李芙蓉,趙劉群,趙汝博
(1.中交四航局港灣工程設(shè)計院有限公司,廣東 廣州 510290;2.廣東省海岸與島礁工程技術(shù)研究中心,廣東 廣州 510006;3.中交四航局第二工程有限公司,廣東 廣州 510230;4.大連理工大學(xué),海岸和近海工程國家重點實驗室,遼寧 大連 116024)
在工程實踐中,擋土墻是保護(hù)路基、邊坡、海堤以及河堤的重要構(gòu)筑物。因此,擋墻的穩(wěn)定性對于工程構(gòu)筑物的安全和擋墻自身的安全性和耐久性就顯得十分重要。在不同條件下,擋墻所受的荷載不盡相同。其中,由于海水水位的漲落,海堤護(hù)岸擋墻所受的荷載就會發(fā)生周期性變化,使得其所受的荷載和普通陸基擋墻的荷載有明顯的不同;穩(wěn)定性條件也就有所差異。
為了研究臨河、臨海擋墻和堤壩的穩(wěn)定性,一些學(xué)者開展了理論或試驗研究。例如,郭翔等[1]利用室內(nèi)試驗、極限平衡法和有限元強度折減法對施工期海堤的抗滑穩(wěn)定,以及高潮位作用下的海堤抗滑穩(wěn)定性進(jìn)行了研究。阮曉波等[2]和李景輝等[3]則分別采用條分法和模型試驗對擋浪墻的穩(wěn)定性進(jìn)行了分析,并給出了提高擋墻穩(wěn)定性的建議。覃柳艷等[4]和謝千津[5]對相鄰水工擋墻的穩(wěn)定性進(jìn)行理論分析,獲得了保持水工擋墻穩(wěn)定性的安全水位。王全前[6]利用單一安全系數(shù)法,將規(guī)范方法與常用設(shè)計軟件計算結(jié)果進(jìn)行對比,研究了水位變化對臨河擋墻的抗傾覆穩(wěn)定性系數(shù)的影響。
綜上所述,目前關(guān)于水工擋墻的穩(wěn)定性研究主要集中于安全水位以及水位變化對擋墻抗傾覆穩(wěn)定性的影響。對于水位變化條件下,擋墻的抗滑穩(wěn)定性,擋墻尺寸以及其他方面的研究相對缺乏?;诖?,本文在規(guī)范提供的方法的基礎(chǔ)上,對海側(cè)和陸側(cè)水位變化對擋墻穩(wěn)定性的影響規(guī)律進(jìn)行了分析;同時,也對擋墻尺寸以及土體內(nèi)摩擦角對擋墻穩(wěn)定性的影響規(guī)律進(jìn)行了研究。以期能對類似工程的設(shè)計及施工提供參考。
本研究以防城港旅游碼頭的后方陸域護(hù)岸工程項目為背景。該工程為防城港旅游碼頭一期工程,位于防城港西側(cè)內(nèi)灣西海岸,江山半島馬鞍嶺南側(cè)。
防城港潮汐屬正規(guī)全日潮,根據(jù)防城港潮位站1976—1990年實測潮位資料統(tǒng)計,主要特征值如下:最高高潮位5.54 m(1986年7月22日)、最低低潮位-0.29 m(1990年11月21日)、平均潮位2.27 m、最大潮差5.39 m、平均潮差2.55 m(全日分潮顯著時平均潮差3.15 m)。漲潮平均歷時約13~14 h,落潮平均歷時約8~9 h。由于漲落潮經(jīng)歷時間較長,因此近似將漲潮和落潮過程假定為準(zhǔn)靜態(tài)過程。
基于此,該工程的設(shè)計高水位為4.64 m(潮峰累積頻率10%);設(shè)計低水位為0.30 m(潮谷累積頻率90%);極端高水位為5.69 m(重現(xiàn)期為50 a一遇);極端低水位為-0.73 m(重現(xiàn)期為50 a一遇)。擋墻墻體以漿砌塊石砌筑,其重度為γr=24 kN/m3,單位寬度的擋墻自重則為G=γr(a+b)h/2。陸側(cè)墻后以開山土石以及砂進(jìn)行回填。擋墻的基本尺寸以及所受的荷載如圖1所示。
圖1 擋墻受力分析Fig.1 Force analysis of retaining wall
1)海側(cè)靜水壓力
根據(jù)SL 379—2007《水工擋土墻設(shè)計規(guī)范》[7]和GB/T 51015—2014《海堤工程設(shè)計規(guī)范》[8],在高水位和低水位時的靜水壓力均按照三角形分布,總的靜水壓力按式(1)計算,作用點位置(圖1)分別在壁上的hs/3處。
2)陸側(cè)靜水壓力
由于回填土被淹沒,來自陸側(cè)的作用于海堤的靜水壓力Pwl可以計算為:
作用在墻的水平底部的升壓計算為:
式中:Us和Ul分別為擋墻海側(cè)和陸側(cè)的揚壓力,其中,Ul=Us+Uw,Uw為滲透壓力。
根據(jù)水位的變化規(guī)律,將作用在墻背上的土壓力Ps存在兩種極端情況。當(dāng)海水處于低潮水位時,作用于海側(cè)的靜水壓力小于作用于陸側(cè)的靜水力,假定擋墻向海移動,從而產(chǎn)生主動土壓力條件(Ps=Pa)。相反,海水處于高潮水位時,海側(cè)的靜水壓力大于陸側(cè)的靜水壓力,因此假設(shè)墻壁朝回填方向移動,從而產(chǎn)生了被動土壓力(Ps=Pp)。
在正常情況下,墻背一定深度內(nèi)的填土?xí)凰柡?。由于土水的相互作用以及陸?cè)水源補給,在一個海水漲落的周期內(nèi)墻背填土的水位近似可視為不變。在此假設(shè)條件下,墻壁上的主動土壓力pa和被動土壓力pp可根據(jù)經(jīng)典的庫侖土壓力理論來計算獲得,具體的計算方式如下:
式中:Ka和Kp分別為主動土壓力系數(shù)和被動土壓力系數(shù);γ為回填土的重度,以17 kN/m3計。由于墻后填土為砂石,因此本文近似假設(shè)回填土的黏聚力c0=0,因此主動土壓力系數(shù)和被動土壓力系數(shù)分別為:
式中:φ為陸側(cè)填土和墻底土體的內(nèi)摩擦角。
在主動土壓力條件下,采用極限平衡法,以抗滑移和傾覆破壞的安全系數(shù)來表示海堤的穩(wěn)定性。通過考慮作用在擋墻上的所有力和相應(yīng)力矩,根據(jù)《水工擋土墻設(shè)計規(guī)范》[7]和《海堤工程設(shè)計規(guī)范》[8]獲得抗滑動安全系數(shù)Ks和抗傾覆穩(wěn)定性安全系數(shù)Ko。
《水工擋土墻設(shè)計規(guī)范》[7]中擋墻的抗滑穩(wěn)定性系數(shù)Ks的計算公式如下:
式中:Ks為擋土墻沿基底面的抗滑穩(wěn)定安全系數(shù);A為擋土墻基底面的面積,m2;ΣG′為作用在擋土墻上全部垂直于水平面的荷載,kN;ΣH為作用在擋土墻上全部平行于基底面的荷載,kN;φ為擋土墻基底面與土質(zhì)地基之間的摩擦角;c0為擋土墻基底面與土質(zhì)地基之間的黏結(jié)力,本文取c0=0。根據(jù)《水工擋土墻設(shè)計規(guī)范》[7]和《海堤工程設(shè)計規(guī)范》[8],擋墻的抗滑安全系數(shù)Ks的范圍為1~1.35。
抗傾覆穩(wěn)定安全系數(shù)的計算公式如下:
式中:Ko為擋土墻抗傾覆穩(wěn)定安全系數(shù);ΣMV為對擋土墻基底轉(zhuǎn)動點的抗傾覆力矩,kN·m;MH為對擋土墻基底轉(zhuǎn)動點的傾覆力矩,kN·m。在低水位下,傾覆轉(zhuǎn)動點為海側(cè)前趾;在高水位下,傾覆轉(zhuǎn)動點則為陸側(cè)前趾。根據(jù)《水工擋土墻設(shè)計規(guī)范》[7]和《海堤工程設(shè)計規(guī)范》[8],擋墻的抗傾覆安全系數(shù)Ko的范圍為1.3~1.6。
本文中,擋墻墻體利用漿砌塊石砌筑,墻體后方回填開山石加砂。墻體高6.5 m,如圖1所示,海側(cè)為直面;陸側(cè)為斜面,墻頂寬度a=0.8 m;墻底寬度b分別按照5 m、6 m和7 m考慮。根據(jù)水位變化情況,海側(cè)水位變化范圍為0~6 m。由于墻后填土高6 m,陸側(cè)水位變化范圍同樣以0~6 m考慮,平均水位為4.7 m。因此,在海側(cè)水位低于4.7 m的時候,假設(shè)擋墻有向海側(cè)滑動或者傾覆的趨勢,此時墻體處于主動土壓力狀態(tài);而當(dāng)水位大于4.7 m的時候,擋墻則有向陸地運動的趨勢,此時擋墻處于被動土壓力狀態(tài)。通過以上參數(shù)以及式(1)~式(9)獲得擋墻在主動土壓力和被動土壓力下的抗滑穩(wěn)定性系數(shù)和抗傾覆穩(wěn)定性系數(shù)隨著水位、回填土浸沒水位以及土體內(nèi)摩擦角變化的規(guī)律。
水位變化導(dǎo)致?lián)鯄κ芰l件發(fā)生變化。擋墻的抗滑安全系數(shù)Ks和抗傾覆安全系數(shù)Ko隨著水位變化的規(guī)律如圖2所示。由圖2可以發(fā)現(xiàn),在主動土壓力條件下,抗滑穩(wěn)定性系數(shù)隨著水位的不斷上漲而逐漸增大;且增長趨勢呈先慢后快的趨勢??箖A覆穩(wěn)定性也是如此。而相反,當(dāng)水位高于正常水位時,隨著水位的不斷上漲,擋墻的抗滑穩(wěn)定性和抗傾覆穩(wěn)定性系數(shù)反而逐漸降低。
圖2 主動土壓力條件下的穩(wěn)定性系數(shù)隨海水水位變化關(guān)系Fig.2 Relationship between stability coefficient and sea water level under active earth pressure
由于在海水水位為0時,考慮被動土壓力條件,擋墻不會向陸側(cè)滑動或者傾覆,同時計算得出的抗滑安全系數(shù)和抗傾覆安全系數(shù)數(shù)值較大不便繪出,因此省略。但隨著海水水位的上漲,擋墻向陸側(cè)運動的趨勢逐漸增加,抗滑安全系數(shù)和抗傾覆安全系數(shù)也逐漸降低。
此外,由圖2可以看出,在海水水位變化和墻底寬度分別為5 m、6 m和7 m時的抗滑安全系數(shù)和抗傾覆穩(wěn)定性系數(shù)均滿足規(guī)范要求。
回填土被浸沒的深度對墻體穩(wěn)定性影響規(guī)律如圖3和圖4所示。在主動土壓力條件下,抗滑安全系數(shù)Ks和抗傾覆安全系數(shù)Ko隨著回填土浸沒深度的增加而降低。其中,在b=7 m時,Ks從3.92降低到了1.84;而在b=5 m時,Ks從2.7降低到了1.23。整體降幅達(dá)53%,如圖3。相比之下,抗傾覆安全系數(shù)的降幅也達(dá)到了51%;呈現(xiàn)先慢后快的現(xiàn)象,如圖3所示。整體上,抗滑安全系數(shù)和抗傾覆安全系數(shù)也都滿足規(guī)范要求。
圖3 主動土壓力條件下的穩(wěn)定性系數(shù)隨陸側(cè)水位變化關(guān)系Fig.3 Relationship between stability coefficient and landside water level under active earth pressure
圖4 被動土壓力條件下的穩(wěn)定性系數(shù)隨陸側(cè)水位變化關(guān)系Fig.4 Relationship between stability coefficient and landside water level under passive earth pressure
由圖4可知,在被動土壓力條件下,擋墻的抗滑安全系數(shù)和抗傾覆安全系數(shù)隨著陸側(cè)水位的變化規(guī)律與主動條件下?lián)鯄Φ目够踩禂?shù)和抗傾覆安全系數(shù)的變化規(guī)律相反。但從數(shù)值上看,被動條件下?lián)鯄Φ目够踩禂?shù)和抗傾覆安全系數(shù)遠(yuǎn)大于主動條件下的數(shù)值,表明擋墻向海側(cè)滑動和傾覆的趨勢更加明顯。
擋墻的抗滑安全系數(shù)和抗傾覆安全系數(shù)隨著內(nèi)摩擦角的變化規(guī)律如圖5和圖6所示。整體而言,隨著內(nèi)摩擦角的增大,擋墻在主動和被動條件下的抗滑安全系數(shù)和抗傾覆安全系數(shù)均隨著內(nèi)摩擦角增大而增大。但在主動土壓力和被動土壓力下?lián)鯄Φ目够涂箖A覆安全系數(shù)的變化幅度并不相同。
圖5 主動土壓力條件下的穩(wěn)定性系數(shù)隨土體內(nèi)摩擦角變化關(guān)系Fig.5 Relationship between stability coefficient and friction angle under active earth pressure
圖6 被動土壓力條件下的穩(wěn)定性系數(shù)隨土體內(nèi)摩擦角變化關(guān)系Fig.6 Relationship between stability coefficient and friction angle under passive earth pressure
如圖5,當(dāng)土的內(nèi)摩擦角為小于17°時,擋墻的抗滑安全系數(shù)Ks小于規(guī)范要求的安全系數(shù);當(dāng)內(nèi)摩擦角大于17°時,3種尺寸的擋墻均能滿足規(guī)范的抗滑穩(wěn)定性要求。另外,在φ=0時,3種尺寸下的抗滑安全系數(shù)近似相等,隨著內(nèi)摩擦角的增大,3種尺寸下的抗滑安全系數(shù)之間的差別越來越大,如圖5所示。
相比之下,在被動條件下,3種尺寸下?lián)鯄Φ目够踩禂?shù)基本相同,表明此時擋墻的尺寸對其抗滑安全系數(shù)沒有明顯的影響,見圖6。而擋墻的抗傾覆安全系數(shù)在3種不同尺寸下的數(shù)值具有明顯的差別。這表明,擋墻的抗傾覆安全系數(shù)對墻底寬度更為敏感。
通過對不同水位條件下?lián)鯄奢d的分析,對擋墻在不同水位、尺寸以及內(nèi)摩擦角下的抗滑安全系數(shù)和抗傾覆安全系數(shù)的變化規(guī)律進(jìn)行了研究,得出以下結(jié)論:
1)在主動土壓力條件下,抗滑穩(wěn)定性系數(shù)和抗傾覆安全系數(shù)隨著海水水位的不斷上漲而逐漸增大。相反,在被動土壓力下,隨著海水水位的不斷上漲,擋墻的抗滑穩(wěn)定性和抗傾覆穩(wěn)定性系數(shù)則逐漸降低。
2)在主動土壓力條件下,擋墻的抗滑安全系數(shù)和抗傾覆安全系數(shù)隨著陸側(cè)水位的增長而降低,而在被動土壓力條件下?lián)鯄Φ目够踩禂?shù)和抗傾覆安全系數(shù)的變化規(guī)律則呈相反趨勢。此外,被動條件下?lián)鯄Φ目够踩禂?shù)和抗傾覆安全系數(shù)遠(yuǎn)大于主動土壓力條件下的數(shù)值,表明擋墻向海側(cè)滑動和傾覆的趨勢更加明顯。
3)在2種土壓力條件下,擋墻的抗滑安全系數(shù)和抗傾覆安全系數(shù)均隨著內(nèi)摩擦角的增加而增加。同時,3種不同尺寸下的抗滑安全系數(shù)和抗傾覆安全系數(shù)的對比表明,擋墻的抗傾覆安全系數(shù)對墻底寬度更為敏感。