• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine learning application to predict the electron temperature on the J-TEXT tokamak

    2021-08-05 08:29:22JiaolongDONG董蛟龍JianchaoLI李建超YonghuaDING丁永華XiaoqingZHANG張曉卿NengchaoWANG王能超DaLI李達(dá)WeiYAN嚴(yán)偉ChengshuoSHEN沈呈碩YingHE何瑩XiehangREN任頡頏DonghuiXIA夏冬輝andtheTEXTTeam
    Plasma Science and Technology 2021年8期
    關(guān)鍵詞:李達(dá)永華蛟龍

    Jiaolong DONG(董蛟龍),Jianchao LI(李建超),Yonghua DING (丁永華),?,Xiaoqing ZHANG (張曉卿), Nengchao WANG (王能超), Da LI (李達(dá)),Wei YAN (嚴(yán)偉), Chengshuo SHEN (沈呈碩), Ying HE (何瑩),Xiehang REN (任頡頏), Donghui XIA (夏冬輝) and the J-TEXT Team,3

    1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

    2 Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology,Wuhan 430205, People’s Republic of China

    Abstract The reliability of diagnostic systems in tokamak plasma is of great significance for physics researches or fusion reactor.When some diagnostics fail to detect information about the plasma status,such as electron temperature,they can also be obtained by another method:fitted by other diagnostic signals through machine learning.The paper herein is based on a machine learning method to predict electron temperature, in case the diagnostic systems fail to detect plasma temperature.The fully-connected neural network, utilizing back propagation with two hidden layers, is utilized to estimate plasma electron temperature approximately on the J-TEXT.The input parameters consist of soft x-ray emission intensity, electron density, plasma current, loop voltage, and toroidal magnetic field, while the targets are signals of electron temperature from electron cyclotron emission and x-ray imaging crystal spectrometer.Therefore, the temperature profile is reconstructed by other diagnostic signals, and the average errors are within 5%.In addition, generalized regression neural network can also achieve this function to estimate the temperature profile with similar accuracy.Predicting electron temperature by neural network reveals that machine learning can be used as backup means for plasma information so as to enhance the reliability of diagnostics.

    Keywords: neural network, plasma, electron temperature, J-TEXT tokamak

    1.Introduction

    Machine learning has been widely used in fusion research,such as plasma disruption prediction [1–3], fast magnetic equilibrium reconstruction [4], fast spectroscopic analysis [5],feature extraction [6], Non-power law scaling [7] and ideal stability properties prediction [8].In addition, it also has been used in plasma diagnostics for data processing[9],optimization[10] and temperature measurements.On W7-X, a neural network is utilized to approximate the full model Bayesian inference of plasma profiles from x-ray imaging diagnostic measurements [11].On the JET, plasma temperature can be predicted mainly by empirical transport models based on assumptions on the other profiles and plasma parameters [12]though they adopt neural networks to emulate the results of first-principle-based turbulent transport (QLKNN-4Dkin).

    Besides the application of diagnostics and simulation,the neural network can fit the relation between different variables,namely, diagnostic signals on plasma information.For instance, soft x-ray emission intensityIsxrin plasma core is related with plasma parameters (effective ion chargeZeff, electron densityneand electron temperatureTe),indicating certain relation betweenTeand other signals likeIsxrandne.It can be expected that neural network could be able to make a fitting to estimate electron temperature by other signals, and then the fitting can predict electron temperature when no measurements ofTe.Based on above conjecture, different types of neural networks are utilized to reconstruct the relation betweenTeand other signals to predictTeon the J-TEXT tokamak [13, 14].On the J-TEXT, electron temperature is measured by the electron cyclotron emission (ECE) [15, 16] with high time resolution and by the tangential x-ray imaging crystal spectrometer(XICS)[17,18]with a time resolution of a few milliseconds.TheseTemeasurements might be unavailable occasionally.For example, XICS does not work routinely, and ECE is not operated for lacking protection from the electron cyclotron resonance heating(ECRH)system until shot#1065900 when the 105 GHz notching filter is well installed in the ECE system.In that case,the electron temperature predicted by neural networks may be beneficial to physics researches to some extent.

    Table 1.Parameter list for input of neural networks.

    In this paper, the machine learning methods and data preprocessing methods are introduced in section 2.Section 3 introduces the establishment of a single-channel temperature prediction model, and presents the results that two machine learning methods can predict electron temperature profile on ECE radiometer and XICS.Section 4 is the conclusion.

    2.Algorithm model and data processing

    In this paper, two types of neural network are employed for comparison, i.e.error back propagation neural network(BPNN) [19] and generalized regression neural network(GRNN) [20].They are based on the toolbox of machine learning in MATLAB 2017a.Training targets of both types are signals of electron temperature,Te, measured by the 24-channel ECE radiometer and XICS.Ruck sensitivity analysis method [21] is employed for analysis of the model parameters.This sensitivity coefficientsican reveal the degree of influence of input parametersxion output parametersy, i.e.If the sensitivity coefficient of certain parameter is small enough,this parameter has weak relation with the targetTe,and should be discarded from input parameters.Five input parameters and their sensitivity coefficients are listed in table 1.These 5 parameters are relevant toTe, and then selected as input parameters: plasma currentIp, toroidal magnetic fieldBt, soft x-ray emission intensityIsxr[22], lineintegrated electron densityne[23] from the polarimeter interferometer, and loop voltageVloop,as shown in table 1.It should be noted that when the input parameter Isxrcontains the values ofIsxr(tk) signal (r=0) at 9 time points

    Figure 1.Schematic of the application of single-channel neural network.

    The time interval between two adjacent points is 0.1 ms, and hence the size of the time window is 0.8 ms.The time window can better predict electron temperature and related physical phenomena probably because it likely relates to the time scale of instability.Isxr, including multipleIsxr(tk) signals at different times,contains equilibrium and perturbations caused by plasma activities and hence the electron temperature including perturbation caused by plasma activities like sawtooth oscillations can be accurately predicted;otherwise,with theIsxrat one time pointtkas input parameter, only the equilibrium temperature can be obtained while perturbations caused by plasma activities cannot be accurately predicted.

    In order to demonstrate that BPNN and GRNN can be used to predictTemeasured by either ECE or XICS, two databases are established using the experimental data in J-TEXT campaign 2019 autumn: database A for the prediction of ECE signals employs data in shots #1066606?1066648, while database B for the prediction of XICS signals in shots #1064944?1065791.The sampling frequency of all signals is 100 kHz by down sampling and all samples are selected from signals during theIpflattop stage from 0.28 to 0.53 s.All the samples are normalized to the region of [0, 1].There are 1.7 million and 5.2 million data point samples in databases A and B respectively for predicting the ECE and XICS signals.It should be noted that the application shots of the network in section 3 are all excluded from the databases A and B.

    Figure 2.The detecting radii of ECE,SXR and polarimeter interferometer.The X axis is the position of the minor radius or chord radius of line-integrated signals.The radii of ECE are determined with Bt=1.8 T and marked by red crosses.Each dashed box marks one set of ne and Isxr as input parameters, and ECE signals as target.

    In this work,BP neural network employs fully-connected neural network with two hidden layers,which have 15 and 10 neurons respectively,as shown in figure 1.We have tuned the parameters multiple times and it is found that these values can balance time and accuracy of training networks.The activation function isTan-Sigmoid,The target error is described by the mean square error(MSE).The MSE and mean absolute error (MAE) can depict the difference between fitting electron temperatureTeBPand normalized ECE signalsrevealing fitting accuracy of the network, and they can be determined by

    The process of training would end when the MSE value reaches the setting values(0.002 in this paper)or converges to the larger value.

    The BP neural network is trained by functionfeedforwardnetin the toolbox of MATLAB.During training network,the Levenberg–Marquardt algorithm,as one method on solving extremum values of functions fast and accurately by iterative method, is employed in the functionfeedforwardnet.The algorithm combines fast convergence of gradient descent algorithm for slow descent and accurate convergence of Newton method for quick descent.In order to ensure the reliability and generalization performance of the model, the samples are divided into three parts: 70% of samplings for training, used to fit the parameters of the model; 15% for validation, used to tune the parameters; 15% for testing the generalization of the fully specified model.In this work,much effort has been made to avoid the occurrence of overfitting,like validation and testing of networks, reducing the numbers of neurons and the hidden layers,adjusting target error and so on.

    The GRNN in this paper consists of two hidden layers,the radial base layer and summation layer.The radial base layer employs Gaussian function as kernel function for strong local fitting ability.The number of neurons in the hidden layer is equal to that of training samples,while the summation layer contains two neurons to calculate the algebraic sum and weighted sum of the output of the hidden layer neurons.The GRNN, trained by thenewgrnnfunction in MATLAB, has only one hyperparameter:Spread, which represents the spreading speed of the radial basis function.The smaller theSpreadvalue is, the more accurate the training sample point is.However, if the value is too small, overfitting will occur,thereby reducing the ability of model promotion.It is 0.004 for satisfying fitting in this paper.

    3.Electron temperature prediction

    On the J-TEXT, soft x-ray array system and polarimeter interferometer can provide the profiles of line-integratedIsxrandne, and their impact radii are shown by the blue circles and yellow diamonds respectively in figure 2.To preferably predict localTeat certain point, it is better to employ plasma information nearly this radial location to reconstruct their relation by neural networks.Therefore, 14 neural networks for predicting different positions were built.For instance,one neural network(net7 in figure 2)can reconstructTein plasma core byneandIsxrin plasma, while analogouslyTeat any other point can be reconstructed byne,Isxrand other parameters near this point.This section presents the training and application of neural networks (net7 and net12) in plasma core, and the prediction ofTeprofile by 14 neural networks marked by rectangular boxes in figure 2.

    In database A, two typical shots with different MHD activities (sawtooth oscillations and tearing mode in shots#1066607 and 1066633, respectively) are selected for application of the networks, while the others are divided into training, validation and test samples to train the neural network to predict the ECE signals.The hyperparameters have been described in section 2.

    Figure 3.Predicted relative electron temperature corresponding to normalized ECE signals in (a) training sample, (b) validation sample, (c) test sample and in (d) all sample. R is the correlation coefficient.

    When training net7 to predict ECE signals atr~ 0,after 222 epochs the MSE reaches the least value of 0.0023, andTeBPis highly linear toTeECEwith correlation coefficient of above 0.975 in train sample, validation sample, test sample and in all sample, simultaneously, as shown in figure 3.The MSE in the process of training is shown in figure 4.In this figure, the MSE values of validation (the green line) and test(the red dotted line) samples are similar to those of training(the blue circle) sample in all epochs.The model works well on training sample, and it also works well on test sample,reflecting no overfitting of this model.

    The neural network net7 is applied to predict the ECE signals atr~ 0.The predicted signalsTeBPand ECE signalsTeECEare shown in figure 5(a),and their absolute difference is less than 0.04 (figure 5(b)).Figure 5(c) gives the detailed prediction, indicating thatTeBPcan followTeECEincluding perturbations caused by sawtooth oscillations.Another typical prediction ofTeECEatr~ 12 in shot #1066633 by net12(marked by red and dashed boxes in figure 2) is shown in figure 5(d).The large tearing mode decays gradually(figure 5(f)) and sawtooth oscillations emerge (figure 5(d)).As shown in figure 5(e), in the whole process, the MSE is 0.008, and the average error is 0.0695.Without the tearing mode (0.28–0.4 s), the MSE is 0.0045 while during the tearing mode,the MSE increases to 0.0114.The difference in MSE may be attributed to fewer samples with the tearing mode in the training set.

    Figure 4.In the training sample,validation sample, and test sample,the changes of MSE in the iterative process.The yellow dotted line is the target MSE bar, and intersection of the red solid lines is the minimum MSE point.The smallest MSE is 0.0023 at epoch 222.Epoch is a training process in which a neural network performs a forward calculation and a backward error correction of weight coefficient through all training samples.

    Figure 5.Predicted result of ECE relative electron temperature at r=0:(a)the relative electron temperature at r=0 and its prediction by BP NNs,(b)their absolute errors,(c)in the zoomed signals during 0.36–0.39 s in shot#1066607,(d)predicted result of ECE relative electron temperature at r=12 cm and (f) Mirnov signal in shot #1066633.

    Analogously, the ECE signals at different radii can be also predicted by different BP networks.In these networks,the hyperparameters such as the number of hidden layers and neurons,and activation functions,are the same while theIsxr,neand output targets are taken from signals at different positions and the connection weights of neurons are also different in the 14 networks.Hence multiple networks can predictTeprofile.Figure 6(a) shows the prediction ofTeprofile by 14 BP networks in shot#1066607.The signals are selected from the averages during 0.4–0.42 s to balance perturbations due to MHD activities.The error of reconstructedTeprofile by BP networks is less than 5%.As a comparison,in another shot #1066616,Teprofile can be also well predicted, as shown in figure 6(b), which verifies that the BP networks are able to predict the electron temperature profile.

    Besides the BP network, GRNN is also able to predict electron temperature profile.GRNN has fast convergence speed and strong nonlinear approximation performance.However, with higher space complexity, the GRNN needs larger computing space than BP neural network.To reduce computing burden to acceptable level, the sampling rate of GRNN’s training set data reduces to 1 kHz.GRNN only needs 7.63 s to calculate single-channel temperature information at the sampling rate of 1 kHz, while BP neural network needs 18.72 s for the same sampling rate (JAVA heap memory in MATLAB 2017a is set to 4056 MB).Figure 7 shows a comparison of the results predicted by BP NNs (red circles) and GRNN(green circles)methods.The errors of both methods are less than 5%.It is noted that with this low sampling rate at 1 kHz,the GRNN is unable to predict the perturbations caused by MHD activities, like sawtooth oscillations.

    Figure 6.Prediction of average relative electron temperature profiles by different test sets, in shot (a) #1066607 and (b) #1066616.

    Figure 7.Comparison by two networks of BP NNs(red circles)and GRNN (green circles) to predict Te profile in shot #1066607.

    Figure 8.Prediction of core electron temperature obtained by XICS in shots (a) #1065611, (b) #1064961 and (c) their absolute errors.

    On the J-TEXT,XICS measures the core absolute electron temperature,andcan also be predicted as similarly as the ECE signals.In the new model,the input parameters and hyperparameters are the same as those for the prediction ofwhileneandIsxrsignals in plasma core are used as input parameters, andas the training target (output parameters).All samples are from database B.Figure 8 shows the prediction of core absolute electron temperature in two shots without/with ECRH.In shot #1064961,Tejumps up during 0.32–0.49 s when the ECRH system turns on(figure 8(b)).The average errors without/with ECRH heating are less than 3%and 5%,respectively.The network can reproduce a significant increase ofTeto ~1.3 keV after the application of ECRH,and the recovery ofTeback to 0.8 keV at 0.53 s after removing ECRH.In addition to the steady stateTeprediction, the difference betweenandis larger during the transient state, i.e.during the increase (or decrease) ofTeat around 0.295 s(or 0.495 s).This might be due to the feature of XICS,which integrates the x-ray spectra for a few milliseconds and hence provides a time averagedTe(10 ms average in this shot).Future study using ECE as the target might reveal the fast variation ofTeduring the application of ECRH.

    4.Summary and discussion

    Electron temperature and its profile have been predicted by BP network and GRNN on the J-TEXT, based on basic plasma parameters, including plasma current, toroidal magnetic field,soft x-ray emission, electron density and loop voltage.The average error of the predictedTeis less than 5%, and MHD activities like sawtooth oscillations can be reproduced in the prediction.The network predicts electron temperature properly because it can fit the relation betweenTeand other signals.

    This method can reduce the high reliability requirements of such diagnostic devices.The electron temperature may be predicted by sufficient diagnostic signals in real-time via adaptive neural network when there are enough diagnostic signals, if measurements ofTewas missing or lacked due to malfunction.In the future, the model ofTeprofile prediction will be improved from the current 14 networks to a single network, which although might increase computing power.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Science Program (Nos.2018YFE0301104 and 2018YFE0301100), State Key Laboratory of Advanced Electromagnetic Engineering and Technology (No.AEET2020KF001) and National Natural Science Foundation of China (Nos.12075096 and 51821005).

    猜你喜歡
    李達(dá)永華蛟龍
    在武漢大學(xué)拜謁李達(dá)塑像
    李達(dá)與黨的基礎(chǔ)理論建設(shè)
    蛟龍出海
    寶藏(2021年10期)2021-11-22 07:30:24
    海底蛟龍093A暢想
    How To Get Along With Your Friends Better
    李達(dá):為武大建設(shè)殫精竭慮
    李達(dá)與毛澤東哲學(xué)思想的體系化闡釋
    Club Recruitment
    蛟龍,蛟龍!勇者無敵
    蛟龍出海
    寶藏(2018年1期)2018-04-18 07:39:30
    免费av毛片视频| 国产91精品成人一区二区三区| 午夜福利成人在线免费观看| 国产精品一区二区三区四区久久| 亚洲黑人精品在线| 国产一级毛片七仙女欲春2| 99久国产av精品| 欧美午夜高清在线| 亚洲,欧美,日韩| 青草久久国产| 久久中文看片网| 欧美一区二区亚洲| 日本五十路高清| 直男gayav资源| 我要搜黄色片| 少妇熟女aⅴ在线视频| 欧美成人一区二区免费高清观看| 男人舔女人下体高潮全视频| 国产伦精品一区二区三区四那| 激情在线观看视频在线高清| 国产精品1区2区在线观看.| 国产野战对白在线观看| 欧美日韩国产亚洲二区| 欧美在线一区亚洲| 99久久九九国产精品国产免费| 亚洲人成网站在线播| 最新中文字幕久久久久| 国产在线精品亚洲第一网站| av国产免费在线观看| 国产 一区 欧美 日韩| 18禁裸乳无遮挡免费网站照片| 五月玫瑰六月丁香| 九九在线视频观看精品| 亚洲精品久久国产高清桃花| 九九在线视频观看精品| 蜜桃久久精品国产亚洲av| 深夜a级毛片| 观看美女的网站| 亚洲欧美日韩无卡精品| 欧美另类亚洲清纯唯美| eeuss影院久久| 欧美中文日本在线观看视频| 久久久久久久久大av| 一级作爱视频免费观看| 成人国产一区最新在线观看| 又黄又爽又刺激的免费视频.| 亚洲欧美日韩高清专用| 一a级毛片在线观看| 两个人视频免费观看高清| 精品人妻1区二区| 人妻制服诱惑在线中文字幕| 黄色丝袜av网址大全| 亚洲欧美日韩卡通动漫| 别揉我奶头 嗯啊视频| 日韩中字成人| 婷婷精品国产亚洲av| 热99re8久久精品国产| 神马国产精品三级电影在线观看| 狂野欧美白嫩少妇大欣赏| 欧美高清成人免费视频www| 色综合婷婷激情| 成人特级黄色片久久久久久久| 啪啪无遮挡十八禁网站| 男人舔奶头视频| 久久久久免费精品人妻一区二区| 欧美极品一区二区三区四区| www.www免费av| 观看美女的网站| 最新中文字幕久久久久| 麻豆成人午夜福利视频| 一区福利在线观看| 麻豆成人av在线观看| 国产中年淑女户外野战色| 亚洲,欧美精品.| 少妇的逼水好多| 一区二区三区免费毛片| 亚洲熟妇熟女久久| 好男人电影高清在线观看| 午夜日韩欧美国产| 校园春色视频在线观看| 午夜亚洲福利在线播放| 99久久久亚洲精品蜜臀av| 夜夜躁狠狠躁天天躁| 欧美成人免费av一区二区三区| 免费高清视频大片| 亚洲成av人片在线播放无| 久久久久久久久大av| 亚洲av二区三区四区| 亚洲乱码一区二区免费版| 欧美xxxx性猛交bbbb| 亚洲欧美日韩东京热| 乱人视频在线观看| 亚洲美女搞黄在线观看 | 亚洲成av人片免费观看| av欧美777| av专区在线播放| 国产欧美日韩精品一区二区| 日本 欧美在线| 国产高清激情床上av| 国产精品美女特级片免费视频播放器| 美女cb高潮喷水在线观看| 精品国产三级普通话版| 伊人久久精品亚洲午夜| 国产精品亚洲av一区麻豆| 美女黄网站色视频| 国产蜜桃级精品一区二区三区| 少妇人妻精品综合一区二区 | 99热这里只有精品一区| 国产亚洲欧美在线一区二区| 日韩欧美国产在线观看| 18禁黄网站禁片午夜丰满| 久久九九热精品免费| 亚洲国产精品成人综合色| 五月玫瑰六月丁香| 精品久久国产蜜桃| 精品久久国产蜜桃| 麻豆国产97在线/欧美| 亚洲av五月六月丁香网| 欧美不卡视频在线免费观看| 国产成+人综合+亚洲专区| 色av中文字幕| 欧美黑人巨大hd| 国产欧美日韩一区二区三| 精品久久久久久,| 国产av在哪里看| 少妇高潮的动态图| 如何舔出高潮| 亚洲午夜理论影院| 国产精品永久免费网站| avwww免费| 日本成人三级电影网站| 欧美+亚洲+日韩+国产| 麻豆国产av国片精品| 一进一出好大好爽视频| 两个人的视频大全免费| 51国产日韩欧美| 成人特级av手机在线观看| 国产免费一级a男人的天堂| 看黄色毛片网站| 成人av在线播放网站| 在线观看午夜福利视频| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久久久免 | 九九热线精品视视频播放| 我的老师免费观看完整版| 国产精品一区二区免费欧美| 亚洲欧美日韩卡通动漫| 免费高清视频大片| 一进一出抽搐gif免费好疼| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲男人的天堂狠狠| 久久午夜福利片| 亚洲国产精品成人综合色| 日韩欧美国产一区二区入口| 老司机深夜福利视频在线观看| 一进一出抽搐动态| 精品一区二区免费观看| 少妇高潮的动态图| 欧美成狂野欧美在线观看| 午夜精品在线福利| 国产蜜桃级精品一区二区三区| 免费看a级黄色片| 丁香六月欧美| 好男人在线观看高清免费视频| 丰满乱子伦码专区| 日本五十路高清| 成年女人看的毛片在线观看| 天天一区二区日本电影三级| 亚洲va日本ⅴa欧美va伊人久久| 亚洲三级黄色毛片| 亚洲人成网站在线播| 久99久视频精品免费| av视频在线观看入口| 男女做爰动态图高潮gif福利片| 亚洲成人免费电影在线观看| 在线观看舔阴道视频| 国产精品一区二区免费欧美| 成年女人毛片免费观看观看9| 成人无遮挡网站| 国内揄拍国产精品人妻在线| 一区二区三区高清视频在线| 又粗又爽又猛毛片免费看| 国产乱人伦免费视频| 亚洲国产精品合色在线| 在线观看舔阴道视频| 国产久久久一区二区三区| 亚洲第一欧美日韩一区二区三区| 好男人在线观看高清免费视频| 久久久久国内视频| 18美女黄网站色大片免费观看| 日韩有码中文字幕| 男人狂女人下面高潮的视频| 国产在视频线在精品| 欧美成人免费av一区二区三区| 51国产日韩欧美| 亚洲熟妇中文字幕五十中出| 看片在线看免费视频| 老司机午夜十八禁免费视频| 丰满乱子伦码专区| 国产男靠女视频免费网站| 国产免费男女视频| 嫁个100分男人电影在线观看| 国产免费av片在线观看野外av| 老熟妇乱子伦视频在线观看| 黄色丝袜av网址大全| 亚洲黑人精品在线| 日本一二三区视频观看| 亚洲成a人片在线一区二区| 国产精品永久免费网站| 日韩大尺度精品在线看网址| 成人永久免费在线观看视频| 成年版毛片免费区| 亚洲国产高清在线一区二区三| 最好的美女福利视频网| 亚洲欧美日韩无卡精品| 午夜福利18| 亚洲av.av天堂| 欧美日韩中文字幕国产精品一区二区三区| 超碰av人人做人人爽久久| 99久久无色码亚洲精品果冻| 可以在线观看的亚洲视频| 少妇人妻精品综合一区二区 | 天天躁日日操中文字幕| 天堂动漫精品| 久久久久久久久大av| 婷婷六月久久综合丁香| 国产不卡一卡二| 欧美bdsm另类| 国内精品一区二区在线观看| 中文字幕免费在线视频6| 日本黄色片子视频| 国产69精品久久久久777片| 亚洲人成伊人成综合网2020| 久99久视频精品免费| 国产成人aa在线观看| 国产精品美女特级片免费视频播放器| 国产精华一区二区三区| 精品久久国产蜜桃| 国产中年淑女户外野战色| 麻豆国产av国片精品| bbb黄色大片| 欧美丝袜亚洲另类 | 久久这里只有精品中国| 丁香欧美五月| 91av网一区二区| 久久国产乱子免费精品| 男女下面进入的视频免费午夜| 少妇被粗大猛烈的视频| 久久精品久久久久久噜噜老黄 | 少妇人妻精品综合一区二区 | 欧美国产日韩亚洲一区| 日韩中字成人| 免费人成在线观看视频色| 亚洲人与动物交配视频| 天美传媒精品一区二区| 国产精品自产拍在线观看55亚洲| 我要看日韩黄色一级片| 久久天躁狠狠躁夜夜2o2o| 丝袜美腿在线中文| 久久亚洲真实| 亚洲五月婷婷丁香| 欧美色视频一区免费| 青草久久国产| 午夜激情福利司机影院| 日本黄色片子视频| 一个人看视频在线观看www免费| 窝窝影院91人妻| 国产白丝娇喘喷水9色精品| 91久久精品电影网| 国产欧美日韩一区二区三| 日日干狠狠操夜夜爽| 久99久视频精品免费| 久久久久精品国产欧美久久久| 亚洲国产日韩欧美精品在线观看| 夜夜看夜夜爽夜夜摸| 国内精品久久久久精免费| 午夜两性在线视频| av在线观看视频网站免费| 宅男免费午夜| 啪啪无遮挡十八禁网站| 欧美色欧美亚洲另类二区| 午夜久久久久精精品| 亚洲中文日韩欧美视频| 国产精品人妻久久久久久| 久久精品91蜜桃| 两个人的视频大全免费| 国产欧美日韩一区二区三| 免费人成视频x8x8入口观看| 少妇人妻精品综合一区二区 | 欧美性猛交黑人性爽| 欧美zozozo另类| 一级黄片播放器| 亚洲欧美日韩高清在线视频| 国内精品一区二区在线观看| 91久久精品电影网| a级毛片a级免费在线| 国产人妻一区二区三区在| 久久伊人香网站| 中文字幕高清在线视频| 久久精品91蜜桃| 午夜福利欧美成人| 亚洲熟妇中文字幕五十中出| 高清毛片免费观看视频网站| 天堂影院成人在线观看| 国产精品久久久久久久电影| 色吧在线观看| 国产真实乱freesex| 国产伦一二天堂av在线观看| 午夜福利在线在线| 日韩欧美一区二区三区在线观看| 一个人观看的视频www高清免费观看| 欧美3d第一页| 亚洲欧美日韩高清在线视频| 亚洲av五月六月丁香网| 色综合站精品国产| 夜夜夜夜夜久久久久| 欧美潮喷喷水| 亚洲精品在线观看二区| 国内揄拍国产精品人妻在线| 亚洲综合色惰| 淫秽高清视频在线观看| 最近中文字幕高清免费大全6 | 国产熟女xx| 国产一区二区三区视频了| 国产免费av片在线观看野外av| 婷婷六月久久综合丁香| 欧美一区二区亚洲| 一级av片app| 变态另类成人亚洲欧美熟女| 午夜福利欧美成人| 在线观看午夜福利视频| 亚洲欧美日韩高清在线视频| 成人国产一区最新在线观看| 国内毛片毛片毛片毛片毛片| 亚洲久久久久久中文字幕| 欧美区成人在线视频| 国产av不卡久久| 一进一出抽搐动态| 国产伦一二天堂av在线观看| 欧美在线黄色| 久久九九热精品免费| 午夜视频国产福利| 成人av一区二区三区在线看| 床上黄色一级片| 两人在一起打扑克的视频| 中文资源天堂在线| 2021天堂中文幕一二区在线观| 免费高清视频大片| 久久亚洲真实| 国产精品一区二区免费欧美| 亚洲人成网站在线播放欧美日韩| 日韩欧美精品v在线| 97热精品久久久久久| 亚洲人成伊人成综合网2020| 国产在线男女| 日韩欧美国产一区二区入口| 免费高清视频大片| 久久性视频一级片| 最近最新中文字幕大全电影3| 欧美日韩国产亚洲二区| 国产三级中文精品| 天堂动漫精品| 精品熟女少妇八av免费久了| 免费在线观看日本一区| 亚洲中文字幕一区二区三区有码在线看| 欧美午夜高清在线| 久久6这里有精品| 亚洲第一欧美日韩一区二区三区| 久久久久久久久久成人| 精品人妻视频免费看| 性色av乱码一区二区三区2| 亚洲成a人片在线一区二区| 国产伦一二天堂av在线观看| 久久人人精品亚洲av| 一个人免费在线观看的高清视频| 国产人妻一区二区三区在| 可以在线观看毛片的网站| 国产乱人视频| 免费人成视频x8x8入口观看| 别揉我奶头 嗯啊视频| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线| 日韩高清综合在线| 亚洲av成人精品一区久久| 欧美三级亚洲精品| 天堂√8在线中文| 国产人妻一区二区三区在| 中文字幕av在线有码专区| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站| 久久久久性生活片| 内射极品少妇av片p| 最新中文字幕久久久久| 午夜福利在线观看吧| 亚洲av成人精品一区久久| 亚洲成人久久性| 国产av不卡久久| 能在线免费观看的黄片| 国产激情偷乱视频一区二区| 99在线人妻在线中文字幕| 69av精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 日韩免费av在线播放| 亚洲国产精品成人综合色| 国产成人a区在线观看| 国产野战对白在线观看| 一边摸一边抽搐一进一小说| 人妻丰满熟妇av一区二区三区| 99国产极品粉嫩在线观看| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| 成人毛片a级毛片在线播放| 欧美性感艳星| 天堂影院成人在线观看| 精品人妻偷拍中文字幕| 听说在线观看完整版免费高清| 欧美极品一区二区三区四区| 变态另类成人亚洲欧美熟女| 十八禁网站免费在线| 一级av片app| 夜夜看夜夜爽夜夜摸| 亚洲av电影在线进入| 老司机午夜福利在线观看视频| 国产精品98久久久久久宅男小说| 长腿黑丝高跟| 又爽又黄无遮挡网站| 日韩精品中文字幕看吧| 十八禁网站免费在线| 内地一区二区视频在线| 91字幕亚洲| 免费人成视频x8x8入口观看| 淫妇啪啪啪对白视频| 亚洲成人精品中文字幕电影| av视频在线观看入口| 久久久精品大字幕| av中文乱码字幕在线| 久久6这里有精品| 日日夜夜操网爽| 午夜福利在线在线| 久久亚洲真实| 波多野结衣巨乳人妻| 国产私拍福利视频在线观看| 久久99热6这里只有精品| 亚洲电影在线观看av| 国产精品女同一区二区软件 | 午夜免费激情av| 国产精品野战在线观看| 欧美bdsm另类| 嫩草影院新地址| 亚洲人成网站高清观看| 一级a爱片免费观看的视频| 欧美乱妇无乱码| h日本视频在线播放| 琪琪午夜伦伦电影理论片6080| 色视频www国产| 久久热精品热| 久久性视频一级片| 免费av不卡在线播放| 日本a在线网址| 真实男女啪啪啪动态图| 亚洲美女黄片视频| 久久午夜亚洲精品久久| 国产乱人伦免费视频| 日韩成人在线观看一区二区三区| 90打野战视频偷拍视频| 99热这里只有是精品50| 久久久成人免费电影| 欧美成人免费av一区二区三区| 亚洲精品亚洲一区二区| 午夜福利视频1000在线观看| 亚洲,欧美,日韩| 欧美精品国产亚洲| 中文字幕免费在线视频6| 日本免费一区二区三区高清不卡| 欧美xxxx黑人xx丫x性爽| 又黄又爽又免费观看的视频| 国产一区二区在线av高清观看| 老女人水多毛片| 亚洲国产精品999在线| 亚洲成av人片免费观看| 欧美日本视频| avwww免费| 亚洲国产色片| 精品无人区乱码1区二区| 永久网站在线| a在线观看视频网站| 国产精品一区二区三区四区免费观看 | 国产精品一及| 久久草成人影院| 精品人妻1区二区| 亚洲成人久久爱视频| 欧美三级亚洲精品| 一边摸一边抽搐一进一小说| 黄色一级大片看看| 观看美女的网站| 亚洲成av人片在线播放无| 国产精品三级大全| 中文字幕久久专区| 精品乱码久久久久久99久播| 日本在线视频免费播放| 丁香欧美五月| 国产69精品久久久久777片| 亚洲av成人不卡在线观看播放网| 99在线视频只有这里精品首页| 99视频精品全部免费 在线| 一个人观看的视频www高清免费观看| 亚洲,欧美,日韩| 国产精品女同一区二区软件 | 日韩欧美在线乱码| 久久久久久久久久黄片| 内地一区二区视频在线| 亚洲精品一区av在线观看| 亚洲国产色片| 亚洲人成网站在线播放欧美日韩| 一个人免费在线观看电影| 成人一区二区视频在线观看| 国产伦精品一区二区三区视频9| 99热这里只有是精品在线观看 | 欧美xxxx黑人xx丫x性爽| 亚洲,欧美,日韩| 国产精品日韩av在线免费观看| 中文在线观看免费www的网站| 国产精品久久久久久亚洲av鲁大| 桃红色精品国产亚洲av| 激情在线观看视频在线高清| 久久精品综合一区二区三区| 一本精品99久久精品77| 18禁黄网站禁片免费观看直播| 日韩有码中文字幕| 午夜两性在线视频| 亚洲七黄色美女视频| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 欧美成人免费av一区二区三区| 午夜福利在线在线| 麻豆成人午夜福利视频| 亚洲成人免费电影在线观看| 99久久无色码亚洲精品果冻| 成人永久免费在线观看视频| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久免费视频| 亚洲片人在线观看| 国产精品伦人一区二区| 神马国产精品三级电影在线观看| 99久久无色码亚洲精品果冻| 天天一区二区日本电影三级| 午夜福利免费观看在线| 欧美潮喷喷水| 国产一区二区亚洲精品在线观看| 国产色爽女视频免费观看| 色吧在线观看| av黄色大香蕉| 在线观看一区二区三区| 成熟少妇高潮喷水视频| 亚洲国产精品999在线| 国产亚洲欧美98| 最好的美女福利视频网| 99久久精品国产亚洲精品| 精品人妻偷拍中文字幕| 麻豆国产av国片精品| 成人毛片a级毛片在线播放| 麻豆国产97在线/欧美| 亚洲人成网站高清观看| 五月玫瑰六月丁香| 亚洲av成人精品一区久久| 精华霜和精华液先用哪个| 如何舔出高潮| 一区福利在线观看| 久久伊人香网站| 91麻豆精品激情在线观看国产| 尤物成人国产欧美一区二区三区| 热99在线观看视频| 久久伊人香网站| 久久久久久久久大av| 精品一区二区三区av网在线观看| 亚州av有码| 99精品在免费线老司机午夜| 精品久久久久久久久av| 国产色爽女视频免费观看| 欧美午夜高清在线| 亚洲第一电影网av| 国产伦精品一区二区三区视频9| 国产精品永久免费网站| 高清日韩中文字幕在线| 日本一本二区三区精品| АⅤ资源中文在线天堂| 美女被艹到高潮喷水动态| 淫秽高清视频在线观看| 一本综合久久免费| 亚洲av第一区精品v没综合| 国产探花极品一区二区| 国产伦人伦偷精品视频| 特级一级黄色大片| 男女视频在线观看网站免费| 国产精品国产高清国产av| 亚洲欧美日韩卡通动漫| 国产白丝娇喘喷水9色精品| 国产精品久久视频播放| 亚洲电影在线观看av| 国产淫片久久久久久久久 | 一区福利在线观看| 国产综合懂色| 九色成人免费人妻av| 小蜜桃在线观看免费完整版高清| 欧美一区二区亚洲| 一个人看的www免费观看视频| 好男人在线观看高清免费视频| 亚洲自拍偷在线| 91麻豆av在线| 男人舔女人下体高潮全视频| 国产av一区在线观看免费| www.999成人在线观看| 在线观看舔阴道视频| 69av精品久久久久久|