• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Brown Algae Saccharina japonica and Sargassum horneri Exhibit Species-Specific Responses to Synergistic Stress of Ocean Acidification and Eutrophication

    2021-08-30 06:17:28LIUYuxinCAOJiazhenCHUYaoyaoLIUYanWANGQiaohanGONGQingliandLIJingyu
    Journal of Ocean University of China 2021年5期

    LIU Yuxin, CAO Jiazhen, CHU Yaoyao, LIU Yan, 2), WANG Qiaohan, 2), GONG Qingli, 2), and LI Jingyu, 2),

    The Brown AlgaeandExhibit Species-Specific Responses to Synergistic Stress of Ocean Acidification and Eutrophication

    LIU Yuxin1), CAO Jiazhen1), CHU Yaoyao1), LIU Yan1), 2), WANG Qiaohan1), 2), GONG Qingli1), 2), and LI Jingyu1), 2),*

    1)Fisheries College,Ocean University of China, Qingdao 266003, China 2) Key Laboratory of Mariculture, Ministry of Education, Ocean University of China,Qingdao 266003, China

    Ocean acidification and eutrophication are two important environmental stressors. They inevitably impact marine macroalgae, and hence the coastal ecosystem of China., as the main culture species in China, is suffering the harmful golden tide caused by. However, it remains unclear whether the detrimental effects ofoncultivation become more severe in future acidified and eutrophic scenario. In this study, we respectively investigated the effects ofCO2(400μatm and 1000μatm) and nutrients (non-enriched and enriched seawater) on the growth, photosynthesis, respiration, chlorophyll contents, and tissue nitrogen ofand. Results indicated that enrichment of nutrients contributedto utilize HCO3?. The carbon acquisition pathway shifted from HCO3?to CO2in, whileremained using HCO3?regulated by nutrient enrichment.exhibited better photosynthetic traits than, with a higher level of net photosynthetic rate and chlorophyll contents at elevatedCO2and enriched nutrients. Tissue nitrogen also accumulated richly in the thalli ofunder higherCO2and nutrients. Significant enhancement in growth was only detected inunder synergistic stress. Together,showed competitive dominance in current study. These findings suggest that increasing risk of golden tide in acidified and eutrophic ocean can most likely result in great damage tocultivation.

    eutrophication; ocean acidification;;; synergistic stress

    1 Introduction

    The concentration of atmospheric carbon dioxide (CO2) increased approximately 130 pars per million (ppm) since the Industrial Revolution (Joos and Spahni, 2008; AOAN, 2019). Rising atmospheric CO2dissolved in seawater, causing pH reductions and alterations in chemical balances of dissolved inorganic carbon (DIC) (Feely., 2004, 2009a; Doney., 2009). These changes in pH and DIC are ineluctable consequences of rising atmospheric CO2, referred to as ocean acidification (OA) (Doney., 2009). Anthropogenic CO2emission is rising at the fastest rate after the Industrial Era (Joos and Spahni, 2008; AOAN, 2019), thus leading to a continuing decrease in seawater pH (Feely., 2004, 2009b; Doney., 2009; Feely., 2009a). OA significantly affects the physiological processes and ecological functi- ons of seaweeds and other marine organisms (Gazeau., 2007; Edmunds, 2011; Koch., 2013; Kroeker.,2013; Enochs., 2015; Gao., 2019). A body of evidence indicates that OA actively stimulates the growth of kelps, such as,andwhich were carbon limited in nearshore environment (Swanson and Fox, 2007; Xu., 2019; Hurd., 2020; Zhang., 2020). On the other hand, OA simultaneously reduces the calcification of,and other calcified algae (Reymond., 2013; Johnson and Carpenter, 2018).

    Furthermore, human pollution, agricultural production and atmospheric deposition have dramatically increased since 1970s, resulting in excessive nutrients input to coastal seawater (Smith., 2003; van der Struijk and Kroeze, 2010; Strokal., 2014; Brockmann., 2018; Murray., 2019). This process leads to another environmental issue known as eutrophication (Smith., 2003). Several studies showed that water quality slightly recovered from previous eutrophic state in the Baltic Sea, Chesapeake Bay and other coastal seas (Okino and Kato, 1987; Andersen., 2017; McCrackin., 2017; Duar-te and Krause-Jensen, 2018). In contrast, severe eutrophic areas are still located at some key bays in China, including Liaodong Bay, Yangtze River Estuary and other jurisdictional seas (MEE, 2019). With exceeded nutrients supply, eutrophication can enhance the growth of phytoplankton, fast-growing filamentous and mat- forming opportunistic macroalgae (Pedersen and Borum, 1997; Wernberg., 2018). Degraded water quality from eutrophication is critical for the development, persistence and expansion of harmful algae blooms (HABs) (Heisler., 2008). Recent reports showed that microalgal blooms,-dominated green tides and-dominated golden tides have substantially increased worldwide (Glibert., 2005; Smetacek and Zingone, 2013; Kudela., 2015; Wang., 2018). HAB resulted from eutrophication affects substance circulation, primary productivity, community structure and marine ecosystem service (Norkko and Bonsdorff, 1996a,b; Glibert., 2005; Heisler., 2008; Rabouille., 2008; Smetacek and Zingone, 2013; Anderson., 2015; Kudela., 2015; Watson., 2015).

    Several studies have found that coral reef systems are negatively affected by OA and nutrient enrichment (Hoegh-Guldberg., 2007; Ge., 2017; Guan., 2020). For phytoplankton, marine diazotrophs such asspp. increase their N2fixation under elevated CO2in nitrogen enriched cultures (Eichner., 2014; Hutchins and Fu, 2017). However, limited investigations aimed to reveal the ecophysiological effects of OA and eutrophication on marine macrophytes. Previous studies indicated that the growth and quality ofwere inhibited and threatened by the interactive effects of OA and eutrophication (Chu., 2019, 2020). In contrast, there was an enhanced production of amino acid and fatty acid inspecies at elevated CO2concentration and nutrient level (Gao., 2018). Thus, the responses to the synergistic stress of OA and eutrophication are species-specific in macroalgae. The rise of acidity in coastal ocean was found to be greater under eutrophication (Cai., 2011). This severe scenario potentially aggravate the disappearance of habitat-forming seaweeds worldwide (Filbee-Dexter and Wernberg, 2018; Wern- berg., 2018). It is thus important to understand how macroalgae will response to the future synergistic stress of OA and eutrophication.

    The kelpis the foremost commercial harvesting alga among northwestern Pacific countries (Chung., 2017; Kim., 2017). In previous studies, the growth, photosynthesis, and nutrient uptake ofwere significantly enhanced under elevated CO2concentrations (Swanson and Fox, 2007; Zhang., 2020). Also, excess nutrient availability significantly promoted the growth and physiological performance of(Gao., 2017). On the other hand, the sheet- like macroalgaeblooms frequently occur in recent years (Liu., 2013; Xiao, 2020), whose floating thalli have caused detrimental impacts onaquaculture (Xiao, 2020). Many investigations have focused on how environmental factors affect population dynamics and distributions ofin East China Sea and Yellow Sea (Xiao, 2019; Xiao., 2020; Choi., 2020). However, it remains unclear whetheris more resilient to the synergistic stress of OA and eutrophication than.

    In the present study, we investigated the synergistic stress of OA and eutrophication on growth, photosynthesis, respiration, chlorophyll contents, and tissue nitrogen of sporophytes ofandappearing in the same period. The results are expected to reveal the species-specific ecophysiological responses ofand, and determine which alga has greater resilience and interspecific competitive dominance under synergistic stress of OA and eutrophication.

    2 Materials and Methods

    2.1 Algal Collection and Maintenance

    The sporophytes of(approximately 80cm in average length,=20) and(approximately 150cm in average length,=20) were collected in Rong- cheng, Shandong, China (36?07′N, 120?19′E), in December 2019. Thesamples were from cultivated populations, withtwining on, or floating between their rafts. The samples were kept in cold foam boxes filled with seawater and quickly transported to the laboratory within 8h. Healthy sporophytes were selected and rinsed several times with sterilized seawater to remove the epiphytes and detritus. More than 100 discs (1.4cm in diameter) were punched from the meristem ofwith a cork borer, and more than 100 segments (4–5cm in length) were cut from the apical part ofbranches for the subsequent experiments. The discs and segments were maintained separately in plastic tanks containing 3L filtered seawater. The seawater was renewed daily during the maintenance. These samples were maintained at an irradiance of 90μmolphotonsm?2s?1with a 12L:12D photoperiod, and 10℃, the seawater temperature of the collection area, for 3d to reduce the negative effects of excision.

    2.2 Culture Experiment

    The culture experiment was conducted over a period of 6d under combinations twoCO2levels (400μatm and 1000 μatm) and two nutrient levels (non-enriched natural seawater and nutrient-enriched seawater). The nutrient- enriched level was enriched 50% PESI medium (Tatewaki, 1966), which was made by sterilized seawater from coas- tal Qingdao. There was a total of 4 experimental treatments and each had 3 replicates. Four individuals were cultured in each of 12 gently aerated side-arm flasks, in which each contained 500mL non-enriched or enriched seawater at 10℃. The culture medium was renewed on the third day of the experiment.

    2.3 Carbonate Chemistry Parameters

    For the treatments under twoCO2levels, the samples were cultured in two CO2incubators (GXZ-380C-C02, Jiangnan Instruments Factory, Ningbo, China). The 400 μatm was achieved by bubbling ambient air. And the 1000μatm was obtained through gas cylinders of the incubator. The pH value of the medium in each flask was measured by a pH meter (Orion STAR A211; Thermo Scientific). The salinity was measured by a seawater salimeter (0–100‰, Aipli). Other indirectly measured carbonate chemistry parameters of all treatments were calculated based on the pH values, salinity,CO2levels, the equilibrium constants1and2for carbonic acid dissociation, andBfor boric acid, using CO2SYS software (Robbins and Kleypas, 2018).

    2.4 Measurement of Growth

    The growth ofandwas determined by weighing fresh weight (FW) of discs or thalli. The discs and thalli were gently scrubbed with tissue paper to remove water from the surface before being wei- ghed. The relative growth rate (RGR) was calculated as the following formula:

    whereis the time period of culture experiment,0is the initial FW,is the FW afterdays of culture.

    2.5 Measurement of Photosynthesis and Respiration

    The net photosynthetic rate (Pn) and the respiration rate (d) of the samples was measured by a manual oxygen meter (FireSting O2II, Pyro Science). After measuring the FW, four discs or segments of each replicate were transferred to the oxygen electrode cuvette with 330mL culture medium from their own flasks. The medium was magnetically stirred during the measurement to ensure the even diffusion of oxygen. The irradiance and temperature conditions were set the same as the growth chambers. The samples were set to acclimate to the conditions in the cuvette for 5min before the measurements. The oxygen concentration in the medium was recorded per minute for 10min. The increase of oxygen content in the medium within 5min was defined as the Pn, and the decrease of oxygen content in darkness in the following 5min was defined as Rd. The Pnand Rdwere presented as μmolO2min?1g?1FW.

    2.6 Measurement of Chlorophyll Contents

    Approximately 0.2g (FW) of the samples from every replicate were used for the extraction of photosynthetic pigments. The discs or segments were dipped in 2mL dimethyl sulfoxide for 5min, and the absorbance of supernatant was determined at 665, 631, 582, and 480nm in the ultraviolet absorbance spectrophotometer (U-2900, HITACHI, Tokyo, Japan). Then the same samples were added 3mL acetone, setting for 2h. Before the measurements, 1mL methanol and 1mL distilled water was added to the supernatant. The absorbance was obtained at 664, 631, 581, and 470nm. The contents of chlorophyll (Chl)andwere calculated according to the following equation:

    2.7 Measurement of Tissue Nitrogen

    One disc or segment was randomly selected from every replicate for the measurement of tissue nitrogen (TN) contents. The samples were completely dried at 80℃, and ground into powder. About 2–3mg powder was used to measure the TN contents in the elemental analyzer (Vario EL III, Elementar, Germany). The TN contents were normalized to %DW.

    2.8 Data Analysis

    Results were expressed as mean ±standard deviation (=3). Prior to the analysis, the data were conformed to a normal distribution (Shapiro-Wilk test,>0.05) and homogeneity of variance (Levene’s test,>0.05). Two- way analysis of variance (ANOVA) was conducted to as- sess the combined effects ofCO2and nutrient levels on carbonate chemistry parameters, RGR,n,d, Chl, Chl, and TN. Tukey honest significance difference (HSD) was conducted to determine the significance levels of factors (<0.05). Pearson correlation coefficient (PCCs) was conducted to analyze the correlations of each experimental indicator withCO2and nutrients levels (<0.05). Data were analyzed in SPSS 22.0 software.

    3 Results

    3.1 Carbonate Chemistry Parameters of Culture Medium

    At the sameCO2level, two-way ANOVA showed thatnutrients had no significant effects on any parameter (Table 1). In the culture medium of, elevatedCO2decreased the pH by 0.3 and CO32?by 57%, but it increased the DIC by 12%, HCO3?by 22%, and CO2by 187% in both the non-enriched and enriched nutrient treatments. In the culture medium of, elevatedCO2decreased the pH by 0.4 in both nutrient levels and CO32?by 75% (non-enriched) and 65% (enriched), but it increased the DIC by 27% (non-enriched) and 4% (enriched), HCO3?by 13% (non-enriched) and 5% (enriched), and CO2by 191% in both nutrient treatments.

    Table 1 Parameters of the seawater carbonate system at different pCO2 and nutrient conditions

    Notes: L-N is the lowCO2and non-enriched condition, L-E is the lowCO2and enriched condition, H-N is the highCO2and non-enriched condition, and H-E is the highCO2and enriched condition. DIC is dissolved inorganic carbon, and TA is total alkalinity. Data are reported as means ±SD (=3). Different superscript letters indicate significant differences in one parameter between treatments (<0.05).

    3.2 Growth

    The differences inCO2and nutrients yielded no significant effects on RGR of, but nutrients significantly promoted the growth of(Fig.1). At both 400μatm and 1000μatm, the RGR ofdecreased due to enriched nutrient. In contrast, the RGR ofsignificantly increased in excessive nutrient availability (=4.550,<0.05). PCCs showed that RGR ofpositively correlated with bothCO2-and nutrients. In contrast, RGR ofpositively correlated withCO2, but negatively correlated with nutrients (Table 2). Together,showed more promotive growth under the synergistic stress.

    Fig.1 Relative growth rate (RGR) of S. japonica (A) and S. horneri (B) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 2 Analysis of variance (two-way ANOVA) examining the statistical differences of experimental parameters of S. japonica among pCO2 and nutrients

    3.3 Photosynthesis and Respiration

    As shown in Fig.2, nutrient enrichment significantly increased thenofat both CO2concentrations (=5.885,<0.05). While no significant effect was detected in,nwas lower in nutrient-enriched condition. PCCs showed thatninhad positive correlations withCO2and nutrients. Whilepositively correlated withCO2, but negatively correlated with nutrients (Table 4). Photosynthesis ofwas greater than that ofat elevatedCO2and nutrients.

    Thedinshowed a similar trend to(Fig.2). No significant effects ondof both algae were found in all treatments. At 400 μatm, Rdof both species was lower in excess nutrients. The correlation between Rdand nutrients ofwas positive, but that ofwas negative (Table 3). Respiration ofwas also greater than that ofunder synergistic stress.

    Fig.2 Net photosynthetic rate (Pn) of S. japonica (A) and S. horneri (B); Respiration rate (Rd) of S. japonica (C) and S. horneri (D) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means ±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 3 Analysis of variance (two-way ANOVA) examining the statistical differences of experimental parameters of S. horneri among pCO2 and nutrients

    3.4 Chlorophyll Contents

    The Chlandcontents ofsignificantly increased under either elevatedCO2or enriched nutrient. Both chlorophyll contents reached the maximum under the synergistic stress (Fig.3). The Chlcontent ofwas significantly increased at enriched nutrients, and reached the peak in synergistic stress condition. How- ever, the Chlcontent ofincreased only withCO2elevated. NeitherCO2nor nutrients significantly affected the Chlin. PCCs showed positive correlations between ChlwithCO2and nutrients in both species. However, the correlation between Chland nutrients was significantly negative in(Table 4).

    3.5 Tissue Nitrogen

    The TN contents ofandsignificantly increased in nutrient-enriched condition (as seen in Fig.4). ElevatedCO2had no significant effect on the TN of, but significantly promoted the accumulation of TN in. The correlations between nutrients and TN were significantly positive in the two species. As for the correlations betweenCO2and TN, it was negative inbut positive in(Table 4).

    Fig.3 Chl a of S. japonica (A) and S. horneri (B); Chl c of S. japonica (C) and S. horneri (D) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 4 The Pearson correlation coefficient (PCCs) of various experimental indicators of S. japonica and S. horneri with pCO2 and nutrients levels

    Notes:*indicates significant correlation (<0.05),**indicates highly significant correlation (<0.01).

    4 Discussion

    There was a same increase pattern of DIC in the culture medium ofunder two nutrient concentrations, but different case was found in the culture medium of(Table 1). The effects of the synergistic stress of OA and eutrophication on algae may depend on their precise carbon acquisition pathways. The HCO3?inthe culture medium ofwas lower in enriched nutrient than in non-enriched treatments, indicating more HCO3?utilization paralleled with enriched nutrients. Many macroalgae use HCO3?rather than dissolved CO2under current seawaterCO2concentration (Israel and Hophy, 2002; Badger, 2003; Koch., 2013), due to their ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) is not substrate-saturated at current atmospheric CO2level (Reiskind., 1988). Marine macroalgae have species-specific responses to elevated CO2because of their various capacities and strategies in CO2-concentrating mechanisms (CCMs) to utilize HCO3?in seawater (Wu., 2008; Raven and Hurd, 2012). Furthermore, DIC acquisition interacts with phosphorus and nitrogen availability (Giordano., 2005), but it remains unclear howregulates CCMs under excessive nutrient supply. The results indicate that enrichment of nutrients contributedto the utilization of HCO3?. When exposed to elevatedCO2, macroalgae may reduce the use of HCO3?by down-regulating their CCMs, and begin to rely on CO2as the primary carbon source (Bjork., 1993; Axelsson., 2000; Cornwall., 2012). This phy- siological process may have occurred in, thus leading to the DIC of culture medium remained at the same level after increasingCO2under the two nutrient conditions. In contrast, this study provides an evidence that eutrophication restrains the shift of carbon acquisition pathway into cope with higher CO2concentration.

    Fig.4 Tissue nitrogen (TN) of S. japonica (A) and S. horneri (B) cultured at different pCO2 and nutrient conditions for 6 days. Data are reported as means ± SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    In this study, promotions in RGR were detected in bothandat elevatedCO2although the increases were statistically non-significant. This indicates that bothandare capable of OA resistance with atmospheric CO2increased to 1000μatm. To show which algae is competitively dominant under OA condition, we analyzed the Pn, Rd, Chl, Chland TN in both species. The results showed that enhancements to Pn, Rd, and chlorophyll contents ofwere parallel withCO2elevation. These results are in line with previous investigations on(Swanson and Fox, 2007; Zhang., 2020). The enhancement of Pnand chlorophyll contents were also found in other marine macrophytes, including,and(Kang., 2017; Li., 2018; Bao., 2019). However, the Pnand chlorophyll contents ofare twice as high as those of.increased the utilization of HCO3-to maintain its photosynthesis at a higher level. Since Pnand Chlofalso increased at 1000 μatm (Figs.2B, 3D), photosynthesis ofwas further improved on the basis of the original high level. These results indicate that higher photosynthetic level insuredpotentially greater resilience to OA in comparison to.

    The significant enhancement in growth was observed inin nutrient-enriched condition, while no promotion of growth was found in(Fig.1). In this study, the concentrations of dissolved inorganic nitrate and ammonium were simultaneously increased in nutrient-enriched treatments (Tatewaki, 1966).Increase in nitrogen availability can enhance macroalgae in N uptake rates, tissue N contents, and photosynthetic rates (Valiela., 1997). These enhancements accelerate the growth of macroalgae. The significant increase in Chland TN contents were detected in both species in nutrient-en- riched treatments (Figs.3, 4). Previous studies have also determined the same positive physiological responses in,,and other macroalgae (Valiela., 1997; Kawamitsu and Boyer, 1999; Wu., 2008; Raven and Hurd, 2012; Ohlsson., 2020). The kinetics of nutrients uptake in macroalgae is affected by the physiological status and the form of nutrients (Raven and Hurd, 2012; Gao., 2017). It has been reported thatutilize ammonium first when ammonium and nitrate both exist (Wang., 2013), whilefirstly takes advantage of nitrate (Yu., 2019). We estimated according to the measured ecophysiological traits, because the exact concentrations and formations of nitrogen in culture medium were unclear.performed higher Pn, more chlorophyll and TN accumulations under nutrient-enriched condition. Thus, the eutrophic treatment in this study more significantly benefited, indicating the increased risk of-dominated golden tide in eutrophic condition.

    The current study argued the responses of bothandunder synergistic stress of OA and eutrophication. Significant enhancement in chlorophyll and TN contents was observed in both species (Fig.3, Fig.4). These results indicated that bothandimproved carbon and nitrogen assimilation. The exceeding nutrient availability in eutrophic scenario regulates these physiological responses in macroalgae to hence the negative effects resulting from declining pH in OA (Young and Gobler, 2016; Chu., 2020). However, significant increase in growth was only observed on(Fig.1). Increased carbon and nitrogen assimilation inenhanced its growth more than. These advantages in ecophyisiological traits may allowremain dominant and cause damage tocultivation in future acidified and eutrophic ocean. Furthermore, the damage resulting from golden tide tocultivation is likely to be more severe.has vesicles in structure, which can keep the thalli floating and increase carbon acquisition (Smetacek and Zingone, 2013; Choi., 2020). Floatingwrap the rafts, shading the cultivatedbelow (Wu., 2019; Xiao, 2020). Thus, we suppose that increasingbiomass shaded cultivatedin a more severe environment with lower light intensity and less carbon availability (Xiao, 2020). Thedominated golden tide may cause greater damage tocultivation in acidified and eutrophic ocean. In addition, we need meso-scale experiments to estimate the increasing risk of the golden tide incultivation.

    5 Conclusions

    It is important to estimate the damage tocultivation by golden tide resulting fromunder the synergistic stress of OA and eutrophication. In this study, we determined that nutrient enrichment contributedto utilize HCO3?.exhibited better photosynthetic traits than, and tissue nitrogen also accumulated more in thalli ofin elevatedCO2and nutrient-enriched treatments. Furthermore, increased carbon and nitrogen assimilation enhanced the growth ofin acidified and eutrophic scenario. Together,may cause greater damage tocultivation in acidified and eutrophic ocean.

    Acknowledgements

    We sincerely thank Dr. Zhu Dasheng, from Shandong Lidao Oceanic Technology Company Limited, for his help in providing algal materials for the experiment. This work is funded by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program (No. 2019JZZY020708).

    Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fle- ming-Lehtinen, V., Gustafsson, B. G.,., 2017. Long- term temporal and spatial trends in eutrophication status of the Baltic Sea., 92: 135-149, DOI: 10. 1111/brv.12221.

    Anderson, C. R., Moore, S. K., Tomlinson, M. C., Silke, J., and Cusack, C. K., 2015. Living with harmful algal blooms in a changing world: Strategies for modeling and mitigating their effects in coastal marine ecosystems. In:. Elsevier Inc., 495-561, DOI: 10.1016/B978-0-12-396483-0.00017-0.

    AOAN, 2019.–. US Department of Commerce, NOAA, Global Monitoring Laboratory.

    Axelsson, L., Mercado, J., and Figueroa, F., 2000. Utilization of HCO3?at high pH by the brown macroalga., 35: 53-59, DOI: 10. 1080/09670260010001735621.

    Badger, M., 2003. The roles of carbonic anhydrases in photo- synthetic CO2concentrating mechanisms., 77: 83-94, DOI: 10.1023/A:1025821717773.

    Bao, M., Wang, J., Xu, T., Wu, H., Li, X., and Xu, J., 2019. Rising CO2levels alter the responses of the red macroalgaunder light stress., 501: 325- 330, DOI: 10.1016/j.aquaculture.2018.11.011.

    Bjork, M., Haglund, K., Ramazanov, Z., and Pedersen, M., 1993. Inducible mechanisms for HCO3?utilization and repression of photorespiration in protoplasts and thalli of three species of(Chlorophyta)., 29: 166-173, DOI: 10.1111/j.0022-3646.1993.00166.x.

    Brockmann, U., Topcu, D., Schütt, M., and Leujak, W., 2018. Eutrophication assessment in the transit area German Bight (North Sea) 2006–2014–Stagnation and limitations., 136: 68-78, DOI: 10.1016/j.marpolbul. 2018.08.060.

    Cai, W. J., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E.,., 2011. Acidification of subsurface coastal waters enhanced by eutrophication., 4: 766-770, DOI: 10.1038/ngeo1297.

    Choi, S. K., Oh, H. J., Yun, S. H., Lee, H. J., Lee, K., Han, Y. S.,., 2020. Population dynamics of the ‘golden tides’ sea- weed,, on the southwestern coast of Korea: The extent and formation of golden tides., 12, DOI: 10.3390/su12072903.

    Chu, Y., Liu, Y., Li, J., and Gong, Q., 2019. Effects of elevatedCO2and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga(Laminariaceae, Phaeophyta)., 2019: e8040, DOI: 10.7717/peerj.8040.

    Chu, Y., Liu, Y., Li, J., Wang, Q., and Gong, Q., 2020. Nutrient enrichment regulates the growth and physiological responses ofto ocean acidification., 19: 895-901, DOI: 10.1007/s11 802-020-4359-7.

    Chung, I. K., Sondak, C. F. A., and Beardall, J., 2017. The future of seaweed aquaculture in a rapidly changing world., 52: 495-505, DOI: 10.1080/ 09670262.2017.1359678.

    Cornwall, C. E., Hepburn, C. D., Pritchard, D., Currie, K. I., Mcgraw, C. M., Hunter, K. A., and Hurd, C. L., 2012. Car- bon-use strategies in macroalgae: Differential responses to lowered pH and implications for ocean acidification., 48: 137-144, DOI: 10.1111/j.1529-8817.2011. 01085.x.

    Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A., 2009. Ocean acidification: The other CO2problem., 1: 169-192, DOI: 10.1146/annurev. marine.010908.163834.

    Duarte, C. M., and Krause-Jensen, D., 2018. Intervention op- tions to accelerate ecosystem recovery from coastal eutrophi- cation., 5: 470, DOI: 10. 3389/ fmars.2018.00470.

    Edmunds, P. J., 2011. Zooplanktivory ameliorates the effects of ocean acidification on the reef coralspp., 56: 2402-2410, DOI: 10.4319/lo.2011.56. 6.2402.

    Eichner, M., Rost, B., and Kranz, S. A., 2014. Diversity of ocean acidification effects on marine N2fixers., 457: 199-207, DOI: 10.1016/j.jembe.2014.04.015.

    Enochs, I. C., Manzello, D. P., Donham, E. M., Kolodziej, G., Okano, R., Johnston, L.,., 2015. Shift from coral to macroalgae dominance on a volcanically acidified reef., 5: 1083-1088, DOI: 10.1038/nclimate 2758.

    Feely, R., Doney, S., and Cooley, S., 2009a. Ocean acidification: Present conditions and future changes in a high-CO2world., 22: 36-47, DOI: 10.5670/oceanog.2009.95.

    Feely, R. A., Orr, J., Fabry, V. J., Kleypas, J. A., Sabine, C. L., Langdon, C., 2009b. Present and future changes in seawater chemistry due to ocean acidification. In:. American Geophysical Union, 173-188, DOI: 10.1029/2005GM000337.

    Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J., 2004. Impact of anthropo- genic CO2on the CaCO3system in the oceans., 305: 362-366, DOI: 10.1126/science.1097329.

    Filbee-Dexter, K., and Wernberg, T., 2018. Rise of turfs: A new battlefront for globally declining kelp forests., 68: 64-76, DOI: 10.1093/biosci/bix147.

    Gao, K., Beardall, J., H?der, D. P., Hall-Spencer, J. M., Gao, G., and Hutchins, D. A., 2019. Effects of ocean acidification on marine photosynthetic organisms under the concurrent in- fluences of warming, UV radiation, and deoxygenation., 6: 322, DOI: 10.3389/fmars.2019. 00322.

    Gao, G., Clare, A. S., Chatzidimitriou, E., Rose, C., and Cald- well, G., 2018. Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of., 258: 71-78, DOI: 10.1016/j.foodchem.2018.03.040.

    Gao, X., Endo, H., Nagaki, M., and Agatsuma, Y., 2017. Interactive effects of nutrient availability and temperature on growth and survival of different size classes of(Laminariales, Phaeophyceae)., 56: 253- 260, DOI: 10.2216/16-91.1.

    Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J. P., Middel- burg, J. J., and Heip, C. H. R., 2007. Impact of elevated CO2on shellfish calcification., 34: L07603, DOI: 10.1029/2006GL028554.

    Ge, C., Chai, Y., Wang, H., and Kan, M., 2017. Ocean acidifi- cation: One potential driver of phosphorus eutrophication., 115: 149-153, DOI: 10.1016/j.mar polbul.2016.12.016.

    Giordano, M., Beardall, J., and Raven, J. A., 2005. CO2con- centrating mechanisms in algae: Mechanisms, environmen- tal modulation, and evolution., 56: 99-131, DOI: 10.1146/annurev.arplant.56.032 604.144052.

    Glibert, P., Anderson, D., Gentien, P., Granéli, E., and Sellner, K., 2005. The global, complex phenomena of harmful algal blooms., 18: 136-147, DOI: 10.5670/oceanog. 2005.49.

    Guan, Y., Hohn, S., Wild, C., and Merico, A., 2020. Vulnerabi- lity of global coral reef habitat suitability to ocean warming, acidification and eutrophication., 26: 5646-5660, DOI: 10.1111/gcb.15293.

    Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C.,., 2008. Eutrophication and harmful algal blooms: A scientific consensus., 8: 3-13, DOI: 10.1016/j.hal.2008.08.006.

    Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E.,., 2007. Coral reefs under rapid climate change and ocean acidification., 318: 1737-1742, DOI: 10.1126/science.1152509.

    Hurd, C. L., Beardall, J., Comeau, S., Cornwall, C. E., Havenhand, J. N., Munday, P. L.,., 2020. Ocean acidifi- cation as a multiple driver: How interactions between changing seawater carbonate parameters affect marine life., 71: 263-274, DOI: 10. 1071/MF19267.

    Hutchins, D. A., and Fu, F., 2017. Microorganisms and ocean global change., 2: 17058, DOI: 10. 1038/nmicrobiol.2017.58.

    Israel, A., and Hophy, M., 2002. Growth, photosynthetic proper- ties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2concentra- tions., 8: 831-840, DOI: 10.1046/j. 1365-2486.2002.00518.x.

    Johnson, M. D., and Carpenter, R. C., 2018. Nitrogen enrich- ment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga., 14 (7): 20180371, DOI: 10.1098/rsbl.2018.0371.

    Joos, F., and Spahni, R., 2008. Rates of change in natural and anthropogenic radiative forcing over the past 20000 years., 105: 1425-1430, DOI: 10.1073/ pnas.0707386105.

    Kang, J. W., Kambey, C., Shen, Z., Yang, Y., and Chung, I. K., 2017. The short-term effects of elevated CO2and ammonium concentrations on physiological responses in(Rhodophyta)., 20: 18, DOI: 10.1186/s41240-017-0063-y.

    Kawamitsu, Y., and Boyer, J. S., 1999. Photosynthesis and carbon storage between tides in a brown alga,., 133: 361-369, DOI: 10.1007/s002270 050475.

    Kim, J. K., Yarish, C., Hwang, E. K., Park, M., and Kim, Y., 2017. Seaweed aquaculture: Cultivation technologies, cha- llenges and its ecosystem services., 32: 1-13, DOI: 10. 4490/algae.2017.32.3.3.

    Koch, M., Bowes, G., Ross, C., and Zhang, X. H., 2013. Clima- te change and ocean acidification effects on seagrasses and marine macroalgae., 19: 103-132, DOI: 10.1111/j.1365-2486.2012.02791.x.

    Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S.,., 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interac- tion with warming., 19: 1884-1896, DOI: 10.1111/gcb.12179.

    Kudela, R. M., Bickel, A., Carter, M. L., Howard, M. D. A., and Rosenfeld, L., 2015. The monitoring of harmful algal blooms through ocean observing: The development of the California harmful algal bloom monitoring and alert program. In:. Elsevier Inc., 58-75, DOI: 10.1016/B978-0-12-802022-7.00005-5.

    Li, Y., Zhong, J., Zheng, M., Zhuo, P., Xu, N., 2018. Photope- riod mediates the effects of elevated CO2on the growth and physiological performance in the green tide alga., 141: 24-29, DOI: 10.1016/j.marenvres.2018.07.015.

    Liu, D., Keesing, J. K., He, P., Wang, Z., Shi, Y., and Wang, Y., 2013. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications., 129: 2-10, DOI: 10.1016/j.ecss.2013.05. 021.

    McCrackin, M. L., Jones, H. P., Jones, P. C., and Moreno-Ma- teos, D., 2017. Recovery of lakes and coastal marine eco- systems from eutrophication: A global meta-analysis.,62: 507-518, DOI: 10.1002/lno.10441.

    MEE, 2019.. Beijing, 1-22.

    Murray, C. J., Müller-Karulis, B., Carstensen, J., Conley, D. J., Gustafsson, B. G., and Andersen, J. H., 2019. Past, present and future eutrophication status of the Baltic Sea., 6: 2, DOI: 10.3389/fmars.2019.00002.

    Norkko, A., and Bonsdorff, E., 1996a. Rapid zoobenthic com- munity responses to accumulations of drifting algae., 131: 143-157, DOI: 10.3354/meps 131143.

    Norkko, A., and Bonsdorff, E., 1996b. Population responses of coastal zoobenthos to stress induced by drifting algal mats., 140: 141-151, DOI: 10. 3354/meps140141.

    Ohlsson, L. O., Karlsson, S., Rupar-Gadd, K., Albers, E., and Welander, U., 2020. Evaluation ofandfor biogas production and nutrient recycling., 140: 105670, DOI: 10. 1016/j.biombioe.2020.105670.

    Okino, T., and Kato, K., 1987. Lake Suwa–Eutrophication and its partial recent recovery., 14: 373-375, DOI: 10. 1007/BF00208212.

    Pedersen, M., and Borum, J., 1997. Nutrient control of estuarine macroalgae: Growth strategy and the balance between nitro- gen requirements and uptake., 161: 155-163, DOI: 10.3354/meps161155.

    Rabouille, C., Conley, D. J., Dai, M. H., Cai, W. J., Chen, C. T. A.,., 2008. Comparison of hypoxia among four river- dominated ocean margins: The Changjiang (Yangtze), Miss- issippi, Pearl, and Rh?ne Rivers.,28: 527-1537, DOI: 10.1016/j.csr.2008.01.020.

    Raven, J. A., and Hurd, C. L., 2012. Ecophysiology of photo- synthesis in macroalgae. In:. Spring- er, 105-125, DOI: 10.1007/s11120-012-9768-z.

    Reiskind, J. B., Seamon, P. T., and Bowes, G., 1988. Alternative methods of photosynthetic carbon assimilation in marine macroalgae., 87: 686-692, DOI: 10.1104/ pp.87.3.686.

    Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G., and Pan- dolfi, J. M., 2013. Decline in growth of foraminiferunder eutrophication and ocean acidification scenarios., 19: 291-302, DOI: 10. 1111/gcb.12035.

    Smetacek, V., and Zingone, A., 2013. Green and golden seaw- eed tides on the rise., 504: 84-88, DOI: 10.1038/na ture12860.

    Smith, S. V., Swaney, D. P., Talaue-McManus, L., Bartley, J. D., Sandhei, P. T., McLaughlin, C. J.,., 2003. Humans, hy- drology, and the distribution of inorganic nutrient loading to the ocean., 53: 235-245, DOI: 10.1641/0006- 3568(2003)053[0235:HHATDO]2.0.CO;2.

    Strokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S.,., 2014. Increasing eutrophication in the coastal seas of China from 1970 to 2050., 85: 123- 140, DOI: 10.1016/j.marpolbul.2014.06.011.

    Swanson, A. K., and Fox, C. H., 2007. Altered kelp (Lamina- riales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs., 13: 1696-1709. DOI: 10.1111/j.1365-2486.2007.01384.x.

    Tatewaki, M., 1966. Formation of a crustaceous sporophyte with unilocular sporangia in., 6: 62-66, DOI: 10.2216/i0031-8884-6-1-62.1.

    Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D., and Foreman, K., 1997. Macroalgal blooms in shallow estua- ries: Controls and ecophysiological and ecosystem conse- quences., 42: 1105-1118, DOI: 10.4319/lo.1997.42.5_part_2.1105.

    van der Struijk, L. F., and Kroeze, C., 2010. Future trends in nutrient export to the coastal waters of South America: Impli- cations for occurrence of eutrophication., 24: 1-14, DOI: 10.1029/2009GB003572.

    Wang, B., Xin, M., Wei, Q., and Xie, L., 2018. A historical overview of coastal eutrophication in the China Seas., 136: 394-400, DOI: 10.1016/j.marpolbul. 2018.09.044.

    Wang, Y., Xu, D., Fan, X., Zhang, X., Ye, N., Wang, W.,., 2013. Variation of photosynthetic performance, nutrient up- take, and elemental composition of different generations and different thallus parts of., 25: 631-637, DOI: 10.1007/s10811-012- 9897-y.

    Watson, S. B., Whitton, B. A., Higgins, S. N., Paerl, H. W., Brooks, B. W., and Wehr, J. D., 2015. Harmful algal blooms. In:. Elsevier Inc., 873-920, DOI: 10.1016/B978-0- 12-385876-4.00020-7.

    Wernberg, T., Krumhansl, K., Filbee-Dexter, K., and Pedersen, M. F., 2018. Status and trends for the world’s kelp forests. In:. Elsevier, 57-78, DOI: 10.1016/B978-0-12-805052-1.00003-6.

    Wu, H., Feng, J., Li, X., Zhao, C., Liu, Y., Yu, J., amd Xu, J., 2019. Effects of increased CO2and temperature on the physiological characteristics of the golden tide blooming ma- croalgaein the Yellow Sea, China., 146: 639-644, DOI: 10.1016/j.mar polbul.2019.07.025.

    Wu, H. Y., Zou, D. H., and Gao, K. S., 2008. Impacts of in- creased atmospheric CO2concentration on photosynthesis and growth of micro- and macro-algae., 51: 1144-1150, DOI: 10.1007/s11 427-008-0142-5.

    Xiao, J., Wang, Z., Song, H., Fan, S., Yuan, C., Fu, M.,., 2020. An anomalous bi-macroalgal bloom caused byandseaweeds during spring to summer of 2017 in the western Yellow Sea, China., 93: 101760, DOI: 10.1016/j.hal.2020.101760.

    Xu, D., Brennan, G., Xu, L., Zhang, X. W., Fan, X., Han, W. T.,., 2019. Ocean acidification increases iodine accumula- tion in kelp-based coastal food webs., 25: 629-639, DOI: 10.1111/gcb.14467.

    Young, C. S., and Gobler, C. J., 2016. Ocean acidification acce- lerates the growth of two bloom-forming macroalgae., 5: e0155152, DOI: 10.1371/journal.pone.0155 152.

    Yu, J., Li, J., Wang, Q., Liu, Y., and Gong, Q., 2019. Growth and resource accumulation of drifting(Fucales, Phaeophyta) in response to temperature and nitro- gen supply., 18: 1216- 1226, DOI: 10.1007/s11802-019-3835-4.

    Zhang, X., Xu, D., Guan, Z., Wang, S., Zhang, Y., Wang, W.,., 2020. Elevated CO2concentrations promote growth and photosynthesis of the brown alga., 32: 1949-1959, DOI: 10.1007/s 10811-020-02108-1.

    . Tel: 0086-532-82032377 E-mail: qdlijingyu@ouc.edu.cn

    November 25, 2020;

    March 2, 2021;

    March 30, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    (Edited by Ji Dechun)

    操美女的视频在线观看| 久久国产精品男人的天堂亚洲| 99国产精品免费福利视频| a级毛片在线看网站| 中出人妻视频一区二区| 天天躁日日躁夜夜躁夜夜| 国产无遮挡羞羞视频在线观看| av视频免费观看在线观看| 国产精品av久久久久免费| 国产精华一区二区三区| 91大片在线观看| netflix在线观看网站| 久久久久久人人人人人| 岛国毛片在线播放| 麻豆国产av国片精品| 国产人伦9x9x在线观看| 国产99白浆流出| 亚洲片人在线观看| 99国产精品一区二区蜜桃av | 天天影视国产精品| 最近最新中文字幕大全免费视频| 成熟少妇高潮喷水视频| 黄色成人免费大全| 亚洲第一青青草原| 国产av又大| av片东京热男人的天堂| 一本大道久久a久久精品| 日本五十路高清| 视频区欧美日本亚洲| 一区在线观看完整版| 国产日韩一区二区三区精品不卡| 国产亚洲精品久久久久久毛片 | 国产成人av激情在线播放| 又紧又爽又黄一区二区| 日韩精品免费视频一区二区三区| 亚洲精品自拍成人| 精品第一国产精品| 久久香蕉精品热| 国产免费av片在线观看野外av| 人成视频在线观看免费观看| 国产精品 欧美亚洲| 色老头精品视频在线观看| 久久香蕉精品热| 国产野战对白在线观看| 每晚都被弄得嗷嗷叫到高潮| 丝袜美足系列| 又紧又爽又黄一区二区| 亚洲国产毛片av蜜桃av| 国产欧美亚洲国产| 国产精品久久久久久人妻精品电影| 后天国语完整版免费观看| 久久草成人影院| 亚洲情色 制服丝袜| 一本综合久久免费| 国产精品98久久久久久宅男小说| 欧美精品高潮呻吟av久久| 日韩欧美一区二区三区在线观看 | 亚洲国产看品久久| 老汉色∧v一级毛片| 国产不卡一卡二| 国产三级黄色录像| 老鸭窝网址在线观看| 久久久精品国产亚洲av高清涩受| 欧美大码av| 亚洲一区二区三区不卡视频| 亚洲三区欧美一区| 巨乳人妻的诱惑在线观看| 成年动漫av网址| 国产av一区二区精品久久| 久久久久精品人妻al黑| 亚洲av日韩在线播放| 欧美乱妇无乱码| 最新在线观看一区二区三区| 伦理电影免费视频| 在线国产一区二区在线| 亚洲五月色婷婷综合| 久久久久久人人人人人| 精品视频人人做人人爽| 精品久久久久久久毛片微露脸| 亚洲五月天丁香| 夜夜夜夜夜久久久久| 亚洲情色 制服丝袜| 久久久久国产精品人妻aⅴ院 | 丰满迷人的少妇在线观看| 亚洲精品在线美女| 日韩熟女老妇一区二区性免费视频| 一进一出抽搐动态| 女性被躁到高潮视频| avwww免费| 久久精品91无色码中文字幕| xxxhd国产人妻xxx| av中文乱码字幕在线| 欧美激情高清一区二区三区| 久久草成人影院| 欧美日韩av久久| 国产免费av片在线观看野外av| 欧美亚洲 丝袜 人妻 在线| 人人澡人人妻人| 少妇粗大呻吟视频| 久久人妻福利社区极品人妻图片| 国产精品欧美亚洲77777| 曰老女人黄片| 人妻一区二区av| 久久久国产成人免费| 黄色毛片三级朝国网站| 国产在线观看jvid| 久久久久久久久久久久大奶| www.熟女人妻精品国产| 国产精品综合久久久久久久免费 | 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 国产高清videossex| 精品国产超薄肉色丝袜足j| 天堂动漫精品| 国产成人av教育| 亚洲情色 制服丝袜| 一边摸一边做爽爽视频免费| 一级黄色大片毛片| 看免费av毛片| 美女国产高潮福利片在线看| 国产一区有黄有色的免费视频| 大陆偷拍与自拍| 中国美女看黄片| 可以免费在线观看a视频的电影网站| 精品卡一卡二卡四卡免费| 国产成人欧美| 国产欧美亚洲国产| 在线观看日韩欧美| 欧美久久黑人一区二区| 国产精品一区二区精品视频观看| 精品人妻在线不人妻| 最近最新中文字幕大全免费视频| 日本撒尿小便嘘嘘汇集6| 制服人妻中文乱码| 91精品国产国语对白视频| 又紧又爽又黄一区二区| 久久国产乱子伦精品免费另类| 99re6热这里在线精品视频| 亚洲九九香蕉| 操出白浆在线播放| 最近最新中文字幕大全电影3 | av国产精品久久久久影院| 80岁老熟妇乱子伦牲交| 亚洲精品一二三| 岛国毛片在线播放| 91国产中文字幕| 美女福利国产在线| 另类亚洲欧美激情| 最新在线观看一区二区三区| 超碰97精品在线观看| 久久中文看片网| 19禁男女啪啪无遮挡网站| 日韩中文字幕欧美一区二区| 亚洲第一av免费看| 欧美黑人欧美精品刺激| 国产有黄有色有爽视频| 桃红色精品国产亚洲av| 亚洲欧美激情综合另类| 国产在线精品亚洲第一网站| 一二三四在线观看免费中文在| 天天躁狠狠躁夜夜躁狠狠躁| 久久久水蜜桃国产精品网| 一边摸一边抽搐一进一小说 | 久久香蕉精品热| av欧美777| 久久精品国产亚洲av高清一级| 国产极品粉嫩免费观看在线| 精品福利观看| 90打野战视频偷拍视频| 欧美大码av| 日韩欧美国产一区二区入口| 国产精华一区二区三区| 757午夜福利合集在线观看| 久久中文看片网| 99riav亚洲国产免费| 久99久视频精品免费| 精品一品国产午夜福利视频| 天堂动漫精品| 丝袜人妻中文字幕| 女人精品久久久久毛片| 久久国产精品人妻蜜桃| 国产成+人综合+亚洲专区| ponron亚洲| 午夜福利,免费看| 老鸭窝网址在线观看| 成熟少妇高潮喷水视频| 欧美 亚洲 国产 日韩一| 一进一出抽搐gif免费好疼 | 国产精品久久久人人做人人爽| 亚洲aⅴ乱码一区二区在线播放 | 日韩大码丰满熟妇| 国产精品久久电影中文字幕 | av欧美777| 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 天天添夜夜摸| 久久热在线av| 国产淫语在线视频| 免费不卡黄色视频| 妹子高潮喷水视频| av网站免费在线观看视频| 亚洲精品av麻豆狂野| 久久国产精品男人的天堂亚洲| 欧美精品一区二区免费开放| 亚洲色图av天堂| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| 亚洲国产欧美日韩在线播放| 亚洲精品自拍成人| 女性被躁到高潮视频| 99在线人妻在线中文字幕 | 欧美激情 高清一区二区三区| 热99re8久久精品国产| 亚洲色图av天堂| 成人免费观看视频高清| 丰满迷人的少妇在线观看| 村上凉子中文字幕在线| 两性夫妻黄色片| 亚洲专区字幕在线| 美女高潮喷水抽搐中文字幕| 日韩欧美在线二视频 | 亚洲综合色网址| 午夜视频精品福利| 国产精品成人在线| 精品福利观看| 久久精品国产亚洲av高清一级| 精品国内亚洲2022精品成人 | 免费不卡黄色视频| 老熟妇仑乱视频hdxx| 母亲3免费完整高清在线观看| 窝窝影院91人妻| 日韩精品免费视频一区二区三区| 首页视频小说图片口味搜索| 亚洲av成人不卡在线观看播放网| 久久天躁狠狠躁夜夜2o2o| 男男h啪啪无遮挡| 国产免费av片在线观看野外av| 色婷婷av一区二区三区视频| 老熟妇仑乱视频hdxx| 亚洲精华国产精华精| 中文字幕高清在线视频| 亚洲熟妇熟女久久| 国产精品一区二区免费欧美| 久久久精品免费免费高清| 热99re8久久精品国产| 中文亚洲av片在线观看爽 | 一区二区三区激情视频| 中亚洲国语对白在线视频| 好看av亚洲va欧美ⅴa在| 人妻一区二区av| 成熟少妇高潮喷水视频| 久久精品国产a三级三级三级| 国产精品久久久久久人妻精品电影| 精品卡一卡二卡四卡免费| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看 | 不卡一级毛片| 亚洲一区二区三区欧美精品| 欧美激情久久久久久爽电影 | 欧美黄色片欧美黄色片| 亚洲精品国产色婷婷电影| 无遮挡黄片免费观看| 欧美日韩福利视频一区二区| 在线观看www视频免费| 51午夜福利影视在线观看| 亚洲在线自拍视频| 一区福利在线观看| 免费观看a级毛片全部| 啦啦啦在线免费观看视频4| 另类亚洲欧美激情| 无人区码免费观看不卡| 日韩免费高清中文字幕av| 久久久水蜜桃国产精品网| 正在播放国产对白刺激| av视频免费观看在线观看| 18禁裸乳无遮挡动漫免费视频| 老熟妇仑乱视频hdxx| 嫁个100分男人电影在线观看| 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 一级毛片精品| 久久香蕉精品热| cao死你这个sao货| 色婷婷久久久亚洲欧美| 欧美日韩亚洲综合一区二区三区_| 黄色怎么调成土黄色| 久久精品国产亚洲av香蕉五月 | 亚洲第一青青草原| 久久久国产一区二区| 日本五十路高清| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 这个男人来自地球电影免费观看| 少妇 在线观看| 亚洲七黄色美女视频| 国产成人精品久久二区二区免费| 国产一区二区激情短视频| 国产精品一区二区免费欧美| 亚洲第一青青草原| 精品第一国产精品| 欧美午夜高清在线| 国产片内射在线| 欧美精品高潮呻吟av久久| 国产精品秋霞免费鲁丝片| 免费在线观看影片大全网站| 欧美日韩视频精品一区| 亚洲精品在线美女| 久久九九热精品免费| 变态另类成人亚洲欧美熟女 | 国产男女超爽视频在线观看| 亚洲成人手机| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品粉嫩美女一区| 国产激情欧美一区二区| 黄片小视频在线播放| 国产精品秋霞免费鲁丝片| 美女福利国产在线| 一级片'在线观看视频| 九色亚洲精品在线播放| 99精品欧美一区二区三区四区| 操美女的视频在线观看| 少妇 在线观看| 高清黄色对白视频在线免费看| 国产亚洲精品一区二区www | 亚洲欧美一区二区三区久久| 一二三四社区在线视频社区8| 国产aⅴ精品一区二区三区波| 亚洲国产看品久久| 国产精品免费大片| 一区二区日韩欧美中文字幕| 欧美国产精品一级二级三级| 一进一出好大好爽视频| 久久影院123| 丰满的人妻完整版| 伦理电影免费视频| 日韩欧美三级三区| 9色porny在线观看| 老汉色av国产亚洲站长工具| 一级毛片精品| 午夜福利在线免费观看网站| 男男h啪啪无遮挡| 国产一区二区激情短视频| 国产99久久九九免费精品| 亚洲,欧美精品.| av一本久久久久| 国产高清激情床上av| 高清av免费在线| 精品一区二区三卡| 高清av免费在线| 日韩 欧美 亚洲 中文字幕| 亚洲第一欧美日韩一区二区三区| 久久国产精品男人的天堂亚洲| 狂野欧美激情性xxxx| 村上凉子中文字幕在线| 99香蕉大伊视频| 窝窝影院91人妻| www.精华液| 久久久久久人人人人人| 在线看a的网站| 看片在线看免费视频| 亚洲国产看品久久| 日本一区二区免费在线视频| 久热爱精品视频在线9| 90打野战视频偷拍视频| 中文字幕色久视频| 亚洲熟女毛片儿| 中文字幕另类日韩欧美亚洲嫩草| 真人做人爱边吃奶动态| 久久国产精品大桥未久av| 色播在线永久视频| 欧美日韩乱码在线| 美国免费a级毛片| 国产精品av久久久久免费| av电影中文网址| 中文字幕人妻丝袜制服| 免费在线观看视频国产中文字幕亚洲| 少妇裸体淫交视频免费看高清 | 亚洲专区字幕在线| 中文字幕人妻丝袜制服| 一边摸一边抽搐一进一出视频| 男女下面插进去视频免费观看| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 亚洲欧美激情在线| 国产精品成人在线| 日韩免费av在线播放| 无人区码免费观看不卡| 久久国产乱子伦精品免费另类| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 久久久久国产一级毛片高清牌| 啦啦啦免费观看视频1| 欧美日韩亚洲国产一区二区在线观看 | 精品国产乱码久久久久久男人| 一本大道久久a久久精品| 18禁美女被吸乳视频| 激情在线观看视频在线高清 | 午夜视频精品福利| 日本vs欧美在线观看视频| av中文乱码字幕在线| 首页视频小说图片口味搜索| 国产精品香港三级国产av潘金莲| 久久ye,这里只有精品| 在线免费观看的www视频| 两个人看的免费小视频| 在线天堂中文资源库| 久久 成人 亚洲| 免费高清在线观看日韩| 欧美精品啪啪一区二区三区| 免费看十八禁软件| 欧美 日韩 精品 国产| 无人区码免费观看不卡| 搡老岳熟女国产| 欧美日韩亚洲国产一区二区在线观看 | 亚洲aⅴ乱码一区二区在线播放 | 老汉色av国产亚洲站长工具| 亚洲av成人一区二区三| 在线看a的网站| 一二三四在线观看免费中文在| 桃红色精品国产亚洲av| 亚洲全国av大片| 亚洲成a人片在线一区二区| 亚洲成人免费av在线播放| 人妻久久中文字幕网| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| 午夜福利免费观看在线| 老司机亚洲免费影院| 久久天躁狠狠躁夜夜2o2o| 精品国产亚洲在线| 女警被强在线播放| 一级a爱片免费观看的视频| 成熟少妇高潮喷水视频| 欧美黄色片欧美黄色片| 丝袜美足系列| 国产成人精品无人区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成电影观看| 亚洲色图av天堂| 亚洲av熟女| av网站免费在线观看视频| 精品午夜福利视频在线观看一区| 在线视频色国产色| 精品国产一区二区久久| 老汉色∧v一级毛片| 亚洲精华国产精华精| 久久精品亚洲熟妇少妇任你| 人人妻人人爽人人添夜夜欢视频| 亚洲一区高清亚洲精品| 久久人人97超碰香蕉20202| 久久性视频一级片| 老司机深夜福利视频在线观看| 日韩欧美免费精品| 黄色丝袜av网址大全| 午夜两性在线视频| 欧美在线一区亚洲| 咕卡用的链子| 国产三级黄色录像| 丰满迷人的少妇在线观看| 午夜福利乱码中文字幕| 久久久久视频综合| 国产精品影院久久| 香蕉国产在线看| 啦啦啦视频在线资源免费观看| 亚洲男人天堂网一区| 高清在线国产一区| 国产精品香港三级国产av潘金莲| 久久久国产成人精品二区 | 国产成人欧美| 桃红色精品国产亚洲av| 久热爱精品视频在线9| 亚洲av欧美aⅴ国产| 欧美激情久久久久久爽电影 | 三上悠亚av全集在线观看| 香蕉丝袜av| 中文欧美无线码| 国产精品国产高清国产av | 黄色丝袜av网址大全| 国产在线观看jvid| 99久久精品国产亚洲精品| 国产精品综合久久久久久久免费 | 久久国产精品影院| av网站免费在线观看视频| www日本在线高清视频| 51午夜福利影视在线观看| 国产成+人综合+亚洲专区| 叶爱在线成人免费视频播放| 亚洲午夜理论影院| 黑丝袜美女国产一区| 咕卡用的链子| 天天添夜夜摸| 久久精品国产综合久久久| 久久久久久久午夜电影 | 老司机亚洲免费影院| 满18在线观看网站| 亚洲国产精品合色在线| 久久久久久久精品吃奶| 岛国在线观看网站| 交换朋友夫妻互换小说| 美女国产高潮福利片在线看| 久久99一区二区三区| 免费久久久久久久精品成人欧美视频| 久久精品亚洲熟妇少妇任你| 久久人妻福利社区极品人妻图片| 女人爽到高潮嗷嗷叫在线视频| 国产男女超爽视频在线观看| 国产亚洲精品一区二区www | www.精华液| 99re在线观看精品视频| 久久久国产成人精品二区 | 欧美精品高潮呻吟av久久| 在线av久久热| 搡老岳熟女国产| 人妻久久中文字幕网| av在线播放免费不卡| 久久久国产一区二区| 日韩精品免费视频一区二区三区| 校园春色视频在线观看| 午夜福利欧美成人| 久久久国产一区二区| 欧美黑人精品巨大| 久久ye,这里只有精品| 99热只有精品国产| 人妻丰满熟妇av一区二区三区 | aaaaa片日本免费| 亚洲美女黄片视频| 色综合欧美亚洲国产小说| 国产成人系列免费观看| 精品午夜福利视频在线观看一区| 国产一区在线观看成人免费| 国产成人啪精品午夜网站| 欧美黑人精品巨大| 国产人伦9x9x在线观看| 日本精品一区二区三区蜜桃| 亚洲欧美日韩高清在线视频| 中文字幕人妻丝袜一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕人妻熟女乱码| 天天影视国产精品| 日日夜夜操网爽| 免费人成视频x8x8入口观看| 大型黄色视频在线免费观看| 免费av中文字幕在线| 亚洲中文av在线| 9热在线视频观看99| 黄色片一级片一级黄色片| 黄色女人牲交| 欧美乱码精品一区二区三区| 91国产中文字幕| 亚洲国产精品sss在线观看 | 色婷婷久久久亚洲欧美| 精品熟女少妇八av免费久了| 欧美黑人精品巨大| 王馨瑶露胸无遮挡在线观看| 久久精品成人免费网站| videos熟女内射| 亚洲在线自拍视频| 99国产精品一区二区蜜桃av | 一区在线观看完整版| 91字幕亚洲| 久久久久国产一级毛片高清牌| 久久香蕉精品热| 国产精品九九99| 亚洲国产欧美网| а√天堂www在线а√下载 | 俄罗斯特黄特色一大片| 9191精品国产免费久久| 狠狠婷婷综合久久久久久88av| 免费在线观看视频国产中文字幕亚洲| а√天堂www在线а√下载 | 成年人黄色毛片网站| 亚洲精品在线观看二区| 亚洲国产中文字幕在线视频| 国产欧美日韩精品亚洲av| 韩国av一区二区三区四区| 久久精品91无色码中文字幕| 999久久久国产精品视频| 国产97色在线日韩免费| 人妻 亚洲 视频| 一级毛片女人18水好多| 黄频高清免费视频| 午夜两性在线视频| 午夜老司机福利片| av在线播放免费不卡| 91老司机精品| 亚洲av电影在线进入| 超碰成人久久| 欧美日韩成人在线一区二区| 伊人久久大香线蕉亚洲五| 老司机福利观看| 天堂动漫精品| 在线观看舔阴道视频| 亚洲精品美女久久av网站| 真人做人爱边吃奶动态| 亚洲人成77777在线视频| 国产精品国产高清国产av | 在线观看www视频免费| 人人妻人人澡人人看| tube8黄色片| 国产精品 欧美亚洲| 亚洲成av片中文字幕在线观看| 久久 成人 亚洲| 午夜亚洲福利在线播放| 国产乱人伦免费视频| 波多野结衣一区麻豆| 十八禁高潮呻吟视频| √禁漫天堂资源中文www| 人妻一区二区av| 精品国产国语对白av| 久久亚洲真实| 悠悠久久av| 可以免费在线观看a视频的电影网站| 丰满的人妻完整版| 少妇猛男粗大的猛烈进出视频| 亚洲av日韩在线播放|