• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Brown Algae Saccharina japonica and Sargassum horneri Exhibit Species-Specific Responses to Synergistic Stress of Ocean Acidification and Eutrophication

    2021-08-30 06:17:28LIUYuxinCAOJiazhenCHUYaoyaoLIUYanWANGQiaohanGONGQingliandLIJingyu
    Journal of Ocean University of China 2021年5期

    LIU Yuxin, CAO Jiazhen, CHU Yaoyao, LIU Yan, 2), WANG Qiaohan, 2), GONG Qingli, 2), and LI Jingyu, 2),

    The Brown AlgaeandExhibit Species-Specific Responses to Synergistic Stress of Ocean Acidification and Eutrophication

    LIU Yuxin1), CAO Jiazhen1), CHU Yaoyao1), LIU Yan1), 2), WANG Qiaohan1), 2), GONG Qingli1), 2), and LI Jingyu1), 2),*

    1)Fisheries College,Ocean University of China, Qingdao 266003, China 2) Key Laboratory of Mariculture, Ministry of Education, Ocean University of China,Qingdao 266003, China

    Ocean acidification and eutrophication are two important environmental stressors. They inevitably impact marine macroalgae, and hence the coastal ecosystem of China., as the main culture species in China, is suffering the harmful golden tide caused by. However, it remains unclear whether the detrimental effects ofoncultivation become more severe in future acidified and eutrophic scenario. In this study, we respectively investigated the effects ofCO2(400μatm and 1000μatm) and nutrients (non-enriched and enriched seawater) on the growth, photosynthesis, respiration, chlorophyll contents, and tissue nitrogen ofand. Results indicated that enrichment of nutrients contributedto utilize HCO3?. The carbon acquisition pathway shifted from HCO3?to CO2in, whileremained using HCO3?regulated by nutrient enrichment.exhibited better photosynthetic traits than, with a higher level of net photosynthetic rate and chlorophyll contents at elevatedCO2and enriched nutrients. Tissue nitrogen also accumulated richly in the thalli ofunder higherCO2and nutrients. Significant enhancement in growth was only detected inunder synergistic stress. Together,showed competitive dominance in current study. These findings suggest that increasing risk of golden tide in acidified and eutrophic ocean can most likely result in great damage tocultivation.

    eutrophication; ocean acidification;;; synergistic stress

    1 Introduction

    The concentration of atmospheric carbon dioxide (CO2) increased approximately 130 pars per million (ppm) since the Industrial Revolution (Joos and Spahni, 2008; AOAN, 2019). Rising atmospheric CO2dissolved in seawater, causing pH reductions and alterations in chemical balances of dissolved inorganic carbon (DIC) (Feely., 2004, 2009a; Doney., 2009). These changes in pH and DIC are ineluctable consequences of rising atmospheric CO2, referred to as ocean acidification (OA) (Doney., 2009). Anthropogenic CO2emission is rising at the fastest rate after the Industrial Era (Joos and Spahni, 2008; AOAN, 2019), thus leading to a continuing decrease in seawater pH (Feely., 2004, 2009b; Doney., 2009; Feely., 2009a). OA significantly affects the physiological processes and ecological functi- ons of seaweeds and other marine organisms (Gazeau., 2007; Edmunds, 2011; Koch., 2013; Kroeker.,2013; Enochs., 2015; Gao., 2019). A body of evidence indicates that OA actively stimulates the growth of kelps, such as,andwhich were carbon limited in nearshore environment (Swanson and Fox, 2007; Xu., 2019; Hurd., 2020; Zhang., 2020). On the other hand, OA simultaneously reduces the calcification of,and other calcified algae (Reymond., 2013; Johnson and Carpenter, 2018).

    Furthermore, human pollution, agricultural production and atmospheric deposition have dramatically increased since 1970s, resulting in excessive nutrients input to coastal seawater (Smith., 2003; van der Struijk and Kroeze, 2010; Strokal., 2014; Brockmann., 2018; Murray., 2019). This process leads to another environmental issue known as eutrophication (Smith., 2003). Several studies showed that water quality slightly recovered from previous eutrophic state in the Baltic Sea, Chesapeake Bay and other coastal seas (Okino and Kato, 1987; Andersen., 2017; McCrackin., 2017; Duar-te and Krause-Jensen, 2018). In contrast, severe eutrophic areas are still located at some key bays in China, including Liaodong Bay, Yangtze River Estuary and other jurisdictional seas (MEE, 2019). With exceeded nutrients supply, eutrophication can enhance the growth of phytoplankton, fast-growing filamentous and mat- forming opportunistic macroalgae (Pedersen and Borum, 1997; Wernberg., 2018). Degraded water quality from eutrophication is critical for the development, persistence and expansion of harmful algae blooms (HABs) (Heisler., 2008). Recent reports showed that microalgal blooms,-dominated green tides and-dominated golden tides have substantially increased worldwide (Glibert., 2005; Smetacek and Zingone, 2013; Kudela., 2015; Wang., 2018). HAB resulted from eutrophication affects substance circulation, primary productivity, community structure and marine ecosystem service (Norkko and Bonsdorff, 1996a,b; Glibert., 2005; Heisler., 2008; Rabouille., 2008; Smetacek and Zingone, 2013; Anderson., 2015; Kudela., 2015; Watson., 2015).

    Several studies have found that coral reef systems are negatively affected by OA and nutrient enrichment (Hoegh-Guldberg., 2007; Ge., 2017; Guan., 2020). For phytoplankton, marine diazotrophs such asspp. increase their N2fixation under elevated CO2in nitrogen enriched cultures (Eichner., 2014; Hutchins and Fu, 2017). However, limited investigations aimed to reveal the ecophysiological effects of OA and eutrophication on marine macrophytes. Previous studies indicated that the growth and quality ofwere inhibited and threatened by the interactive effects of OA and eutrophication (Chu., 2019, 2020). In contrast, there was an enhanced production of amino acid and fatty acid inspecies at elevated CO2concentration and nutrient level (Gao., 2018). Thus, the responses to the synergistic stress of OA and eutrophication are species-specific in macroalgae. The rise of acidity in coastal ocean was found to be greater under eutrophication (Cai., 2011). This severe scenario potentially aggravate the disappearance of habitat-forming seaweeds worldwide (Filbee-Dexter and Wernberg, 2018; Wern- berg., 2018). It is thus important to understand how macroalgae will response to the future synergistic stress of OA and eutrophication.

    The kelpis the foremost commercial harvesting alga among northwestern Pacific countries (Chung., 2017; Kim., 2017). In previous studies, the growth, photosynthesis, and nutrient uptake ofwere significantly enhanced under elevated CO2concentrations (Swanson and Fox, 2007; Zhang., 2020). Also, excess nutrient availability significantly promoted the growth and physiological performance of(Gao., 2017). On the other hand, the sheet- like macroalgaeblooms frequently occur in recent years (Liu., 2013; Xiao, 2020), whose floating thalli have caused detrimental impacts onaquaculture (Xiao, 2020). Many investigations have focused on how environmental factors affect population dynamics and distributions ofin East China Sea and Yellow Sea (Xiao, 2019; Xiao., 2020; Choi., 2020). However, it remains unclear whetheris more resilient to the synergistic stress of OA and eutrophication than.

    In the present study, we investigated the synergistic stress of OA and eutrophication on growth, photosynthesis, respiration, chlorophyll contents, and tissue nitrogen of sporophytes ofandappearing in the same period. The results are expected to reveal the species-specific ecophysiological responses ofand, and determine which alga has greater resilience and interspecific competitive dominance under synergistic stress of OA and eutrophication.

    2 Materials and Methods

    2.1 Algal Collection and Maintenance

    The sporophytes of(approximately 80cm in average length,=20) and(approximately 150cm in average length,=20) were collected in Rong- cheng, Shandong, China (36?07′N, 120?19′E), in December 2019. Thesamples were from cultivated populations, withtwining on, or floating between their rafts. The samples were kept in cold foam boxes filled with seawater and quickly transported to the laboratory within 8h. Healthy sporophytes were selected and rinsed several times with sterilized seawater to remove the epiphytes and detritus. More than 100 discs (1.4cm in diameter) were punched from the meristem ofwith a cork borer, and more than 100 segments (4–5cm in length) were cut from the apical part ofbranches for the subsequent experiments. The discs and segments were maintained separately in plastic tanks containing 3L filtered seawater. The seawater was renewed daily during the maintenance. These samples were maintained at an irradiance of 90μmolphotonsm?2s?1with a 12L:12D photoperiod, and 10℃, the seawater temperature of the collection area, for 3d to reduce the negative effects of excision.

    2.2 Culture Experiment

    The culture experiment was conducted over a period of 6d under combinations twoCO2levels (400μatm and 1000 μatm) and two nutrient levels (non-enriched natural seawater and nutrient-enriched seawater). The nutrient- enriched level was enriched 50% PESI medium (Tatewaki, 1966), which was made by sterilized seawater from coas- tal Qingdao. There was a total of 4 experimental treatments and each had 3 replicates. Four individuals were cultured in each of 12 gently aerated side-arm flasks, in which each contained 500mL non-enriched or enriched seawater at 10℃. The culture medium was renewed on the third day of the experiment.

    2.3 Carbonate Chemistry Parameters

    For the treatments under twoCO2levels, the samples were cultured in two CO2incubators (GXZ-380C-C02, Jiangnan Instruments Factory, Ningbo, China). The 400 μatm was achieved by bubbling ambient air. And the 1000μatm was obtained through gas cylinders of the incubator. The pH value of the medium in each flask was measured by a pH meter (Orion STAR A211; Thermo Scientific). The salinity was measured by a seawater salimeter (0–100‰, Aipli). Other indirectly measured carbonate chemistry parameters of all treatments were calculated based on the pH values, salinity,CO2levels, the equilibrium constants1and2for carbonic acid dissociation, andBfor boric acid, using CO2SYS software (Robbins and Kleypas, 2018).

    2.4 Measurement of Growth

    The growth ofandwas determined by weighing fresh weight (FW) of discs or thalli. The discs and thalli were gently scrubbed with tissue paper to remove water from the surface before being wei- ghed. The relative growth rate (RGR) was calculated as the following formula:

    whereis the time period of culture experiment,0is the initial FW,is the FW afterdays of culture.

    2.5 Measurement of Photosynthesis and Respiration

    The net photosynthetic rate (Pn) and the respiration rate (d) of the samples was measured by a manual oxygen meter (FireSting O2II, Pyro Science). After measuring the FW, four discs or segments of each replicate were transferred to the oxygen electrode cuvette with 330mL culture medium from their own flasks. The medium was magnetically stirred during the measurement to ensure the even diffusion of oxygen. The irradiance and temperature conditions were set the same as the growth chambers. The samples were set to acclimate to the conditions in the cuvette for 5min before the measurements. The oxygen concentration in the medium was recorded per minute for 10min. The increase of oxygen content in the medium within 5min was defined as the Pn, and the decrease of oxygen content in darkness in the following 5min was defined as Rd. The Pnand Rdwere presented as μmolO2min?1g?1FW.

    2.6 Measurement of Chlorophyll Contents

    Approximately 0.2g (FW) of the samples from every replicate were used for the extraction of photosynthetic pigments. The discs or segments were dipped in 2mL dimethyl sulfoxide for 5min, and the absorbance of supernatant was determined at 665, 631, 582, and 480nm in the ultraviolet absorbance spectrophotometer (U-2900, HITACHI, Tokyo, Japan). Then the same samples were added 3mL acetone, setting for 2h. Before the measurements, 1mL methanol and 1mL distilled water was added to the supernatant. The absorbance was obtained at 664, 631, 581, and 470nm. The contents of chlorophyll (Chl)andwere calculated according to the following equation:

    2.7 Measurement of Tissue Nitrogen

    One disc or segment was randomly selected from every replicate for the measurement of tissue nitrogen (TN) contents. The samples were completely dried at 80℃, and ground into powder. About 2–3mg powder was used to measure the TN contents in the elemental analyzer (Vario EL III, Elementar, Germany). The TN contents were normalized to %DW.

    2.8 Data Analysis

    Results were expressed as mean ±standard deviation (=3). Prior to the analysis, the data were conformed to a normal distribution (Shapiro-Wilk test,>0.05) and homogeneity of variance (Levene’s test,>0.05). Two- way analysis of variance (ANOVA) was conducted to as- sess the combined effects ofCO2and nutrient levels on carbonate chemistry parameters, RGR,n,d, Chl, Chl, and TN. Tukey honest significance difference (HSD) was conducted to determine the significance levels of factors (<0.05). Pearson correlation coefficient (PCCs) was conducted to analyze the correlations of each experimental indicator withCO2and nutrients levels (<0.05). Data were analyzed in SPSS 22.0 software.

    3 Results

    3.1 Carbonate Chemistry Parameters of Culture Medium

    At the sameCO2level, two-way ANOVA showed thatnutrients had no significant effects on any parameter (Table 1). In the culture medium of, elevatedCO2decreased the pH by 0.3 and CO32?by 57%, but it increased the DIC by 12%, HCO3?by 22%, and CO2by 187% in both the non-enriched and enriched nutrient treatments. In the culture medium of, elevatedCO2decreased the pH by 0.4 in both nutrient levels and CO32?by 75% (non-enriched) and 65% (enriched), but it increased the DIC by 27% (non-enriched) and 4% (enriched), HCO3?by 13% (non-enriched) and 5% (enriched), and CO2by 191% in both nutrient treatments.

    Table 1 Parameters of the seawater carbonate system at different pCO2 and nutrient conditions

    Notes: L-N is the lowCO2and non-enriched condition, L-E is the lowCO2and enriched condition, H-N is the highCO2and non-enriched condition, and H-E is the highCO2and enriched condition. DIC is dissolved inorganic carbon, and TA is total alkalinity. Data are reported as means ±SD (=3). Different superscript letters indicate significant differences in one parameter between treatments (<0.05).

    3.2 Growth

    The differences inCO2and nutrients yielded no significant effects on RGR of, but nutrients significantly promoted the growth of(Fig.1). At both 400μatm and 1000μatm, the RGR ofdecreased due to enriched nutrient. In contrast, the RGR ofsignificantly increased in excessive nutrient availability (=4.550,<0.05). PCCs showed that RGR ofpositively correlated with bothCO2-and nutrients. In contrast, RGR ofpositively correlated withCO2, but negatively correlated with nutrients (Table 2). Together,showed more promotive growth under the synergistic stress.

    Fig.1 Relative growth rate (RGR) of S. japonica (A) and S. horneri (B) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 2 Analysis of variance (two-way ANOVA) examining the statistical differences of experimental parameters of S. japonica among pCO2 and nutrients

    3.3 Photosynthesis and Respiration

    As shown in Fig.2, nutrient enrichment significantly increased thenofat both CO2concentrations (=5.885,<0.05). While no significant effect was detected in,nwas lower in nutrient-enriched condition. PCCs showed thatninhad positive correlations withCO2and nutrients. Whilepositively correlated withCO2, but negatively correlated with nutrients (Table 4). Photosynthesis ofwas greater than that ofat elevatedCO2and nutrients.

    Thedinshowed a similar trend to(Fig.2). No significant effects ondof both algae were found in all treatments. At 400 μatm, Rdof both species was lower in excess nutrients. The correlation between Rdand nutrients ofwas positive, but that ofwas negative (Table 3). Respiration ofwas also greater than that ofunder synergistic stress.

    Fig.2 Net photosynthetic rate (Pn) of S. japonica (A) and S. horneri (B); Respiration rate (Rd) of S. japonica (C) and S. horneri (D) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means ±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 3 Analysis of variance (two-way ANOVA) examining the statistical differences of experimental parameters of S. horneri among pCO2 and nutrients

    3.4 Chlorophyll Contents

    The Chlandcontents ofsignificantly increased under either elevatedCO2or enriched nutrient. Both chlorophyll contents reached the maximum under the synergistic stress (Fig.3). The Chlcontent ofwas significantly increased at enriched nutrients, and reached the peak in synergistic stress condition. How- ever, the Chlcontent ofincreased only withCO2elevated. NeitherCO2nor nutrients significantly affected the Chlin. PCCs showed positive correlations between ChlwithCO2and nutrients in both species. However, the correlation between Chland nutrients was significantly negative in(Table 4).

    3.5 Tissue Nitrogen

    The TN contents ofandsignificantly increased in nutrient-enriched condition (as seen in Fig.4). ElevatedCO2had no significant effect on the TN of, but significantly promoted the accumulation of TN in. The correlations between nutrients and TN were significantly positive in the two species. As for the correlations betweenCO2and TN, it was negative inbut positive in(Table 4).

    Fig.3 Chl a of S. japonica (A) and S. horneri (B); Chl c of S. japonica (C) and S. horneri (D) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 4 The Pearson correlation coefficient (PCCs) of various experimental indicators of S. japonica and S. horneri with pCO2 and nutrients levels

    Notes:*indicates significant correlation (<0.05),**indicates highly significant correlation (<0.01).

    4 Discussion

    There was a same increase pattern of DIC in the culture medium ofunder two nutrient concentrations, but different case was found in the culture medium of(Table 1). The effects of the synergistic stress of OA and eutrophication on algae may depend on their precise carbon acquisition pathways. The HCO3?inthe culture medium ofwas lower in enriched nutrient than in non-enriched treatments, indicating more HCO3?utilization paralleled with enriched nutrients. Many macroalgae use HCO3?rather than dissolved CO2under current seawaterCO2concentration (Israel and Hophy, 2002; Badger, 2003; Koch., 2013), due to their ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) is not substrate-saturated at current atmospheric CO2level (Reiskind., 1988). Marine macroalgae have species-specific responses to elevated CO2because of their various capacities and strategies in CO2-concentrating mechanisms (CCMs) to utilize HCO3?in seawater (Wu., 2008; Raven and Hurd, 2012). Furthermore, DIC acquisition interacts with phosphorus and nitrogen availability (Giordano., 2005), but it remains unclear howregulates CCMs under excessive nutrient supply. The results indicate that enrichment of nutrients contributedto the utilization of HCO3?. When exposed to elevatedCO2, macroalgae may reduce the use of HCO3?by down-regulating their CCMs, and begin to rely on CO2as the primary carbon source (Bjork., 1993; Axelsson., 2000; Cornwall., 2012). This phy- siological process may have occurred in, thus leading to the DIC of culture medium remained at the same level after increasingCO2under the two nutrient conditions. In contrast, this study provides an evidence that eutrophication restrains the shift of carbon acquisition pathway into cope with higher CO2concentration.

    Fig.4 Tissue nitrogen (TN) of S. japonica (A) and S. horneri (B) cultured at different pCO2 and nutrient conditions for 6 days. Data are reported as means ± SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    In this study, promotions in RGR were detected in bothandat elevatedCO2although the increases were statistically non-significant. This indicates that bothandare capable of OA resistance with atmospheric CO2increased to 1000μatm. To show which algae is competitively dominant under OA condition, we analyzed the Pn, Rd, Chl, Chland TN in both species. The results showed that enhancements to Pn, Rd, and chlorophyll contents ofwere parallel withCO2elevation. These results are in line with previous investigations on(Swanson and Fox, 2007; Zhang., 2020). The enhancement of Pnand chlorophyll contents were also found in other marine macrophytes, including,and(Kang., 2017; Li., 2018; Bao., 2019). However, the Pnand chlorophyll contents ofare twice as high as those of.increased the utilization of HCO3-to maintain its photosynthesis at a higher level. Since Pnand Chlofalso increased at 1000 μatm (Figs.2B, 3D), photosynthesis ofwas further improved on the basis of the original high level. These results indicate that higher photosynthetic level insuredpotentially greater resilience to OA in comparison to.

    The significant enhancement in growth was observed inin nutrient-enriched condition, while no promotion of growth was found in(Fig.1). In this study, the concentrations of dissolved inorganic nitrate and ammonium were simultaneously increased in nutrient-enriched treatments (Tatewaki, 1966).Increase in nitrogen availability can enhance macroalgae in N uptake rates, tissue N contents, and photosynthetic rates (Valiela., 1997). These enhancements accelerate the growth of macroalgae. The significant increase in Chland TN contents were detected in both species in nutrient-en- riched treatments (Figs.3, 4). Previous studies have also determined the same positive physiological responses in,,and other macroalgae (Valiela., 1997; Kawamitsu and Boyer, 1999; Wu., 2008; Raven and Hurd, 2012; Ohlsson., 2020). The kinetics of nutrients uptake in macroalgae is affected by the physiological status and the form of nutrients (Raven and Hurd, 2012; Gao., 2017). It has been reported thatutilize ammonium first when ammonium and nitrate both exist (Wang., 2013), whilefirstly takes advantage of nitrate (Yu., 2019). We estimated according to the measured ecophysiological traits, because the exact concentrations and formations of nitrogen in culture medium were unclear.performed higher Pn, more chlorophyll and TN accumulations under nutrient-enriched condition. Thus, the eutrophic treatment in this study more significantly benefited, indicating the increased risk of-dominated golden tide in eutrophic condition.

    The current study argued the responses of bothandunder synergistic stress of OA and eutrophication. Significant enhancement in chlorophyll and TN contents was observed in both species (Fig.3, Fig.4). These results indicated that bothandimproved carbon and nitrogen assimilation. The exceeding nutrient availability in eutrophic scenario regulates these physiological responses in macroalgae to hence the negative effects resulting from declining pH in OA (Young and Gobler, 2016; Chu., 2020). However, significant increase in growth was only observed on(Fig.1). Increased carbon and nitrogen assimilation inenhanced its growth more than. These advantages in ecophyisiological traits may allowremain dominant and cause damage tocultivation in future acidified and eutrophic ocean. Furthermore, the damage resulting from golden tide tocultivation is likely to be more severe.has vesicles in structure, which can keep the thalli floating and increase carbon acquisition (Smetacek and Zingone, 2013; Choi., 2020). Floatingwrap the rafts, shading the cultivatedbelow (Wu., 2019; Xiao, 2020). Thus, we suppose that increasingbiomass shaded cultivatedin a more severe environment with lower light intensity and less carbon availability (Xiao, 2020). Thedominated golden tide may cause greater damage tocultivation in acidified and eutrophic ocean. In addition, we need meso-scale experiments to estimate the increasing risk of the golden tide incultivation.

    5 Conclusions

    It is important to estimate the damage tocultivation by golden tide resulting fromunder the synergistic stress of OA and eutrophication. In this study, we determined that nutrient enrichment contributedto utilize HCO3?.exhibited better photosynthetic traits than, and tissue nitrogen also accumulated more in thalli ofin elevatedCO2and nutrient-enriched treatments. Furthermore, increased carbon and nitrogen assimilation enhanced the growth ofin acidified and eutrophic scenario. Together,may cause greater damage tocultivation in acidified and eutrophic ocean.

    Acknowledgements

    We sincerely thank Dr. Zhu Dasheng, from Shandong Lidao Oceanic Technology Company Limited, for his help in providing algal materials for the experiment. This work is funded by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program (No. 2019JZZY020708).

    Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fle- ming-Lehtinen, V., Gustafsson, B. G.,., 2017. Long- term temporal and spatial trends in eutrophication status of the Baltic Sea., 92: 135-149, DOI: 10. 1111/brv.12221.

    Anderson, C. R., Moore, S. K., Tomlinson, M. C., Silke, J., and Cusack, C. K., 2015. Living with harmful algal blooms in a changing world: Strategies for modeling and mitigating their effects in coastal marine ecosystems. In:. Elsevier Inc., 495-561, DOI: 10.1016/B978-0-12-396483-0.00017-0.

    AOAN, 2019.–. US Department of Commerce, NOAA, Global Monitoring Laboratory.

    Axelsson, L., Mercado, J., and Figueroa, F., 2000. Utilization of HCO3?at high pH by the brown macroalga., 35: 53-59, DOI: 10. 1080/09670260010001735621.

    Badger, M., 2003. The roles of carbonic anhydrases in photo- synthetic CO2concentrating mechanisms., 77: 83-94, DOI: 10.1023/A:1025821717773.

    Bao, M., Wang, J., Xu, T., Wu, H., Li, X., and Xu, J., 2019. Rising CO2levels alter the responses of the red macroalgaunder light stress., 501: 325- 330, DOI: 10.1016/j.aquaculture.2018.11.011.

    Bjork, M., Haglund, K., Ramazanov, Z., and Pedersen, M., 1993. Inducible mechanisms for HCO3?utilization and repression of photorespiration in protoplasts and thalli of three species of(Chlorophyta)., 29: 166-173, DOI: 10.1111/j.0022-3646.1993.00166.x.

    Brockmann, U., Topcu, D., Schütt, M., and Leujak, W., 2018. Eutrophication assessment in the transit area German Bight (North Sea) 2006–2014–Stagnation and limitations., 136: 68-78, DOI: 10.1016/j.marpolbul. 2018.08.060.

    Cai, W. J., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E.,., 2011. Acidification of subsurface coastal waters enhanced by eutrophication., 4: 766-770, DOI: 10.1038/ngeo1297.

    Choi, S. K., Oh, H. J., Yun, S. H., Lee, H. J., Lee, K., Han, Y. S.,., 2020. Population dynamics of the ‘golden tides’ sea- weed,, on the southwestern coast of Korea: The extent and formation of golden tides., 12, DOI: 10.3390/su12072903.

    Chu, Y., Liu, Y., Li, J., and Gong, Q., 2019. Effects of elevatedCO2and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga(Laminariaceae, Phaeophyta)., 2019: e8040, DOI: 10.7717/peerj.8040.

    Chu, Y., Liu, Y., Li, J., Wang, Q., and Gong, Q., 2020. Nutrient enrichment regulates the growth and physiological responses ofto ocean acidification., 19: 895-901, DOI: 10.1007/s11 802-020-4359-7.

    Chung, I. K., Sondak, C. F. A., and Beardall, J., 2017. The future of seaweed aquaculture in a rapidly changing world., 52: 495-505, DOI: 10.1080/ 09670262.2017.1359678.

    Cornwall, C. E., Hepburn, C. D., Pritchard, D., Currie, K. I., Mcgraw, C. M., Hunter, K. A., and Hurd, C. L., 2012. Car- bon-use strategies in macroalgae: Differential responses to lowered pH and implications for ocean acidification., 48: 137-144, DOI: 10.1111/j.1529-8817.2011. 01085.x.

    Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A., 2009. Ocean acidification: The other CO2problem., 1: 169-192, DOI: 10.1146/annurev. marine.010908.163834.

    Duarte, C. M., and Krause-Jensen, D., 2018. Intervention op- tions to accelerate ecosystem recovery from coastal eutrophi- cation., 5: 470, DOI: 10. 3389/ fmars.2018.00470.

    Edmunds, P. J., 2011. Zooplanktivory ameliorates the effects of ocean acidification on the reef coralspp., 56: 2402-2410, DOI: 10.4319/lo.2011.56. 6.2402.

    Eichner, M., Rost, B., and Kranz, S. A., 2014. Diversity of ocean acidification effects on marine N2fixers., 457: 199-207, DOI: 10.1016/j.jembe.2014.04.015.

    Enochs, I. C., Manzello, D. P., Donham, E. M., Kolodziej, G., Okano, R., Johnston, L.,., 2015. Shift from coral to macroalgae dominance on a volcanically acidified reef., 5: 1083-1088, DOI: 10.1038/nclimate 2758.

    Feely, R., Doney, S., and Cooley, S., 2009a. Ocean acidification: Present conditions and future changes in a high-CO2world., 22: 36-47, DOI: 10.5670/oceanog.2009.95.

    Feely, R. A., Orr, J., Fabry, V. J., Kleypas, J. A., Sabine, C. L., Langdon, C., 2009b. Present and future changes in seawater chemistry due to ocean acidification. In:. American Geophysical Union, 173-188, DOI: 10.1029/2005GM000337.

    Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J., 2004. Impact of anthropo- genic CO2on the CaCO3system in the oceans., 305: 362-366, DOI: 10.1126/science.1097329.

    Filbee-Dexter, K., and Wernberg, T., 2018. Rise of turfs: A new battlefront for globally declining kelp forests., 68: 64-76, DOI: 10.1093/biosci/bix147.

    Gao, K., Beardall, J., H?der, D. P., Hall-Spencer, J. M., Gao, G., and Hutchins, D. A., 2019. Effects of ocean acidification on marine photosynthetic organisms under the concurrent in- fluences of warming, UV radiation, and deoxygenation., 6: 322, DOI: 10.3389/fmars.2019. 00322.

    Gao, G., Clare, A. S., Chatzidimitriou, E., Rose, C., and Cald- well, G., 2018. Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of., 258: 71-78, DOI: 10.1016/j.foodchem.2018.03.040.

    Gao, X., Endo, H., Nagaki, M., and Agatsuma, Y., 2017. Interactive effects of nutrient availability and temperature on growth and survival of different size classes of(Laminariales, Phaeophyceae)., 56: 253- 260, DOI: 10.2216/16-91.1.

    Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J. P., Middel- burg, J. J., and Heip, C. H. R., 2007. Impact of elevated CO2on shellfish calcification., 34: L07603, DOI: 10.1029/2006GL028554.

    Ge, C., Chai, Y., Wang, H., and Kan, M., 2017. Ocean acidifi- cation: One potential driver of phosphorus eutrophication., 115: 149-153, DOI: 10.1016/j.mar polbul.2016.12.016.

    Giordano, M., Beardall, J., and Raven, J. A., 2005. CO2con- centrating mechanisms in algae: Mechanisms, environmen- tal modulation, and evolution., 56: 99-131, DOI: 10.1146/annurev.arplant.56.032 604.144052.

    Glibert, P., Anderson, D., Gentien, P., Granéli, E., and Sellner, K., 2005. The global, complex phenomena of harmful algal blooms., 18: 136-147, DOI: 10.5670/oceanog. 2005.49.

    Guan, Y., Hohn, S., Wild, C., and Merico, A., 2020. Vulnerabi- lity of global coral reef habitat suitability to ocean warming, acidification and eutrophication., 26: 5646-5660, DOI: 10.1111/gcb.15293.

    Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C.,., 2008. Eutrophication and harmful algal blooms: A scientific consensus., 8: 3-13, DOI: 10.1016/j.hal.2008.08.006.

    Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E.,., 2007. Coral reefs under rapid climate change and ocean acidification., 318: 1737-1742, DOI: 10.1126/science.1152509.

    Hurd, C. L., Beardall, J., Comeau, S., Cornwall, C. E., Havenhand, J. N., Munday, P. L.,., 2020. Ocean acidifi- cation as a multiple driver: How interactions between changing seawater carbonate parameters affect marine life., 71: 263-274, DOI: 10. 1071/MF19267.

    Hutchins, D. A., and Fu, F., 2017. Microorganisms and ocean global change., 2: 17058, DOI: 10. 1038/nmicrobiol.2017.58.

    Israel, A., and Hophy, M., 2002. Growth, photosynthetic proper- ties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2concentra- tions., 8: 831-840, DOI: 10.1046/j. 1365-2486.2002.00518.x.

    Johnson, M. D., and Carpenter, R. C., 2018. Nitrogen enrich- ment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga., 14 (7): 20180371, DOI: 10.1098/rsbl.2018.0371.

    Joos, F., and Spahni, R., 2008. Rates of change in natural and anthropogenic radiative forcing over the past 20000 years., 105: 1425-1430, DOI: 10.1073/ pnas.0707386105.

    Kang, J. W., Kambey, C., Shen, Z., Yang, Y., and Chung, I. K., 2017. The short-term effects of elevated CO2and ammonium concentrations on physiological responses in(Rhodophyta)., 20: 18, DOI: 10.1186/s41240-017-0063-y.

    Kawamitsu, Y., and Boyer, J. S., 1999. Photosynthesis and carbon storage between tides in a brown alga,., 133: 361-369, DOI: 10.1007/s002270 050475.

    Kim, J. K., Yarish, C., Hwang, E. K., Park, M., and Kim, Y., 2017. Seaweed aquaculture: Cultivation technologies, cha- llenges and its ecosystem services., 32: 1-13, DOI: 10. 4490/algae.2017.32.3.3.

    Koch, M., Bowes, G., Ross, C., and Zhang, X. H., 2013. Clima- te change and ocean acidification effects on seagrasses and marine macroalgae., 19: 103-132, DOI: 10.1111/j.1365-2486.2012.02791.x.

    Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S.,., 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interac- tion with warming., 19: 1884-1896, DOI: 10.1111/gcb.12179.

    Kudela, R. M., Bickel, A., Carter, M. L., Howard, M. D. A., and Rosenfeld, L., 2015. The monitoring of harmful algal blooms through ocean observing: The development of the California harmful algal bloom monitoring and alert program. In:. Elsevier Inc., 58-75, DOI: 10.1016/B978-0-12-802022-7.00005-5.

    Li, Y., Zhong, J., Zheng, M., Zhuo, P., Xu, N., 2018. Photope- riod mediates the effects of elevated CO2on the growth and physiological performance in the green tide alga., 141: 24-29, DOI: 10.1016/j.marenvres.2018.07.015.

    Liu, D., Keesing, J. K., He, P., Wang, Z., Shi, Y., and Wang, Y., 2013. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications., 129: 2-10, DOI: 10.1016/j.ecss.2013.05. 021.

    McCrackin, M. L., Jones, H. P., Jones, P. C., and Moreno-Ma- teos, D., 2017. Recovery of lakes and coastal marine eco- systems from eutrophication: A global meta-analysis.,62: 507-518, DOI: 10.1002/lno.10441.

    MEE, 2019.. Beijing, 1-22.

    Murray, C. J., Müller-Karulis, B., Carstensen, J., Conley, D. J., Gustafsson, B. G., and Andersen, J. H., 2019. Past, present and future eutrophication status of the Baltic Sea., 6: 2, DOI: 10.3389/fmars.2019.00002.

    Norkko, A., and Bonsdorff, E., 1996a. Rapid zoobenthic com- munity responses to accumulations of drifting algae., 131: 143-157, DOI: 10.3354/meps 131143.

    Norkko, A., and Bonsdorff, E., 1996b. Population responses of coastal zoobenthos to stress induced by drifting algal mats., 140: 141-151, DOI: 10. 3354/meps140141.

    Ohlsson, L. O., Karlsson, S., Rupar-Gadd, K., Albers, E., and Welander, U., 2020. Evaluation ofandfor biogas production and nutrient recycling., 140: 105670, DOI: 10. 1016/j.biombioe.2020.105670.

    Okino, T., and Kato, K., 1987. Lake Suwa–Eutrophication and its partial recent recovery., 14: 373-375, DOI: 10. 1007/BF00208212.

    Pedersen, M., and Borum, J., 1997. Nutrient control of estuarine macroalgae: Growth strategy and the balance between nitro- gen requirements and uptake., 161: 155-163, DOI: 10.3354/meps161155.

    Rabouille, C., Conley, D. J., Dai, M. H., Cai, W. J., Chen, C. T. A.,., 2008. Comparison of hypoxia among four river- dominated ocean margins: The Changjiang (Yangtze), Miss- issippi, Pearl, and Rh?ne Rivers.,28: 527-1537, DOI: 10.1016/j.csr.2008.01.020.

    Raven, J. A., and Hurd, C. L., 2012. Ecophysiology of photo- synthesis in macroalgae. In:. Spring- er, 105-125, DOI: 10.1007/s11120-012-9768-z.

    Reiskind, J. B., Seamon, P. T., and Bowes, G., 1988. Alternative methods of photosynthetic carbon assimilation in marine macroalgae., 87: 686-692, DOI: 10.1104/ pp.87.3.686.

    Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G., and Pan- dolfi, J. M., 2013. Decline in growth of foraminiferunder eutrophication and ocean acidification scenarios., 19: 291-302, DOI: 10. 1111/gcb.12035.

    Smetacek, V., and Zingone, A., 2013. Green and golden seaw- eed tides on the rise., 504: 84-88, DOI: 10.1038/na ture12860.

    Smith, S. V., Swaney, D. P., Talaue-McManus, L., Bartley, J. D., Sandhei, P. T., McLaughlin, C. J.,., 2003. Humans, hy- drology, and the distribution of inorganic nutrient loading to the ocean., 53: 235-245, DOI: 10.1641/0006- 3568(2003)053[0235:HHATDO]2.0.CO;2.

    Strokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S.,., 2014. Increasing eutrophication in the coastal seas of China from 1970 to 2050., 85: 123- 140, DOI: 10.1016/j.marpolbul.2014.06.011.

    Swanson, A. K., and Fox, C. H., 2007. Altered kelp (Lamina- riales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs., 13: 1696-1709. DOI: 10.1111/j.1365-2486.2007.01384.x.

    Tatewaki, M., 1966. Formation of a crustaceous sporophyte with unilocular sporangia in., 6: 62-66, DOI: 10.2216/i0031-8884-6-1-62.1.

    Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D., and Foreman, K., 1997. Macroalgal blooms in shallow estua- ries: Controls and ecophysiological and ecosystem conse- quences., 42: 1105-1118, DOI: 10.4319/lo.1997.42.5_part_2.1105.

    van der Struijk, L. F., and Kroeze, C., 2010. Future trends in nutrient export to the coastal waters of South America: Impli- cations for occurrence of eutrophication., 24: 1-14, DOI: 10.1029/2009GB003572.

    Wang, B., Xin, M., Wei, Q., and Xie, L., 2018. A historical overview of coastal eutrophication in the China Seas., 136: 394-400, DOI: 10.1016/j.marpolbul. 2018.09.044.

    Wang, Y., Xu, D., Fan, X., Zhang, X., Ye, N., Wang, W.,., 2013. Variation of photosynthetic performance, nutrient up- take, and elemental composition of different generations and different thallus parts of., 25: 631-637, DOI: 10.1007/s10811-012- 9897-y.

    Watson, S. B., Whitton, B. A., Higgins, S. N., Paerl, H. W., Brooks, B. W., and Wehr, J. D., 2015. Harmful algal blooms. In:. Elsevier Inc., 873-920, DOI: 10.1016/B978-0- 12-385876-4.00020-7.

    Wernberg, T., Krumhansl, K., Filbee-Dexter, K., and Pedersen, M. F., 2018. Status and trends for the world’s kelp forests. In:. Elsevier, 57-78, DOI: 10.1016/B978-0-12-805052-1.00003-6.

    Wu, H., Feng, J., Li, X., Zhao, C., Liu, Y., Yu, J., amd Xu, J., 2019. Effects of increased CO2and temperature on the physiological characteristics of the golden tide blooming ma- croalgaein the Yellow Sea, China., 146: 639-644, DOI: 10.1016/j.mar polbul.2019.07.025.

    Wu, H. Y., Zou, D. H., and Gao, K. S., 2008. Impacts of in- creased atmospheric CO2concentration on photosynthesis and growth of micro- and macro-algae., 51: 1144-1150, DOI: 10.1007/s11 427-008-0142-5.

    Xiao, J., Wang, Z., Song, H., Fan, S., Yuan, C., Fu, M.,., 2020. An anomalous bi-macroalgal bloom caused byandseaweeds during spring to summer of 2017 in the western Yellow Sea, China., 93: 101760, DOI: 10.1016/j.hal.2020.101760.

    Xu, D., Brennan, G., Xu, L., Zhang, X. W., Fan, X., Han, W. T.,., 2019. Ocean acidification increases iodine accumula- tion in kelp-based coastal food webs., 25: 629-639, DOI: 10.1111/gcb.14467.

    Young, C. S., and Gobler, C. J., 2016. Ocean acidification acce- lerates the growth of two bloom-forming macroalgae., 5: e0155152, DOI: 10.1371/journal.pone.0155 152.

    Yu, J., Li, J., Wang, Q., Liu, Y., and Gong, Q., 2019. Growth and resource accumulation of drifting(Fucales, Phaeophyta) in response to temperature and nitro- gen supply., 18: 1216- 1226, DOI: 10.1007/s11802-019-3835-4.

    Zhang, X., Xu, D., Guan, Z., Wang, S., Zhang, Y., Wang, W.,., 2020. Elevated CO2concentrations promote growth and photosynthesis of the brown alga., 32: 1949-1959, DOI: 10.1007/s 10811-020-02108-1.

    . Tel: 0086-532-82032377 E-mail: qdlijingyu@ouc.edu.cn

    November 25, 2020;

    March 2, 2021;

    March 30, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    (Edited by Ji Dechun)

    极品人妻少妇av视频| 国产日韩欧美在线精品| 正在播放国产对白刺激| 日韩电影二区| 亚洲成人手机| 亚洲色图 男人天堂 中文字幕| 久久精品aⅴ一区二区三区四区| 无限看片的www在线观看| e午夜精品久久久久久久| 免费高清在线观看日韩| 久久人人97超碰香蕉20202| 9色porny在线观看| 精品国产一区二区三区久久久樱花| 欧美日韩精品网址| 免费av中文字幕在线| 久久久久久久久久久久大奶| 美女午夜性视频免费| 两性午夜刺激爽爽歪歪视频在线观看 | 91老司机精品| cao死你这个sao货| 不卡一级毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜精品久久久久久毛片777| 国产精品久久久av美女十八| 国产精品影院久久| 91老司机精品| 69精品国产乱码久久久| 国产精品av久久久久免费| 男女无遮挡免费网站观看| 老司机影院成人| 久久综合国产亚洲精品| 青草久久国产| 欧美午夜高清在线| 亚洲精品在线美女| 黄色毛片三级朝国网站| 狂野欧美激情性xxxx| 欧美日韩亚洲综合一区二区三区_| 国产一区有黄有色的免费视频| 韩国高清视频一区二区三区| 久久国产亚洲av麻豆专区| 国产成人啪精品午夜网站| 人成视频在线观看免费观看| 久久久欧美国产精品| 免费在线观看完整版高清| 91成人精品电影| 国产免费一区二区三区四区乱码| 日韩中文字幕视频在线看片| 亚洲九九香蕉| 伊人久久大香线蕉亚洲五| 窝窝影院91人妻| 亚洲国产av新网站| videosex国产| 美女午夜性视频免费| 少妇 在线观看| 久久久久久久精品精品| 一进一出抽搐动态| 99精国产麻豆久久婷婷| 日韩精品免费视频一区二区三区| 亚洲中文字幕日韩| 脱女人内裤的视频| 三级毛片av免费| 亚洲欧美一区二区三区黑人| 精品亚洲成国产av| 精品久久久精品久久久| 国产激情久久老熟女| 精品欧美一区二区三区在线| 亚洲色图 男人天堂 中文字幕| 黄频高清免费视频| 免费在线观看完整版高清| 狠狠精品人妻久久久久久综合| 久久久久网色| 啦啦啦在线免费观看视频4| 欧美一级毛片孕妇| 麻豆国产av国片精品| 少妇裸体淫交视频免费看高清 | 日韩欧美一区视频在线观看| 国产精品免费视频内射| 91精品伊人久久大香线蕉| 国产成人欧美在线观看 | 黑人操中国人逼视频| 久久久国产一区二区| 欧美日韩福利视频一区二区| 纵有疾风起免费观看全集完整版| 亚洲av日韩精品久久久久久密| 男女无遮挡免费网站观看| 12—13女人毛片做爰片一| 另类精品久久| 欧美人与性动交α欧美软件| 黄色怎么调成土黄色| 免费av中文字幕在线| 国产成人av教育| 欧美成狂野欧美在线观看| 俄罗斯特黄特色一大片| 深夜精品福利| 午夜影院在线不卡| 少妇粗大呻吟视频| 五月天丁香电影| 黑人操中国人逼视频| 国产精品一区二区免费欧美 | 久久久久久免费高清国产稀缺| 男人爽女人下面视频在线观看| 窝窝影院91人妻| 正在播放国产对白刺激| 亚洲精品乱久久久久久| 日韩制服骚丝袜av| 亚洲熟女精品中文字幕| 老司机午夜福利在线观看视频 | 天天影视国产精品| 少妇粗大呻吟视频| 国产无遮挡羞羞视频在线观看| 亚洲熟女毛片儿| 亚洲五月色婷婷综合| 少妇 在线观看| 国产精品99久久99久久久不卡| 人妻人人澡人人爽人人| 亚洲成人手机| av国产精品久久久久影院| 伦理电影免费视频| 亚洲欧洲日产国产| 大码成人一级视频| 人妻久久中文字幕网| 三级毛片av免费| 日本一区二区免费在线视频| 国产熟女午夜一区二区三区| 国产欧美日韩综合在线一区二区| 精品福利永久在线观看| 视频区欧美日本亚洲| 又大又爽又粗| 亚洲色图 男人天堂 中文字幕| 丝袜人妻中文字幕| 男女边摸边吃奶| 日韩大码丰满熟妇| 最新的欧美精品一区二区| 两性夫妻黄色片| 色精品久久人妻99蜜桃| 久久性视频一级片| 电影成人av| 高清黄色对白视频在线免费看| 亚洲国产欧美一区二区综合| 老司机影院毛片| 久久久欧美国产精品| 日本91视频免费播放| 亚洲三区欧美一区| 色婷婷久久久亚洲欧美| 久久国产精品人妻蜜桃| 免费在线观看黄色视频的| 亚洲视频免费观看视频| 欧美 日韩 精品 国产| 久久精品国产综合久久久| av天堂久久9| 久久久久久亚洲精品国产蜜桃av| 在线观看免费午夜福利视频| 后天国语完整版免费观看| 一级,二级,三级黄色视频| 亚洲黑人精品在线| 精品国产乱码久久久久久男人| 欧美午夜高清在线| 考比视频在线观看| 国产欧美日韩一区二区三 | 欧美激情 高清一区二区三区| 天天影视国产精品| av欧美777| 久久狼人影院| 午夜激情av网站| 色94色欧美一区二区| 如日韩欧美国产精品一区二区三区| 一级片免费观看大全| 亚洲精品在线美女| 天天躁日日躁夜夜躁夜夜| 我要看黄色一级片免费的| 老熟妇乱子伦视频在线观看 | 国产日韩欧美在线精品| 成人国产一区最新在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久人人97超碰香蕉20202| 日韩欧美国产一区二区入口| 免费黄频网站在线观看国产| 久久久久久久国产电影| www.自偷自拍.com| 99国产极品粉嫩在线观看| 涩涩av久久男人的天堂| 悠悠久久av| 国产精品久久久久久精品古装| 一区二区三区激情视频| 国产高清视频在线播放一区 | 丝袜美腿诱惑在线| 国产av精品麻豆| 性高湖久久久久久久久免费观看| 亚洲精品粉嫩美女一区| 深夜精品福利| 性高湖久久久久久久久免费观看| 国产福利在线免费观看视频| 啪啪无遮挡十八禁网站| 亚洲精品日韩在线中文字幕| 久久天躁狠狠躁夜夜2o2o| 久久性视频一级片| 国产极品粉嫩免费观看在线| 黄色视频,在线免费观看| 一本一本久久a久久精品综合妖精| 国产在线观看jvid| 蜜桃在线观看..| 国产主播在线观看一区二区| 精品乱码久久久久久99久播| 亚洲av日韩精品久久久久久密| 少妇裸体淫交视频免费看高清 | 亚洲熟女精品中文字幕| 如日韩欧美国产精品一区二区三区| 桃花免费在线播放| 2018国产大陆天天弄谢| 精品一区二区三区av网在线观看 | 嫁个100分男人电影在线观看| 99久久国产精品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产在视频线精品| 欧美日韩av久久| 黄色 视频免费看| 午夜福利视频在线观看免费| 久久久精品免费免费高清| 国产在线视频一区二区| 日韩熟女老妇一区二区性免费视频| 精品久久久久久久毛片微露脸 | 国产精品秋霞免费鲁丝片| 精品久久蜜臀av无| 国产高清国产精品国产三级| 精品卡一卡二卡四卡免费| 九色亚洲精品在线播放| 纯流量卡能插随身wifi吗| 十八禁高潮呻吟视频| 男女无遮挡免费网站观看| 久久久久精品人妻al黑| 日本a在线网址| 久久九九热精品免费| 国产成人欧美在线观看 | av在线app专区| 精品人妻1区二区| 国产免费av片在线观看野外av| 亚洲第一欧美日韩一区二区三区 | 欧美黑人欧美精品刺激| 国产有黄有色有爽视频| 黄片大片在线免费观看| av福利片在线| 免费久久久久久久精品成人欧美视频| 国精品久久久久久国模美| 97人妻天天添夜夜摸| 纯流量卡能插随身wifi吗| 青春草视频在线免费观看| 久久亚洲精品不卡| 在线精品无人区一区二区三| 满18在线观看网站| 午夜精品久久久久久毛片777| 精品国产一区二区久久| 免费久久久久久久精品成人欧美视频| 久久国产亚洲av麻豆专区| 下体分泌物呈黄色| 亚洲精品国产区一区二| 国产日韩欧美在线精品| 91精品三级在线观看| 黄色视频,在线免费观看| 永久免费av网站大全| 欧美日韩一级在线毛片| √禁漫天堂资源中文www| 国产免费一区二区三区四区乱码| 亚洲欧美日韩另类电影网站| 亚洲国产成人一精品久久久| 日本欧美视频一区| 亚洲精品美女久久久久99蜜臀| 天堂中文最新版在线下载| 国产熟女午夜一区二区三区| 国产男人的电影天堂91| 中文字幕av电影在线播放| 国产亚洲一区二区精品| 精品人妻1区二区| www.999成人在线观看| 亚洲精品自拍成人| av又黄又爽大尺度在线免费看| 亚洲精品av麻豆狂野| 手机成人av网站| 老熟女久久久| 啦啦啦免费观看视频1| 亚洲av日韩精品久久久久久密| 交换朋友夫妻互换小说| 久久这里只有精品19| 亚洲情色 制服丝袜| 欧美日韩av久久| 自线自在国产av| 午夜福利,免费看| 啪啪无遮挡十八禁网站| 日本vs欧美在线观看视频| 高清在线国产一区| 热re99久久国产66热| 婷婷色av中文字幕| 欧美午夜高清在线| 在线看a的网站| 国产成人免费观看mmmm| bbb黄色大片| 欧美日韩一级在线毛片| 一本—道久久a久久精品蜜桃钙片| 国产亚洲欧美精品永久| 久久精品国产综合久久久| 亚洲中文字幕日韩| 国产欧美日韩一区二区三 | 欧美成狂野欧美在线观看| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 欧美+亚洲+日韩+国产| 女性生殖器流出的白浆| 亚洲熟女精品中文字幕| 制服人妻中文乱码| 久久人人爽人人片av| 国产真人三级小视频在线观看| 大陆偷拍与自拍| 99久久国产精品久久久| 亚洲 欧美一区二区三区| 热re99久久精品国产66热6| 久久毛片免费看一区二区三区| 久久99一区二区三区| 中文精品一卡2卡3卡4更新| 色播在线永久视频| 成年av动漫网址| 亚洲成av片中文字幕在线观看| 电影成人av| www.熟女人妻精品国产| 在线观看www视频免费| h视频一区二区三区| 精品国产乱码久久久久久男人| bbb黄色大片| 精品国产乱子伦一区二区三区 | 精品免费久久久久久久清纯 | 日韩欧美国产一区二区入口| 啦啦啦 在线观看视频| 久久香蕉激情| 午夜免费鲁丝| 老汉色∧v一级毛片| 欧美午夜高清在线| 国产精品成人在线| 91大片在线观看| 亚洲专区国产一区二区| 国产精品香港三级国产av潘金莲| 欧美日韩亚洲综合一区二区三区_| 99久久国产精品久久久| xxxhd国产人妻xxx| 亚洲精品中文字幕在线视频| 国产一卡二卡三卡精品| 男女边摸边吃奶| 一区二区av电影网| 老司机午夜福利在线观看视频 | 电影成人av| 又大又爽又粗| 亚洲国产中文字幕在线视频| 国产精品免费大片| 美女福利国产在线| 成年av动漫网址| 捣出白浆h1v1| 又大又爽又粗| 国产一区二区 视频在线| 9热在线视频观看99| 男女无遮挡免费网站观看| 满18在线观看网站| 日韩中文字幕视频在线看片| 精品久久久精品久久久| 91字幕亚洲| 亚洲精品美女久久av网站| 两性夫妻黄色片| 国产精品一区二区在线不卡| 国产精品国产三级国产专区5o| 亚洲国产看品久久| 欧美xxⅹ黑人| 成人国语在线视频| 欧美人与性动交α欧美软件| 国产亚洲av片在线观看秒播厂| 黄频高清免费视频| 老司机福利观看| 水蜜桃什么品种好| 午夜福利一区二区在线看| 久久精品成人免费网站| 久久国产精品人妻蜜桃| 999久久久精品免费观看国产| www.999成人在线观看| 精品国产乱码久久久久久小说| 一区二区三区四区激情视频| 亚洲av成人不卡在线观看播放网 | 久久人人爽av亚洲精品天堂| 超碰97精品在线观看| 免费在线观看完整版高清| 一区在线观看完整版| 在线观看免费高清a一片| 午夜福利视频在线观看免费| 69av精品久久久久久 | 中文字幕色久视频| 高清欧美精品videossex| 美女午夜性视频免费| 电影成人av| 精品第一国产精品| 久久久久久久大尺度免费视频| 日本精品一区二区三区蜜桃| 后天国语完整版免费观看| 一级毛片精品| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲综合一区二区三区_| 777米奇影视久久| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| 两性夫妻黄色片| 国产av国产精品国产| 女人高潮潮喷娇喘18禁视频| 国产成人精品无人区| svipshipincom国产片| 蜜桃国产av成人99| 国产欧美亚洲国产| 十八禁人妻一区二区| 成人手机av| 丝袜人妻中文字幕| 天天操日日干夜夜撸| 亚洲伊人色综图| 脱女人内裤的视频| 丝袜脚勾引网站| 80岁老熟妇乱子伦牲交| 亚洲激情五月婷婷啪啪| 美女扒开内裤让男人捅视频| 一级黄色大片毛片| 十八禁网站网址无遮挡| 日本撒尿小便嘘嘘汇集6| 日韩免费高清中文字幕av| 亚洲国产看品久久| 日韩人妻精品一区2区三区| 久久热在线av| 久久久久久久国产电影| 少妇裸体淫交视频免费看高清 | 一区二区三区四区激情视频| 久久久久久久大尺度免费视频| 黄色视频,在线免费观看| 可以免费在线观看a视频的电影网站| 欧美性长视频在线观看| 成年动漫av网址| 久久精品亚洲av国产电影网| 美女福利国产在线| 一个人免费看片子| 视频在线观看一区二区三区| 国产精品一区二区免费欧美 | 中国美女看黄片| 亚洲国产欧美网| a级片在线免费高清观看视频| 精品国产一区二区久久| 精品久久久精品久久久| 美女中出高潮动态图| 久久九九热精品免费| 男男h啪啪无遮挡| 国产在线观看jvid| a在线观看视频网站| 热re99久久国产66热| 亚洲av成人一区二区三| 91成人精品电影| 桃红色精品国产亚洲av| 亚洲成人手机| 午夜福利乱码中文字幕| 欧美精品一区二区免费开放| 少妇猛男粗大的猛烈进出视频| 国产xxxxx性猛交| 91国产中文字幕| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| 在线观看免费午夜福利视频| 国产精品免费大片| 中文字幕制服av| 精品福利永久在线观看| 99国产精品99久久久久| 日韩欧美一区视频在线观看| 最黄视频免费看| 手机成人av网站| 捣出白浆h1v1| 久久ye,这里只有精品| 亚洲伊人色综图| 黄片大片在线免费观看| 我要看黄色一级片免费的| www.999成人在线观看| 亚洲综合色网址| 纯流量卡能插随身wifi吗| 国产精品久久久久久人妻精品电影 | 美女高潮喷水抽搐中文字幕| 日韩大片免费观看网站| 动漫黄色视频在线观看| 天堂中文最新版在线下载| 色视频在线一区二区三区| 亚洲欧美色中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产精品一区二区三区| 成年人免费黄色播放视频| 国产亚洲午夜精品一区二区久久| 伊人久久大香线蕉亚洲五| 国产黄色免费在线视频| 一本大道久久a久久精品| 亚洲久久久国产精品| 久久久国产一区二区| 悠悠久久av| 中国美女看黄片| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品 国内视频| 日日爽夜夜爽网站| 久久毛片免费看一区二区三区| 日本一区二区免费在线视频| 亚洲欧美日韩另类电影网站| 91av网站免费观看| 一级毛片女人18水好多| 久久久精品免费免费高清| av片东京热男人的天堂| 婷婷成人精品国产| 久久免费观看电影| 咕卡用的链子| 99re6热这里在线精品视频| 熟女少妇亚洲综合色aaa.| 日韩欧美国产一区二区入口| 国产色视频综合| 777久久人妻少妇嫩草av网站| 天天添夜夜摸| 中文字幕av电影在线播放| 欧美午夜高清在线| 欧美一级毛片孕妇| av线在线观看网站| 久久久国产成人免费| 亚洲欧美日韩另类电影网站| 日韩欧美免费精品| 少妇猛男粗大的猛烈进出视频| 国产在线视频一区二区| 中文字幕最新亚洲高清| 国产xxxxx性猛交| 国产一区二区在线观看av| 欧美 日韩 精品 国产| 丝袜人妻中文字幕| 国产老妇伦熟女老妇高清| 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| 久久精品熟女亚洲av麻豆精品| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇一区二区三区视频日本电影| 欧美xxⅹ黑人| 91九色精品人成在线观看| 久久久水蜜桃国产精品网| 伦理电影免费视频| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片| 成年av动漫网址| 18在线观看网站| 国产精品久久久久久精品电影小说| 色94色欧美一区二区| 精品少妇久久久久久888优播| 午夜免费观看性视频| 亚洲第一欧美日韩一区二区三区 | 十八禁人妻一区二区| 热99国产精品久久久久久7| 久久中文字幕一级| 99国产精品99久久久久| 国产一区二区三区综合在线观看| 黑人猛操日本美女一级片| 99国产极品粉嫩在线观看| 久久久国产成人免费| 不卡一级毛片| 欧美成狂野欧美在线观看| 国产精品一二三区在线看| 18在线观看网站| 777久久人妻少妇嫩草av网站| 国产福利在线免费观看视频| 热99国产精品久久久久久7| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av成人一区二区三| 90打野战视频偷拍视频| 男男h啪啪无遮挡| 90打野战视频偷拍视频| 精品高清国产在线一区| 十八禁网站免费在线| 国产日韩一区二区三区精品不卡| 深夜精品福利| 久久影院123| 欧美97在线视频| 国产激情久久老熟女| 欧美黑人精品巨大| 丰满人妻熟妇乱又伦精品不卡| 一区二区日韩欧美中文字幕| 亚洲国产中文字幕在线视频| 日韩电影二区| 老司机福利观看| 精品一品国产午夜福利视频| 成人三级做爰电影| 天天躁狠狠躁夜夜躁狠狠躁| 两人在一起打扑克的视频| 日本91视频免费播放| 亚洲精品乱久久久久久| 国产日韩欧美在线精品| 777米奇影视久久| 国产淫语在线视频| av网站在线播放免费| 日韩精品免费视频一区二区三区| 日本猛色少妇xxxxx猛交久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美在线一区| 日韩 欧美 亚洲 中文字幕| 2018国产大陆天天弄谢| 精品国产一区二区三区四区第35| 一级片'在线观看视频| 国产精品香港三级国产av潘金莲| 欧美中文综合在线视频| 热99久久久久精品小说推荐| 欧美精品av麻豆av| 亚洲成人国产一区在线观看| 两个人看的免费小视频| 亚洲成av片中文字幕在线观看| 看免费av毛片| 女性生殖器流出的白浆| 丰满少妇做爰视频| 亚洲国产精品一区二区三区在线| 手机成人av网站| 麻豆av在线久日| 少妇 在线观看| 免费观看a级毛片全部| 男人舔女人的私密视频| 夜夜夜夜夜久久久久|