0.0559 0.0574 0.0617 Solen strictusJN7863770.0331 0.0011 0.0326 0.0938 0.0042 0.0044 –0.0334 0.0279 0.1669 0.0571 0.0048 0.0135 0.0138 0.0348 Solen grandisHQ7030120.0183 0.0005 0.0263 0.0160 0.0010 –0.0055 0.0123 0.0188 0.0505 0.0109 0.0078 0.0057 0.0072 0.0179 Solenaia carinatusKC8486540.0542 0.0014 0.0251 0.0621 0.0055 0.0319 0.0445 0.0706 0.0395 0.1073 0.1692 0.0374 0.0356 0.0602 0.0910 Lucinella divaricataEF0433420.0094 0.0004 0.0424 0.1626 0.0053 0.0046 0.0027 0.0159 0.0209 0.0647 0.0040 0.0091 0.0233 0.0041 0.2772 Loripes lacteusEF0433410.0105 0.0006 0.0553 0.0124 0.0001 0.0085 0.0017 0.0102 0.0817 0.0926 0.0099 0.0096 0.0178 0.0009 0.0389 Acanthocardia tuberculataDQ6327430.0481 0.0087 0.1819 0.0097 0.0208 0.0074 0.0157 0.0211 0.0478 0.1627 0.0234 0.0751 0.4939 0.1067 0.2459 Fulvia muticaAB8090770.0382 0.0065 0.1699 0.0364 0.0192 0.0072 0.0339 0.0213 0.0555 0.0041 0.0026 0.0377 0.1013 0.0500 0.3063 Tridacna squamosaKP2054280.0624 0.0568 0.9115 0.0054 0.0058 0.0142 0.0487 0.0218 0.3568 0.3273 0.5336 0.1362 0.7820 0.0161 – Semele scabraJN3983650.0185 0.0022 0.1184 0.0081 0.0075 0.0157 0.0167 0.0342 0.0598 0.0711 0.0082 0.0214 0.0453 0.0069 0.0745 Nuttallia olivaceaJN3983640.0176 0.0024 0.1339 0.0559 0.0121 0.0101 0.0112 0.0253 0.0400 0.0916 0.0129 0.0201 0.0359 0.0128 0.0258 Soletellina diphosJN3983630.0134 0.0010 0.0723 0.0137 0.0087 0.0359 0.0905 0.0197 0.0293 0.0881 0.1082 0.0122 0.0265 0.0167 0.0341 Moerella iridescensJN3983620.0151 0.0013 0.0839 0.0241 0.0061 0.0096 0.0031 0.0070 0.0229 0.0085 0.0346 0.0259 0.0015 0.0233 0.0728 Solecurtus divaricatusJN3983670.0169 0.0012 0.0705 0.0202 0.0128 0.0206 0.0990 0.0422 0.0579 0.0764 0.0308 0.0198 0.0445 0.0022 0.0400 Sinonovacula constrictaEU8802780.0385 0.0071 0.1852 0.0165 0.0170 0.0056 0.0139 0.0433 0.0856 0.1151 0.1165 0.0141 0.0168 0.0556 0.1046 Coelomactra antiquataJQ4234600.0122 0.0007 0.0609 0.0006 0.0030 0.0389 0.0067 0.0180 0.0178 0.0509 0.1096 0.0104 0.0583 0.0185 0.0123 Mactra chinensisKJ7548230.0128 0.0007 0.0565 0.0025 0.0010 0.0316 0.0029 0.0167 0.0313 0.0582 0.0054 0.0038 0.0112 0.0269 0.0523 Lutraria rhynchaenaHG7990890.0278 0.0039 0.1406 0.1280 0.0081 0.0222 0.0312 0.0306 0.0820 0.0507 0.0316 0.0172 0.1027 0.0447 0.1188 Arctica islandicaKF3639510.0248 0.0034 0.1386 0.0310 0.0173 0.0093 0.0075 0.0232 0.0169 0.0535 0.0245 0.0270 0.0165 0.0367 0.1801 Calyptogena magnificaKR8623680.0650 0.0181 0.2790 0.1005 0.0383 0.0891 0.0394 0.0681 0.0818 0.1309 0.0365 0.0207 0.0513 0.1166 0.1257 Mya arenariaKJ7559960.0905 0.0363 0.4006 0.1179 0.0732 0.0445 0.1039 0.1126 0.0038 0.2250 0.1928 0.0663 0.0367 0.0564 0.4209 Hiatella arcticaDQ6327420.0990 0.0441 0.4451 0.2868 0.0464 0.1977 0.0127 0.1309 0.0811 0.1201 0.5193 0.1167 –0.0894 0.3495 Panopea generosaKM5800670.0095 0.0005 0.0503 0.0232 0.0030 0.1959 0.0005 0.0399 0.0289 0.0491 0.0068 0.0294 0.0013 0.0071 0.0371 Panopea globosaKM5800680.0080 0.0004 0.0457 0.0039 0.0011 0.0160 0.0024 0.0319 0.0295 0.0961 0.0087 0.0348 0.1062 0.0148 0.0591 Anodonta anatinaKF0309640.0543 0.0015 0.0279 0.0496 0.0090 0.0212 0.0185 0.0405 0.0548 0.0510 0.0301 0.0877 0.1430 0.0665 0.0957 Anodonta arcaeformisKF6675300.0766 0.0003 0.0039 0.1123 0.0145 0.0001 0.0001 0.0442 0.1493 0.1044 0.1981 0.1005 0.3934 0.0886 0.0330 Anodonta lucidaKF6675290.0819 0.0039 0.0473 0.1482 0.0110 0.0603 0.0380 0.0580 0.0938 0.1221 0.1266 0.0470 0.0760 0.1020 0.1669 Anodonta euscaphysKP1878510.0923 0.0007 0.0079 0.1726 0.0891 –0.1114 0.1095 0.0805 0.3326 0.0001 0.4194 –0.1384 0.2573 Hyriopsis cumingiiHM3476680.0596 0.0008 0.0126 0.1685 0.0001 0.0234 0.0119 0.0430 0.1631 0.1192 0.0211 0.0873 –0.0698 0.0650 Hyriopsis schlegeliiHQ6414060.0459 0.0005 0.0115 0.0198 0.0035 0.0531 0.0105 0.0319 0.0351 0.0596 –0.0475 0.0001 0.0514 0.0674 Utterbackia imbecillisHM8566370.0754 0.0029 0.0380 0.1575 0.0081 0.0267 0.0421 0.1127 0.0677 0.0885 0.0812 0.0905 0.1471 0.1252 0.1197 Utterbackia peninsularisHM8566350.0496 0.0102 0.2065 0.0177 0.0191 0.0416 0.0020 0.1196 0.0822 0.1027 0.1512 0.0209 0.3393 0.0371 0.0389 Unio pictorumHM0141300.0561 0.0018 0.0313 0.0910 0.0092 0.0333 0.0171 0.0524 0.0699 0.0522 0.0714 0.0500 0.1272 0.0630 0.1158 Unio douglasiaeKM6579540.0519 0.0015 0.0295 0.0713 0.0085 0.0027 0.0087 0.0712 0.0250 0.0597 0.0245 0.0608 0.0354 0.0560 0.0873

    Note: –, not available.

    Table 2 The nuclear gene (histone H3) of bivalves downloaded from GenBank

    2.3 Estimation of Nonsynonymous/Synonymous Substitutions Ratios (Ka/Ks)

    The maximum-likelihood phylogenetic relationships werereconstructed based on nucleotide sequences of twelveprotein-coding genes using RAxML v.7.0.4 (Stamatakis, 2006). The twelve-partitioned nucleotide sequences were aligned with ClustalX (Thompson., 1997). The ratios of nonsynonymous to synonymous substitutions (a/s) were estimated for each branch using CodeML implement- ed in the PAML package (Yang, 2007). Model 1 was used, which allows a freea/s ratio. Onlya/s ands va- lues of the external branches were selected in the following analyses,., deleterious mutations (a/s) between modern species and their most recent ancestors. The statistical analyses were performed with IBM SPSS Statistics, release 19.0.0.1.

    3 Results and Discussion

    3.1 Relationship Between Genome Size and Nucleotide Composition in Arcidae

    Arcidae species poss larger mitogenomes than that found in typical animals, challenging the conventional hypo-thesis that a compact mitogenome is a common feature among all animals. The increased size of Arcidae mito- genome is due to the presence of long noncoding regions. Genomic coverage by mitochondrial noncoding regionscan reach up to 71% (33046bp) for(Sun., 2014). Larger size molecules are usually considered to be at a selective disadvantage simply because they take longer time to replicate, leaving fewer copies to be trans- mitted (Boyce., 1989). On the contrary, smaller sized mtDNA molecules are with replicative or selective advan- tage (Boyce., 1989).

    In order to explore if the large Arcidae mtDNA can af- fect replication mechanics, we compared the nucleotide skew of whole genome sequences (PmtDNA), the protein- coding genes at all codon positions (P123), and the four- fold codon positions (P4FD) between Arcidae species and the other bivalve species (Table 3). AT skews for the PmtDNAare the same between Arcidae and non-Arcidae groups (Mann-Whitney U-test,=0.904, Fig.1A);however, the GC skews of Arcidae species are significantly greater than that of the non-Arcidae group (=0.003, Fig.1B). The GC skews of P123in Arcidae species are also significantly greater than those of non-Arcidae group (=0.001, Fig.1C), while AT skews do not differ (=0.076, Fig.1D). This pat- tern is similar when analysis is restricted to the P4FD, which are presumed to be under weaker selection, with the trend toward greater GC skew in Arcidae species (=0.001, Fig.1E) and little difference in AT skew (=0.048, Fig.1F).

    The asymmetric mechanism of mtDNA replication, in which the parental strand is exposed to mutation while it is in a single-stranded state, can account for the strong com- positional asymmetry observed in mitogenomes (Reyes., 1998). According to this hypothesis, a possible explanation for the marked nucleotide skew in Arcidae species migth be that the mitogenome replication in Arcidae is slower than thosein other bivalves, exposing the paren- tal strand to deamination for a longer time. Thus, the data of the compositional asymmetry of Arcidae and non-Ar- cidae group indicated that the presence of the exceptional long no-coding regions may affect replication mechanics. However, the large size of mitogenomes in the Arcidae spe- cies does notmean a significant replicative disadvantage.The exceptional long no-coding regions may provide ad- ditional replication initiation signals, which can increasethe number of genome replicates per template genome (Jiang., 2007; Eberhard and Wright, 2016). This is really ad- vantageous if the replication of Arcidae mtDNA is parti- cularly slow, as reflected by the marked nucleotide skew that were found in Arcidae mitogenomes. One way to test this idea is to map replication initiation sites to see whe- ther Arcidae mitogenomes have more replication initiation zones in the non-coding regions.

    Table 3 The bivalves mitochondrial genomes included in the analysis of strand asymmetry in nucleotide composition

    ()

    ()

    SpeciesAccession no.mtDNAP123P4FD AT skewGC skewAT skewGC skewAT skewGC skew Lucinella divaricataEF043342?0.240.33?0.310.32?0.310.31 Loripes lacteusEF043341?0.230.32?0.310.33?0.310.46 Acanthocardia tuberculataDQ632743?0.180.17?0.250.18?0.110.25 Fulvia muticaAB809077?0.130.28?0.240.29?0.160.38 Tridacna squamosaKP205428?0.120.19?0.190.26?0.050.34 Semele scabraJN398365?0.230.43?0.320.43?0.360.62 Nuttallia olivaceaJN398364?0.150.32?0.210.33?0.100.54 Soletellina diphosJN398363?0.260.37?0.330.38?0.450.60 Moerella iridescensJN398362?0.220.35?0.300.32?0.360.34 Solecurtus divaricatusJN398367?0.290.38?0.370.39?0.550.50 Sinonovacula constrictaEU880278?0.230.36?0.320.37?0.360.63 Coelomactra antiquataJQ423460?0.200.30?0.290.29?0.270.50 Mactra chinensisKJ754823?0.220.26?0.320.25?0.360.40 Lutraria rhynchaenaHG799089?0.280.40?0.370.40?0.470.60 Arctica islandicaKF363951?0.160.30?0.240.31?0.160.43 Calyptogena magnificaKR862368?0.200.39?0.290.39?0.350.64 Mya arenariaKJ755996?0.130.32?0.200.33?0.250.28 Hiatella arcticaDQ632742?0.150.29?0.220.31?0.280.29 Panopea generosaKM580067?0.210.38?0.290.39?0.310.33 Panopea globosaKM580068?0.270.44?0.350.45?0.380.40 Anodonta anatinaKF030964?0.150.30?0.240.18?0.210.20 Anodonta arcaeformisKF667530?0.120.27?0.240.18?0.180.26 Anodonta lucidaKF667529?0.130.28?0.230.16?0.190.16 Anodonta euscaphysKP187851?0.120.26?0.280.18?0.160.19 Hyriopsis cumingiiHM347668?0.230.36?0.300.21?0.270.30 Hyriopsis schlegeliiHQ641406?0.230.35?0.310.22?0.290.35 Utterbackia imbecillisHM856637?0.150.28?0.230.18?0.200.21 Utterbackia peninsularisHM856635?0.130.26?0.190.13?0.150.18 Unio pictorumHM014130?0.190.32?0.250.19?0.250.22 Unio douglasiaeKM657954?0.180.32?0.250.19?0.240.21

    Fig.1 Nucleotide skew values of the whole mtDNA and protein-coding genes of Arcidae and non-Arcidae bivalve mitochondrial genomes. A, GC skews for mtDNA; B, AT skews for mtDNA; C, GC skews for all sites (P123); D, AT skews for all sites (P123); E, GC skews for the fourfold degenerate sites (P4FD); F, AT skews for the fourfold degenerate sites (P4FD). The average values of each group are indicated along with standard error bars.

    3.2 Relaxed Selective Constraint on Large Mitogenomes of Arcidae

    Previous studies have shown that the mitogenomes are under selection for smaller size, which can cause higher replication and translation efficiency (Rand, 1993). Ac-cording to this hypothesis, the large mitogenomes of Ar- cidae species may under different selective constraint com- pared with small mitogenomes in other bivalves. In order to explore this difference, we assembled a data set of 86 mitogenomes of bivalves and constructed the Maximum Likelihood (ML) phylogenetic tree (Fig.2).

    The ratio of nonsynonymous (change in amino acid) and synonymous (silent) substitutions (a/s) is generally used to measure the selective constraints acting on the protein- coding sequences. The mitochondrial data set of bivalves (listed in Supplementary Table 1) were first divided into ‘Arcidae (large mitogenome)’ and ‘non-Arcidae (small mi- togenome)’ groups to represent groups with different mi- togenome sizes (Fig.2). The Arcidae group has a signifi- cant higher mean value ofa/s (0.0705) than the non- Arcidae group (0.0421) (=0.002, Mann-Whitney U-test, Fig.3A). The mean value fora is also significantly dif- ferent between Arcidae and non-Arcidae groups (0.1094. 0.0238,<0.001, Fig.3B), suggesting that the mitochondrial protein-coding genes of Arcidae accumulate more non-synonymous mutations compared with other bivalves. Con-sidering that the divergences of synonymous mutation rate may bias the results, we compared the averages betweenArcidae and non-Arcidae groups. The mean value ofs in Arcidae group (1.8945) is significantly higher than that of the non-Arcidae group (0.7524;=0.003). The greaters may result in a smallera/s ratio in Arcidae group, making the results more conservative. Therefore, our ana- lyses suggest that the highera/s values in Arcidae groupare not simply originated from the divergences in synony- mous mutation rates.

    To identify which mitochondrial protein-coding genes aremost affected by the selective constraints, we tested thea/s ratio for each of the 12 mitochondrial genes (Table 1). Seven protein-coding genes (,–,,and) show significantly highera/s ratios in Arcidae species (Fig.4). This result suggests that these genes may have experienced more relaxed functional con- straints.

    In order to determine whether thea/s variations de- pend upon the mitogenome size, or they just reflect a ge- neral pattern of molecular evolution for bivalves, we repeated the above analysis for histone H3, a nuclear gene from 49 bivalves, which is independent of mitogenome size(listed in Table 2). However, thea/s ratio of histone H3 gene is not significantly different between the two groups (0.0001. 0.0085,=0.142).

    An alternative hypothesis to explain this finding is that the selective constraints are relaxed on the large mitoge- nomes of Arcidae species. Because mitochondria play a crucial role in energy generation, mitochondrial genes are more sensitive to the energy-related selective pressures. Higher rates of nonsynonymous substitutions in mtDNA genes may lead to more radical amino acid substitutions (Hanada., 2007), resulting a reduction in electron- transferring respiratory chain activity (Weber., 1997; Brown., 2000). Previous study has showed that low metabolic rates is correlated with relaxed selective con- straints on mitochondrial genes (Chong and Mueller, 2012).Based on this hypothesis, Arcidae species may be more likely to survive and reproduce with lower metabolic re- quirementsthan other bivalvesunder similar environment. This coincides with the biological characteristics of Arci- dae species. Some Arcidae species are more tolerant to as- phyxiation as they can moreeconomically consume oxy- gen, such as the arcid clam, whichcan adaptwell to oxygen content change in the water (Ani- stratenko and Khaliman, 2006; Soldatov., 2009). Whenthe organisms expose to environmental hypoxia, the en- ergy production in mitochondria is slowed, and metabolic rate will be suppressed (Richards, 2011). We thus deducedthat the relaxation of selective constraint on large mito- genomes of arcid species is related to their low metabolic rates. The relaxation of selective constraints contributes to generate ‘new’ (adapted) mitochondrial genes, and posi- tive selection is the basis of adaptive evolution (Shen., 2010). Thus the positive selection may have occurred on some mitochondrial genes in Arcidae species to generate the adapted genes.

    4 Conclusions

    In the present study, we conducted a comparative ana- lysis of 86 bivalve mitogenomes (including 9 arcid mito- genomes) to explore the differences of base composition and selective constraints between the large mitogenomes in Arcidae and small ones in other bivalves. Arcidae mito- genomes have significantly greater GC skews in their co- ding sequences. The mitochondrial protein-coding genes of Arcidae species had significant highera/s than other bi- valves. Seven protein-coding genes (,,,and) are most affected by the selective con- straints. These divergences are not observed in the nu- clear gene (histone H3). The replication of the large mito- genomes in Arcidae may be slower than those in other bivalves. The large mitogenomes of Arcidae experienced more relaxed selective constraints, which is supposed to be related to their low metabolic rates, a response to hypoxia exposure.

    Fig.2 Bivalve phylogenetic tree constructed from 12 mitochondrial protein-coding genes with the Maximum Likelihood method. Arcidae species are marked in blue. The mitogenome size of each bivalve species are indicated. The average mitogenome size of Arcidae and non-Arcidae groups are presented.

    Fig.3 Comparisons of Ka/Ks ratios (A) and Ka (B) between Arcidae and non-Arcidae groups. *0.01

    Fig.4 Comparisons of Ka/Ks ratios of the 12 mitochondrial protein-coding genes between Arcidae and non-Arcidae groups. *0.01

    Acknowledgements

    This work was supported by research grants from the National Natural Science Foundation of China (No. 3177 2414), the Natural Science Foundation of Qingdao City(No. 20-3-4-16-nsh), and the Fundamental Research Funds for the Central Universities (No. 201964001).

    Anistratenko, V. V., and Khaliman, I. A., 2006. Bivalve mollusk(Bivalvia, Arcidae) in the northern part of the Sea of Azov: Final colonization of the Azov-Black Sea basin., 40 (5): 505-511.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27 (8): 1767-1780, DOI: 10.1093/nar/27.8.1767.

    Boyce, T. M., Zwick, M. E., and Aquadro, C. F., 1989. Mitochon-drial DNA in the bark weevils: Size, structure and heteroplasmy., 123 (4): 825-836, DOI: 10.1101/gad.3.12b.2218.

    Brown, M. D., Trounce, I. A., Jun, A. S., Allen, J. C., and Wallace, D. C., 2000. Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation., 275 (51): 39831-39836, DOI: 10.1074/jbc.M006476200.

    Burger, G., Gray, M. W., and Lang, B. F., 2003. Mitochondrial ge- nomes: Anything goes., 19 (12): 709-716, DOI: 10.1016/j.tig.2003.10.012.

    Cameron, S. L., 2014. Insect mitochondrial genomics: Implications for evolution and phylogeny., 59 (1): 95-117, DOI: 10.1146/annurev-ento-011613-162 007.

    Chong, R. A., and Mueller, R. L., 2012. Low metabolic rates in salamanders are correlated with weak selective constraints on mitochondrial genes., 67 (3): 894-899, DOI: 10.1111/ j.1558-5646.2012.01830.x.

    Curole, J. P., and Kocher, T. D., 1999. Mitogenomics: Digging deeper with complete mitochondrial genomes., 14 (10): 394-398, DOI: 10.1016/S0169- 5347(99)01660-2.

    Eberhard, J. R., and Wright, T. F., 2016. Rearrangement and evo- lution of mitochondrial genomes in parrots., 94: 34-46, DOI: 10.1016/j.ympev. 2015.08.011.

    Gissi, C., Iannelli, F., and Pesole, G., 2008. Evolution of the mi- tochondrial genome of Metazoa as exemplified by comparison of congeneric species., 101 (4): 301-320, DOI: 10. 1038/hdy.2008.62.

    Hanada, K., Shiu, S. H., and Li, W. H., 2007. The nonsynonymous/synonymous substitution rate ratio versus the radical/ conservative replacement rate ratio in the evolution of mammalian genes.,24 (10): 2235- 2241, DOI: 10.1093/molbev/msm152.

    Jiang, Z. J., Castoe, T. A., Austin, C. C., Burbrink, F. T., Herron, M. D., McGuire, J. A.,., 2007. Comparative mitochondrial genomics of snakes: Extraordinary substitution rate dynamics and functionality of the duplicate control region., 7: 123, DOI: 10.1186/1471-2148-7-123.

    Kong, L., Li, Y., Kocot, K. M., Yang, Y., Qi, L., Li, Q.,., 2020. Mitogenomics reveals phylogenetic relationships of Ar- coida (Mollusca, Bivalvia) and multiple independent expansions and contractions in mitochondrial genome size,, 150: 106857, DOI: 10. 1016/j.ympev.2020.106857.

    Lavrov, D. V., 2007. Key transitions in animal evolution: A mitochondrial DNA perspective., 47 (5): 734-743, DOI: 10.1093/icb/icm045.

    Liu, Y. G., Kurokawa, T., Sekino, M., Tanabe, T., and Watanabe, K., 2013. Complete mitochondrial DNA sequence of the ark shell: An ultra large metazoan mitochondrial genome., 8 (1): 72-81, DOI: 10.1016/j.cbd.2012.12.003.

    Morton, B. S., Prezant, R. S., and Wilson, B., 1998. Class Bival- via. In:. Beesley, P. L.,.,eds., Fauna of Australia, Vol. 5. CSIRO Publishing, Melbourne, 195-234.

    Oliver, P. G., and Holmes, A. M., 2006. The Arcoidea (Mollusca: Bivalvia): A review of the current phenetic-based systematics., 148 (3): 237-251, DOI: 10.1111/j.1096-3642.2006.00256.x.

    Park, H., and Ahn, D. H., 2015. Complete mitochondrial geno- me of the antarctic soft-shelled clam,(Bivalvia; Laternulidae)., 26 (4): 2, DOI: 10. 3109/19401736.2013.836515.

    Passamonti, M., and Scali, V., 2001. Gender-associated mitochon- drial DNA heteroplasmy in the venerid clam(Mollusca Bivalvia)., 39: 117-124, DOI: 10.1097/00000539-200210000-00038.

    Rand, D. M., 1993. Endotherms, ectotherms, and mitochondrial genome-size variation., 37 (3): 281-295, DOI: 10.1007/BF00175505.

    Rand, D. M., and Harrison, R. G., 1986. Mitochondrial DNA trans- mission in crickets., 114 (3): 955-970, DOI: 10.1016/ 0735-0651(86)90016-6.

    Reyes, A., Gissi, C., Pesole, G., and Saccone, C., 1998. Asymme- trical directional mutation pressure in the mitochondrial genome of mammals., 15 (8): 957-966, DOI: 10.1093/oxfordjournals.molbev.a026011.

    Richards, G. J., 2011. HYPOXIA|Metabolic rate suppression as a mechanism for surviving hypoxia. In:. Farren, A. P.,., eds., Academic Press, Amster-dam, 1764-1770, DOI: 10.1016/B978-0-12-374553-8.00155-6.

    Saccone, C., Giorgi, C. D., Gissi, C., Pesole, G., and Reyes, A., 1999. Evolutionary genomics in metazoa: The mitochondrial DNA as a model system., 238 (1): 195-209, DOI: 10.10 16/S0378-1119(99)00270-X.

    Schneider, A., and Ebert, D., 2004. Covariation of mitochondrial genome size with gene lengths: Evidence for gene length reduction during mitochondrial evolution., 59 (1): 90-96, DOI: 10.1007/s00239-004-2607-x.

    Shen, Y. Y., Liang, L., Zhu, Z. H., Zhou, W. P., Irwin, D. M., and Zhang, Y. P., 2010. Adaptive evolution of energy metabolism genes and the origin of flight in bats., 107 (19): 8666-8671, DOI: 10.1073/pnas.0912613107.

    Signorovitch, A. Y., Buss, L. W., and Dellaporta, S. L., 2007. Com- parative genomics of large mitochondria in placozoans., 3 (1): e13, DOI: 10.1371/journal.pgen.0030013.

    Simison, W. B., and Boore, J. L., 2008. Molluscan evolutionary genomics. In:. Pon- der, W., and Lindberg, D. R., eds., University of California Press, Berkeley, 447-461.

    Smith, D. R., and Snyder, M., 2007. Complete mitochondrial DNA sequence of the scallop: Evidence of transposition leading to an uncharacteristically large mitochondrial genome., 65: 380- 391, DOI: 10.1007/s00239-007-9016-x.

    Soldatov, A. A., Andreenko, T. I., Sysoeva, I. V., and Sysoev, A. A., 2009. Tissue specificity of metabolism in the bivalve mol- luscBr. under conditions of experimen- tal anoxia., 45: 349-355, DOI: 10.1134/S002209300903003X.

    Stamatakis, A., 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models., 22 (21): 2688-2690, DOI: 10.1093/ bioinformatics/btl446.

    Strotz, L. C., Saupe, E. E., Kimmig, J., and Lieberman, B. S., 2018. Metabolic rates, climate and macroevolution: A case study us- ing Neogene molluscs., 285 (1885): 20181292, DOI: 10.1098/rspb. 2018.1292.

    Sun, S., Kong, L., Yu, H., and Li, Q., 2014. The complete mitochondrial genome of(Bivalvia: Arcidae)., 26 (6): 957-958, DOI: 10.3109/ 19401736.2013.865174.

    Sun, S., Li, Q., Kong, L., and Yu, H., 2016. Complete mitochon- drial genomes ofand: Varied mitochondrial genome size and highly rearranged gene order in Arcidae., 6 (1): 33794, DOI: 10.1038/srep 33794.

    Sun, S., Li, Q., Kong, L., and Yu, H., 2017. Limited locomotive ability relaxed selective constraints on molluscs mitochondrial genomes., 7 (1): 10628, DOI: 10.1038/s415 98-017-11117-z.

    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools., 25 (24): 4876- 4882, DOI: 10.1093/nar/25.24.4876.

    Weber, K., Wilson, J. N., Taylor, L., Brierley, E., Johnson, M. A., Turnbull, D. M.,., 1997. A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle., 60 (2): 373-380, DOI: 10.1016/S0027-5107(96)00239-4.

    Williams, S. T., Foster, P. G., Hughes, C., Harper, E. M., Taylor, J. D., Littlewood, D. T. J.,., 2017. Curious bivalves: Sys- tematic utility and unusual properties of anomalodesmatan mi- tochondrial genomes., 110: 60-72, DOI: 10.1016/j.ympev.2017.03.004.

    Xu, K. F., Kanno, M., Yu, H., Li, Q., and Kijima, A., 2011. Com- plete mitochondrial DNA sequence and phylogenetic analysis of Zhikong scallop(Bivalvia: Pectinidae)., 38 (5): 3067-3074, DOI: 10.1007/ s11033-010-9974-8.

    Yang, Z., 2007. PAML 4: Phylogenetic analysis by maximum like- lihood., 24 (8): 1586-1591, DOI: 10.1093/molbev/msm088.

    . E-mail: qili66@ouc.edu.cn

    August 2, 2020;

    October 9, 2020;

    December 15, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    (Edited by Qiu Yantao)

    国产成人一区二区三区免费视频网站| 日日爽夜夜爽网站| 国产精品98久久久久久宅男小说| 黄色成人免费大全| 国产野战对白在线观看| 国产高清激情床上av| 久久香蕉国产精品| 色精品久久人妻99蜜桃| 欧美成人免费av一区二区三区| 午夜免费激情av| 很黄的视频免费| 亚洲第一电影网av| 国产午夜精品论理片| 不卡一级毛片| 欧美黄色片欧美黄色片| 一边摸一边抽搐一进一小说| www国产在线视频色| 一级毛片女人18水好多| 日本黄色视频三级网站网址| 99久久精品热视频| 国产成人精品久久二区二区91| 狂野欧美白嫩少妇大欣赏| svipshipincom国产片| 亚洲午夜理论影院| 97碰自拍视频| 老汉色av国产亚洲站长工具| 亚洲色图 男人天堂 中文字幕| 久久久国产成人精品二区| 免费看日本二区| 免费电影在线观看免费观看| 久久午夜亚洲精品久久| 亚洲 欧美 日韩 在线 免费| 欧美大码av| 欧洲精品卡2卡3卡4卡5卡区| 色尼玛亚洲综合影院| 淫妇啪啪啪对白视频| 天堂av国产一区二区熟女人妻 | 欧美精品啪啪一区二区三区| 一级黄色大片毛片| 999久久久精品免费观看国产| 一进一出抽搐gif免费好疼| 亚洲av成人不卡在线观看播放网| 村上凉子中文字幕在线| 日本 av在线| 亚洲av成人不卡在线观看播放网| 国产精品永久免费网站| 法律面前人人平等表现在哪些方面| 美女扒开内裤让男人捅视频| 色综合婷婷激情| 在线十欧美十亚洲十日本专区| 欧美高清成人免费视频www| 欧美大码av| 91老司机精品| 99久久99久久久精品蜜桃| 天天一区二区日本电影三级| 黑人巨大精品欧美一区二区mp4| 日韩欧美 国产精品| av天堂在线播放| 99re在线观看精品视频| 久久天堂一区二区三区四区| 国产精品九九99| 叶爱在线成人免费视频播放| 啪啪无遮挡十八禁网站| 欧美日韩一级在线毛片| 天堂影院成人在线观看| 999精品在线视频| 亚洲熟妇中文字幕五十中出| 国产一区二区三区在线臀色熟女| 国产成年人精品一区二区| 级片在线观看| 黄色毛片三级朝国网站| 搡老熟女国产l中国老女人| 欧美极品一区二区三区四区| 啦啦啦观看免费观看视频高清| 黄色毛片三级朝国网站| 欧美 亚洲 国产 日韩一| 真人做人爱边吃奶动态| 美女午夜性视频免费| 床上黄色一级片| 欧美成人一区二区免费高清观看 | 一夜夜www| 日本一二三区视频观看| 久久久国产成人精品二区| 国产精品野战在线观看| 久久婷婷成人综合色麻豆| 日韩欧美精品v在线| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久毛片微露脸| АⅤ资源中文在线天堂| 久久久久久国产a免费观看| 国产亚洲欧美在线一区二区| 久久久久性生活片| 蜜桃久久精品国产亚洲av| 黄色a级毛片大全视频| 久久久久免费精品人妻一区二区| 国产精品99久久99久久久不卡| 亚洲成人久久性| 在线观看一区二区三区| 丰满人妻一区二区三区视频av | 国产精品久久久久久久电影 | 国产精品香港三级国产av潘金莲| 男人的好看免费观看在线视频 | 欧美性猛交╳xxx乱大交人| 成人国语在线视频| 欧美成人午夜精品| 久久久国产精品麻豆| 国产日本99.免费观看| 国产亚洲精品综合一区在线观看 | 熟女少妇亚洲综合色aaa.| 免费无遮挡裸体视频| 国产私拍福利视频在线观看| 99久久国产精品久久久| 欧美不卡视频在线免费观看 | 亚洲中文日韩欧美视频| 色噜噜av男人的天堂激情| 欧美黑人巨大hd| 观看免费一级毛片| 99国产极品粉嫩在线观看| 免费看美女性在线毛片视频| 级片在线观看| 亚洲精品在线观看二区| 麻豆av在线久日| 最新美女视频免费是黄的| 国产精品亚洲一级av第二区| 午夜福利免费观看在线| 日韩欧美在线二视频| 中文亚洲av片在线观看爽| 亚洲熟妇中文字幕五十中出| 精品久久蜜臀av无| 亚洲成人免费电影在线观看| 亚洲无线在线观看| 国产精品 欧美亚洲| 日韩中文字幕欧美一区二区| 露出奶头的视频| 欧美中文日本在线观看视频| 亚洲 欧美 日韩 在线 免费| 精品国产乱码久久久久久男人| 夜夜夜夜夜久久久久| 又黄又粗又硬又大视频| 1024香蕉在线观看| 两人在一起打扑克的视频| 欧美性长视频在线观看| 长腿黑丝高跟| 亚洲精品国产一区二区精华液| 欧美成人午夜精品| 91av网站免费观看| 亚洲在线自拍视频| 99re在线观看精品视频| 国产精品美女特级片免费视频播放器 | www国产在线视频色| 国产乱人伦免费视频| 88av欧美| 成人三级做爰电影| 12—13女人毛片做爰片一| 舔av片在线| 校园春色视频在线观看| 亚洲成人久久性| 欧美性猛交╳xxx乱大交人| 99热这里只有精品一区 | 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 午夜日韩欧美国产| 黄片小视频在线播放| 国产熟女午夜一区二区三区| 亚洲午夜理论影院| 亚洲av美国av| 亚洲人与动物交配视频| 久久国产精品影院| 俄罗斯特黄特色一大片| 国产在线精品亚洲第一网站| 国产在线观看jvid| 精品欧美国产一区二区三| 国产亚洲精品综合一区在线观看 | 观看免费一级毛片| 巨乳人妻的诱惑在线观看| 日韩大码丰满熟妇| 老司机深夜福利视频在线观看| 久久中文看片网| 黄色片一级片一级黄色片| 757午夜福利合集在线观看| 久久久久久久久久黄片| 亚洲欧美激情综合另类| 国产精品久久久久久久电影 | 床上黄色一级片| 精品欧美一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美一区二区综合| 91在线观看av| АⅤ资源中文在线天堂| 丰满人妻熟妇乱又伦精品不卡| 久久久久久人人人人人| 亚洲18禁久久av| 黄频高清免费视频| 成人av在线播放网站| 三级毛片av免费| 亚洲国产欧美网| 在线观看免费视频日本深夜| 国产亚洲精品第一综合不卡| 听说在线观看完整版免费高清| 日韩有码中文字幕| 99精品在免费线老司机午夜| 老司机靠b影院| 哪里可以看免费的av片| 桃红色精品国产亚洲av| 国产aⅴ精品一区二区三区波| 成年版毛片免费区| 国内揄拍国产精品人妻在线| 成人午夜高清在线视频| 婷婷丁香在线五月| 欧美激情久久久久久爽电影| 中文字幕人成人乱码亚洲影| 亚洲精品久久国产高清桃花| 好看av亚洲va欧美ⅴa在| 国产精品免费一区二区三区在线| 国产v大片淫在线免费观看| 国产一区二区三区视频了| 久久人妻福利社区极品人妻图片| 久久久久久久久免费视频了| www日本黄色视频网| 国产欧美日韩一区二区精品| 三级男女做爰猛烈吃奶摸视频| 变态另类丝袜制服| 国产伦人伦偷精品视频| 国产一区二区激情短视频| 免费在线观看完整版高清| 亚洲精品美女久久av网站| 少妇裸体淫交视频免费看高清 | 日本免费a在线| 亚洲人成电影免费在线| 91大片在线观看| 亚洲成人免费电影在线观看| 久久这里只有精品中国| 啪啪无遮挡十八禁网站| 成熟少妇高潮喷水视频| 成人永久免费在线观看视频| 一a级毛片在线观看| 欧美日韩乱码在线| 婷婷丁香在线五月| 国产成人精品久久二区二区免费| 亚洲成人免费电影在线观看| 99热只有精品国产| 欧美日韩一级在线毛片| 黄色a级毛片大全视频| 国产精品久久久久久久电影 | 正在播放国产对白刺激| 夜夜看夜夜爽夜夜摸| 欧美黄色片欧美黄色片| 后天国语完整版免费观看| 啦啦啦观看免费观看视频高清| 老熟妇仑乱视频hdxx| a级毛片a级免费在线| 日本撒尿小便嘘嘘汇集6| 熟妇人妻久久中文字幕3abv| 美女大奶头视频| 啪啪无遮挡十八禁网站| 正在播放国产对白刺激| 三级国产精品欧美在线观看 | 日本撒尿小便嘘嘘汇集6| 亚洲精品在线美女| 欧美zozozo另类| 久久久久久久久中文| 亚洲av美国av| 亚洲男人的天堂狠狠| 久久欧美精品欧美久久欧美| 在线观看免费午夜福利视频| 夜夜看夜夜爽夜夜摸| 亚洲av成人av| 在线观看日韩欧美| 国产精品电影一区二区三区| 国产爱豆传媒在线观看 | 特大巨黑吊av在线直播| 欧美乱码精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产精品自产拍在线观看55亚洲| 香蕉国产在线看| 精品一区二区三区av网在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产视频一区二区在线看| 99久久精品热视频| 日韩av在线大香蕉| aaaaa片日本免费| 精品久久蜜臀av无| 黄色毛片三级朝国网站| 啦啦啦观看免费观看视频高清| 每晚都被弄得嗷嗷叫到高潮| 亚洲,欧美精品.| 日韩高清综合在线| 日日夜夜操网爽| 好男人电影高清在线观看| 叶爱在线成人免费视频播放| 亚洲精品国产一区二区精华液| 中文亚洲av片在线观看爽| 亚洲精品粉嫩美女一区| 在线看三级毛片| 欧美激情久久久久久爽电影| 少妇被粗大的猛进出69影院| tocl精华| 午夜日韩欧美国产| 国产精品香港三级国产av潘金莲| 青草久久国产| 亚洲午夜理论影院| 婷婷六月久久综合丁香| 99在线视频只有这里精品首页| 又黄又粗又硬又大视频| 美女黄网站色视频| 亚洲成人久久爱视频| 757午夜福利合集在线观看| 亚洲精品色激情综合| 制服丝袜大香蕉在线| 精品乱码久久久久久99久播| 给我免费播放毛片高清在线观看| 中文资源天堂在线| 亚洲精品久久成人aⅴ小说| 国产精华一区二区三区| 国产成人精品久久二区二区免费| 国产精品久久久人人做人人爽| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 国产私拍福利视频在线观看| 国产成人aa在线观看| 给我免费播放毛片高清在线观看| a在线观看视频网站| 欧美一级毛片孕妇| 婷婷亚洲欧美| 欧美在线黄色| 日韩大码丰满熟妇| 欧美日本视频| 精品人妻1区二区| 成在线人永久免费视频| 久久久久性生活片| 亚洲天堂国产精品一区在线| 久久久久免费精品人妻一区二区| 2021天堂中文幕一二区在线观| 亚洲黑人精品在线| 人妻丰满熟妇av一区二区三区| 天天躁夜夜躁狠狠躁躁| 日日干狠狠操夜夜爽| 99热这里只有是精品50| 国产亚洲精品第一综合不卡| 国产成人影院久久av| 国产成人精品久久二区二区免费| 久久精品夜夜夜夜夜久久蜜豆 | 国产单亲对白刺激| 国产精品久久久久久久电影 | 人妻夜夜爽99麻豆av| 性色av乱码一区二区三区2| 成人18禁高潮啪啪吃奶动态图| 男人舔女人的私密视频| 亚洲精华国产精华精| 高潮久久久久久久久久久不卡| 国产精品久久久av美女十八| 欧美zozozo另类| 可以在线观看毛片的网站| 国产在线观看jvid| 可以在线观看毛片的网站| 久久久久国产精品人妻aⅴ院| 午夜福利在线在线| 国产成人影院久久av| 午夜日韩欧美国产| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 亚洲欧美精品综合一区二区三区| 久久久久久国产a免费观看| 日本三级黄在线观看| 大型黄色视频在线免费观看| 久久亚洲真实| 看片在线看免费视频| 日本 av在线| 午夜老司机福利片| 欧美成人午夜精品| 亚洲av第一区精品v没综合| 免费观看精品视频网站| 亚洲美女视频黄频| 久久久久性生活片| 在线观看www视频免费| 亚洲一码二码三码区别大吗| 精品高清国产在线一区| 日韩欧美三级三区| 欧美中文综合在线视频| 久久久久亚洲av毛片大全| 嫁个100分男人电影在线观看| 不卡av一区二区三区| 男女之事视频高清在线观看| 免费无遮挡裸体视频| 夜夜爽天天搞| 国产亚洲精品久久久久久毛片| 中亚洲国语对白在线视频| 亚洲精品一卡2卡三卡4卡5卡| 日本 欧美在线| 久久国产精品影院| 99riav亚洲国产免费| 亚洲人成网站在线播放欧美日韩| 成人手机av| 一区二区三区激情视频| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 国产男靠女视频免费网站| 女人被狂操c到高潮| 18禁黄网站禁片免费观看直播| 久久久国产成人精品二区| 丁香欧美五月| 亚洲第一电影网av| 波多野结衣高清作品| 一本精品99久久精品77| 哪里可以看免费的av片| 9191精品国产免费久久| 国产亚洲精品久久久久5区| www日本在线高清视频| 99久久无色码亚洲精品果冻| 亚洲电影在线观看av| 国产欧美日韩一区二区精品| 国产精品影院久久| 国产成人欧美在线观看| 日本 av在线| 亚洲天堂国产精品一区在线| 99在线人妻在线中文字幕| 99国产精品99久久久久| 一个人免费在线观看电影 | 国产三级在线视频| 色av中文字幕| 亚洲,欧美精品.| 脱女人内裤的视频| 国产精品九九99| 99国产精品99久久久久| 日韩三级视频一区二区三区| 亚洲在线自拍视频| www.999成人在线观看| 99精品在免费线老司机午夜| 丝袜美腿诱惑在线| 色老头精品视频在线观看| 免费看十八禁软件| 午夜视频精品福利| 99久久精品国产亚洲精品| 五月伊人婷婷丁香| 久久午夜综合久久蜜桃| 亚洲精品国产精品久久久不卡| 久久精品国产综合久久久| 亚洲午夜精品一区,二区,三区| 51午夜福利影视在线观看| 欧美精品亚洲一区二区| 国产av又大| 999久久久国产精品视频| 夜夜夜夜夜久久久久| av在线播放免费不卡| 正在播放国产对白刺激| 女生性感内裤真人,穿戴方法视频| 黑人操中国人逼视频| а√天堂www在线а√下载| 三级男女做爰猛烈吃奶摸视频| 香蕉国产在线看| 国产三级中文精品| 特大巨黑吊av在线直播| 免费在线观看完整版高清| 精品久久久久久久人妻蜜臀av| 国内毛片毛片毛片毛片毛片| 在线观看66精品国产| 制服诱惑二区| 亚洲乱码一区二区免费版| 成人亚洲精品av一区二区| 香蕉av资源在线| 国产激情欧美一区二区| 一夜夜www| 在线观看免费视频日本深夜| 18禁黄网站禁片午夜丰满| 成人三级黄色视频| 久久人妻av系列| 亚洲无线在线观看| 亚洲色图av天堂| 嫁个100分男人电影在线观看| 999久久久国产精品视频| 少妇的丰满在线观看| 久久精品国产亚洲av香蕉五月| 黑人欧美特级aaaaaa片| 极品教师在线免费播放| 国产精品98久久久久久宅男小说| 麻豆成人午夜福利视频| 国产成人系列免费观看| 成人18禁高潮啪啪吃奶动态图| 久久精品综合一区二区三区| 婷婷亚洲欧美| 亚洲色图 男人天堂 中文字幕| 精品人妻1区二区| 欧美中文综合在线视频| 国产黄a三级三级三级人| 亚洲自偷自拍图片 自拍| 午夜福利在线观看吧| 欧美一区二区精品小视频在线| 国产单亲对白刺激| 久久久久久久久久黄片| 香蕉久久夜色| 高清毛片免费观看视频网站| 神马国产精品三级电影在线观看 | 男女床上黄色一级片免费看| 在线观看舔阴道视频| 亚洲精华国产精华精| 欧美一区二区精品小视频在线| 精品久久蜜臀av无| 五月玫瑰六月丁香| 亚洲专区字幕在线| 在线观看免费日韩欧美大片| 欧美日本亚洲视频在线播放| 欧美大码av| 久久久精品欧美日韩精品| 国产精品一区二区精品视频观看| 亚洲人成电影免费在线| avwww免费| 日日夜夜操网爽| 两个人视频免费观看高清| 精品一区二区三区视频在线观看免费| 久久久久性生活片| 午夜免费观看网址| 中文字幕av在线有码专区| 男女视频在线观看网站免费 | 少妇的丰满在线观看| 久久中文看片网| 国产亚洲精品av在线| 18美女黄网站色大片免费观看| 亚洲专区中文字幕在线| 美女扒开内裤让男人捅视频| 久久香蕉国产精品| 老司机在亚洲福利影院| 黄色片一级片一级黄色片| 久久亚洲精品不卡| 一级毛片高清免费大全| 亚洲精华国产精华精| 成人国产一区最新在线观看| 亚洲男人的天堂狠狠| 国产一区二区激情短视频| 亚洲av五月六月丁香网| 一进一出抽搐动态| 国产不卡一卡二| 精品国内亚洲2022精品成人| 欧美成人性av电影在线观看| 久久婷婷成人综合色麻豆| 精品久久蜜臀av无| 十八禁网站免费在线| 亚洲专区字幕在线| 亚洲色图 男人天堂 中文字幕| 亚洲成人中文字幕在线播放| 啦啦啦韩国在线观看视频| 欧美在线一区亚洲| 日本免费一区二区三区高清不卡| 欧美中文综合在线视频| 91成年电影在线观看| 一二三四在线观看免费中文在| 三级毛片av免费| 在线永久观看黄色视频| 中文资源天堂在线| 91国产中文字幕| 美女大奶头视频| 免费观看精品视频网站| 一个人观看的视频www高清免费观看 | 国产亚洲av高清不卡| 亚洲欧美激情综合另类| 日韩欧美三级三区| 日本熟妇午夜| 免费在线观看黄色视频的| 草草在线视频免费看| 亚洲国产欧美网| 午夜免费激情av| 成人三级黄色视频| 可以在线观看毛片的网站| 男女视频在线观看网站免费 | 久久伊人香网站| 天天添夜夜摸| 国产99白浆流出| 成人三级做爰电影| 国产一区二区在线av高清观看| 99国产精品一区二区三区| 久9热在线精品视频| 一区福利在线观看| 日韩欧美在线乱码| 毛片女人毛片| 男人舔女人下体高潮全视频| 波多野结衣巨乳人妻| 日韩大码丰满熟妇| 一级a爱片免费观看的视频| 可以在线观看毛片的网站| 久久天躁狠狠躁夜夜2o2o| 天天躁夜夜躁狠狠躁躁| 一本精品99久久精品77| 男女之事视频高清在线观看| 午夜福利高清视频| 99热这里只有精品一区 | 久久天躁狠狠躁夜夜2o2o| 男女午夜视频在线观看| 啦啦啦观看免费观看视频高清| 免费搜索国产男女视频| 国产男靠女视频免费网站| 午夜精品一区二区三区免费看| 99久久无色码亚洲精品果冻| 国产男靠女视频免费网站| 精品国产乱子伦一区二区三区| 国产精品久久久久久人妻精品电影| 91字幕亚洲| 两个人看的免费小视频| 51午夜福利影视在线观看| 大型黄色视频在线免费观看| 国产aⅴ精品一区二区三区波| 亚洲欧美一区二区三区黑人| 日韩免费av在线播放| 99热这里只有精品一区 | 日韩大码丰满熟妇| 巨乳人妻的诱惑在线观看| 久久久久久久久中文| 亚洲成av人片免费观看| 国内揄拍国产精品人妻在线| 中文资源天堂在线| 一级作爱视频免费观看| 精品国产美女av久久久久小说| 欧美性长视频在线观看| 午夜激情福利司机影院| 国产精品久久久久久精品电影| 日韩国内少妇激情av|