• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distinguish Fritillaria cirrhosa and non-Fritillaria cirrhosa using laser-induced breakdown spectroscopy

    2021-08-05 08:29:56KaiWEI魏凱XutaiCUI崔旭泰GeerTENG騰格爾MohammadNoumanKHANandQianqianWANG王茜蒨
    Plasma Science and Technology 2021年8期
    關鍵詞:騰格爾

    Kai WEI (魏凱), Xutai CUI (崔旭泰), Geer TENG (騰格爾),Mohammad Nouman KHAN and Qianqian WANG (王茜蒨)

    1 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China

    2 Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology,Beijing Institute of Technology, Beijing 100081, People’s Republic of China

    Abstract As traditional Chinese medicines, Fritillaria from different origins are very similar and it is difficult to distinguish them.In this study,the laser-induced breakdown spectroscopy combined with learning vector quantization (LIBS-LVQ) was proposed to distinguish the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa.We also studied the performance of linear discriminant analysis,and support vector machine on the same data set.Among these three classifiers, LVQ had the highest correct classification rate of 99.17%.The experimental results demonstrated that the LIBS-LVQ model could be used to differentiate the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa.

    Keywords: laser-induced breakdown spectroscopy (LIBS), learning vector quantization,chemometric models, robustness of model

    1.Introduction

    Fritillariabelongs to botanical medicine and has great medicinal value, which is used to moisten the lungs, relieve cough, reduce swelling, and remove phlegm [1].The therapeutic effects ofFritillariafrom different origins are different [2].Fritillaria cirrhosa, originated in Sichuan, is the treasure ofFritillariaand often used in clinical applications.Its price is the highest among all types ofFritillaria.Some illegal merchants use non-Fritillaria cirrhosato pretend to beFritillaria cirrhosain the market.The fruits ofFritillaria cirrhosaand non-Fritillaria cirrhosacan be identified using morphological identification methods.However, whenFritillariafruits are grounded into powders for use in medicine,they cannot be identified using morphological methods[3,4].

    Currently, some methods such as random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), DNA barcode, and express sequence tags (ESTs) are commonly used to identify the powdered samples ofFritillaria[5].However,these methods have their limitations.The identification results of different primers are not comparable, hence, it is difficult to standardize using the RAPD technology.The AFLP technique needs to prepare high purity DNA, which is not suitable for large-scale analysis and identification [6].It is difficult to identify related species using the DNA barcode technology [5].Due to the need for reverse transcriptase and cloning technology, EST technology is extremely difficult to operate [6].Moreover,these techniques are often performed under laboratory conditions.To develop a fast,in situmethod used in field, we proposed to use laser-induced breakdown spectroscopy(LIBS) to identify the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosa.

    LIBS has unique advantages such as high speed,in situ,micro-destructiveness, remote sensing capability, and simultaneous multi-element analysis [7], which has also been successfully applied in metals[8–10],plastics[11],glass[12],fingerprints [13], rocks [14, 15], plant tissue [16, 17], biological tissue [18, 19] and so on.

    In the field of traditional Chinese medicine(TCM),some researchers have also done a lot of research on LIBS.Donget al[20] analyzed ten elements including Mg, Al, Si, P, Ca,Ti, Mn, Fe, Co, and C inOriental Water Plantain Rhizomeusing LIBS.Liuet al[21]extracted the feature lines of LIBS spectra of four types of Tibetan medicines, namelyRenqing Mangjue,Renqing Changjue, 25-herb coral pills, and 25-herb pearl pills.When detecting heavy metals in TCM, Liet al[22] detected Pb inCoptis chinensisusing LIBS, and also determined the optimum experimental parameters.Wanget al[23] detected Cu inCoptis chinensis,aconite root, andporia cocosusing LIBS.These above-mentioned studies mainly focused on analyzing the element information of TCM.However, to our knowledge, few studies have been performed to classify the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosausing LIBS technology.

    In this study, LIBS combined with learning vector quantization (LIBS-LVQ) was proposed to distinguish the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosa, and the powders ofFritillaria thunbergiiandFritillaria pallidiflora,originated in Zhejiang and Xinjiang,were selected as samples of non-Fritillaria cirrhosa.As far as we know, LVQ has not been used in LIBS data analysis.LIBS combined with LVQ was used in the classification of TCM for the first time.As a comparison, we compared the classification results between the proposed method and the commonly used classifiers, linear discriminant analysis (LDA),and support vector machine(SVM).The correct classification rate (CCR) was used as an indicator to evaluate the performance of classifiers.

    2.Learning vector quantization

    The LVQ network proposed on the basis of competitive network structure is a supervised self-organizing neural network [24, 25].In the process of network learning, the supervised signals are added as the classification information to fine-tune the weights, and the output neurons are pre-specified.The LVQ neural network realizes the effective combination of competitive learning and supervised learning,which can achieve good results in classification problems [26].

    The structure diagram of the LVQ network is shown in figure 1,which consists of three layers of neurons,namely the input layer, the hidden layer (competition layer), and the output layer [27].The input and hidden layers are fully connected, while the hidden and output layers are partially connected.Each hidden layer neuron is only connected to one output layer neuron, and the connection weight is fixed at 1;and each output layer neuron is connected to multiple hidden layer neurons.

    When a vector is input, the weights of the winning neuron are fine-tuned.In the repeated competition learning,the weights corresponding to the hidden layer neurons are gradually adjusted to the cluster centers of the input sample space.When a hidden layer neuron is activated, its output state is 1, whereas the other hidden layer neurons have the output state of 0.Therefore, the state of the output layer neuron connected to the activated hidden layer neuron is 1,and the state of the remaining output layer neurons is 0.The output layer neurons (y1,y2, ···,yn) correspond to different types, thus achieving pattern recognition.

    The steps of the LVQ network learning algorithm are as follows:

    Step 1.Inputting the sample vector

    The vectorx=[x1, ···,xm]Tis input to the input layer.

    Step 2.Network initialization

    Learning rate η (η > 0) and the maximum number of iterations are set.The weightswijbetween the input and hidden layers are initialized to the midpoint of the input vectors.

    Step 3.Looking for winning neuron

    The distance between the input vector and the hidden layer neuron weight vector is calculated as follows:

    wherewijrepresents the weight between theithinput layer neuron and thejthhidden layer neuron.The hidden layer neuron with the smallest distance is selected as the winning neuron, which is denoted ashj*.

    Step 4.Updating connection weights

    The weights of the winning neuron are adjusted according to different rules.When the network classification result is consistent with the expected classification result, the formula of adjusting the weight is as follows:

    when the network classification result is inconsistent with the expected classification result, the formula of adjusting the weight is as follows:

    the weights of other non-winning neurons remain unchanged.

    Step 5.Judging the number of iterations

    The iterative process ends when the pre-set maximum number of iterations is reached;otherwise,it returns to step 3 to enter the next round of learning.

    3.Experimental setup and materials

    Figure 1.Structure diagram of LVQ network.

    Figure 2.Schematic diagram of the experimental setup.

    Fritillaria cirrhosa,Fritillaria thunbergii,andFritillaria pallidiflora, bought from the Bozhou TCM trading center,were used as samples in the experiment.FiftyFritillariafruits were purchased for each sample.The samples were grounded into powders using a TCM pulverizer (model: 800Y).Next,the powdered samples were glued to glass slides using double-sided tapes, as shown in figure 3.140 spectra were collected for each sample, each on a fresh position.100 spectra were used to build the model, and 40 spectra were used to test the model.

    4.Results and discussion

    4.1.LIBS spectra

    The typical LIBS spectra of each type of sample and doublesided tape are shown in figure 4.It can be seen from figure 4 that the intensities of some metal elemental lines are different from these three kinds ofFritillaria.For example, the intensity of Ca 422 nm in the spectrum ofFritillaria thunbergiiis greater than those in the spectra ofFritillaria cirrhosaandFritillaria pallidiflora.The intensities of Na 588 nm and Na 589 nm in the spectra ofFritillaria cirrhosaandFritillaria thunbergiiare greater than those in the spectrum ofFritillaria pallidiflora.The intensities of K 766 nm and K 769 nm in the spectra ofFritillaria thunbergiiandFritillaria pallidifloraare greater than those in the spectrum ofFritillaria cirrhosa.These macro metal elements inFritillariaare derived from the soil.The content and proportion of metal elements in soil from different regions are different.So, the content of macro metal elements inFritillariafrom different origins is also different.The corresponding wavelengths and the energy levels of these metal elements are listed in table 1.

    The LIBS spectra ofFritillariacontain elemental lines of Ca, Na, K, as well as molecular bands of CN and C2.The LIBS spectrum of the double-sided tape contains CN and C2molecular bands.In order to avoid interference from the LIBS spectrum of the double-sided tape, CN and C2molecular bands were not used forFritillariaclassification.We selected seven spectral lines with an intensity greater than 1000 for classification.

    The integral intensities of these seven spectral lines were calculated as the inputs of the classification models.In order to eliminate the fluctuation of spectra between each laser shot,we chose the maximum intensity line, K I 766.49 nm, to normalize the LIBS data.

    We first used the principal component analysis(PCA)to analyze the LIBS spectra of powderedFritillariasamples and observe the distribution of data.PCA is an unsupervised clustering method that has been applied in many fields[28–35].The scores of the first three principal components(PCs) of 100 spectra of each type of sample (300 spectra in total)are shown in figure 5.The accumulated variance of the first three PCs is 96.021%(PC1 44.536%;PC2 36.077%;PC3 15.407%).Figure 5 shows a significant overlap among these three types of data.The powdered samples ofFritillaria cirrhosa,Fritillaria thunbergii,andFritillaria pallidifloraare difficult to be distinguished using PCA.It can also be seen from figure 4 that the LIBS spectra ofFritillaria cirrhosaand non-Fritillaria cirrhosaare very similar.

    Figure 3.Powdered samples of(a)Fritillaria cirrhosa,(b)Fritillaria thunbergii, and (c) Fritillaria pallidiflora.

    4.2.Identification of Fritillaria cirrhosa and non-Fritillaria cirrhosa

    The powders ofFritillaria cirrhosaand non-Fritillaria cirrhosacould not be distinguished by the unsupervised method PCA.We tried to use some supervised methods including LVQ, LDA, and SVM to identify the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosa.

    The CCR was used as an indicator to evaluate the performance of classifiers which was calculated using the following formula:

    This was my third year selling fireworks for the Chaparral High School Band Booster Club, and I took pride in my knowledge of these treats for the eyes and ears. Thanks to my son, I know what every one of these does or at least what it was designed to do.

    in a classification process, the output has only two possibilities: positive (P) or negative (N).In our case, P corresponded toFritillaria cirrhosa, andNcorresponded to non-Fritillaria cirrhosa.There were four possible results for the binary classifier.A true positive (TP) or a false positive (FP)was observed if the predicted output wasFritillaria cirrhosaand the actual input wasFritillaria cirrhosaor non-Fritillaria cirrhosa, respectively.Conversely, a true negative (TN) or a false negative (FN) was observed if the predicted output was non-Fritillaria cirrhosaand the actual input was non-Fritillaria cirrhosaorFritillaria cirrhosa, respectively [36].

    Seven normalized characteristic spectral lines were used as inputs of the model,and two types of output corresponded to two different species.100 spectra ofFritillaria cirrhosaand 200 spectra of non-Fritillaria cirrhosa(100 spectra ofFritillaria thunbergiiand 100 spectra ofFritillaria pallidiflora) were used to build the model.40 spectra ofFritillaria cirrhosaand 80 spectra of non-Fritillaria cirrhosa(40 ofFritillaria thunbergiiand 40 ofFritillaria pallidiflora) were used to test the model.

    Figure 4.Typical LIBS spectra of (a) Fritillaria cirrhosa, (b)Fritillaria thunbergii, (c) Fritillaria pallidiflora and (d) doublesided tape.

    Table 1.Selected elements of LIBS spectra.

    We used the control variable method to optimize the number of the hidden layer neurons,the learning rate and the number of iterations of LVQ model.The particle swarm optimization algorithm was used to find the optimalcandgof SVM model.The LDA model has no parameters to be optimized.These classification models were used to classify the powdered samples and the optimal parameters, test time, and CCRs of these models are listed in table 2.

    LDA is a linear classifier.The CCR of LDA model was 97.5%.SVM can achieve linear and nonlinear classification by changing the kernel functions.When we used the nonlinear kernel function-radial basis kernel function,the CCR of SVM was 98.33%.In our case, this was a nonlinear case,which was suitable to be solved by a nonlinear method.LVQ is a nonlinear classifier that uses supervised learning to train competitive networks.Among these three classifiers,although the test time of LVQ was longer than those of SVM and LDA,the CCR of LVQ was the highest of 99.17%, and the identification result was the best.It indicated that LVQ was the most suitable classifier for our experimental data.

    4.3.Test for LVQ robustness

    To test the robustness of LVQ model to cope with the unknown samples not included in the training set [37],Fritillaria thunbergiiandFritillaria pallidiflorawere used as non-Fritillaria cirrhosarespectively to establish two models.100 spectra ofFritillaria cirrhosaand 100 spectra ofFritillaria thunbergiiwere used to build model I.100 spectra ofFritillaria cirrhosaand 100 spectra ofFritillaria pallidiflorawere selected to build model II.40 spectra ofFritillaria cirrhosa, 40 ofFritillaria thunbergii,and 40 ofFritillaria pallidiflorawere selected as the test set for model I and model II.The optimal model parameters and test results are shown in table 3.

    In table 3, for modeling withFritillaria cirrhosaandFritillaria thunbergii,the optimal model parameters were the hidden layer neurons of 5, learning rate of 0.01, and number of iterations of 500.The classification result was 99.17%.For modeling withFritillaria cirrhosaandFritillaria pallidiflora,the optimal model parameters were obtained as follows: the hidden layer neurons of 5, learning rate of 0.09, and number of iterations of 800.Using the optimal model, the identification result was also 99.17%.

    We used different training sets to train model I and model II and the same test set to test the data.In model I,one LIBS spectrum ofFritillaria thunbergiiwas erroneously classified asFritillaria cirrhosa,and so was model II.Although part of the test set was not included in the training set, the CCRs of LVQ model were the same as those of the LVQ model established with these kinds of samples as a training set.The experimental results showed that LVQ had good robustness.

    Figure 5.Scores of the first three principal components of Fritillaria cirrhosa, Fritillaria thunbergii, and Fritillaria pallidiflora.

    Table 2.The optimal parameters, test time, CCRs of Fritillaria cirrhosa and non-Fritillaria cirrhosa discrimination models.

    5.Conclusions

    This research mainly focused on the feasibility of LIBS technology to distinguishFritillaria cirrhosaand non-Fritillaria cirrhosa.The obvious LIBS emission lines of Ca,Na,K as well as the molecular bands of CN and C2could be observed from the LIBS spectra ofFritillariapowder samples.This indicated that the LIBS technology could well characterize the elemental composition ofFritillaria cirrhosaand non-Fritillaria cirrhosapowder samples.

    LIBS combined LVQ was proposed to distinguish the LIBS spectra of the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosa.Compared with the performance of LDA, and SVM models, LVQ had the best classificationresult of 99.17%.Moreover, the LVQ model showed good robustness,when part of the test data was not included in the training set,and the CCR was still 99.17%.The experimental results demonstrated that the proposed method could be used in identifying the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosaand had great application potential in medical drug identification.

    Table 3.Test for LVQ robustness and identification results of Fritillaria cirrhosa (FC) and non-Fritillaria cirrhosa (NFC) (non-Fritillaria cirrhosa includes Fritillaria thunbergii (FT) and Fritillaria pallidiflora (FP)).

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (No.62075011)and Graduate Technological Innovation Project of Beijing Institute of Technology (No.2019CX20026).

    猜你喜歡
    騰格爾
    Laser-induced breakdown spectroscopy for the classification of wood materials using machine learning methods combined with feature selection
    騰格爾: 希望養(yǎng)生版《卡路里》聽完 能讓你有健身的“沖動”
    祝您健康(2020年11期)2020-11-13 03:44:00
    騰格爾, 從老炮兒到萌叔
    “萌叔”騰格爾:唱好歌,種好樹
    騰格爾攜歌曲《馬蘭花》重新回歸樂壇
    青年歌聲(2018年2期)2018-10-20 02:03:12
    騰格爾:有人陪我立黃昏
    北廣人物(2018年29期)2018-07-30 02:47:00
    為守護媽媽心中的天堂 騰格爾用生命演繹《敕勒川》
    北廣人物(2018年11期)2018-06-21 02:33:44
    騰格爾:生活才是最偉大的導演
    潤·文摘(2016年9期)2016-08-04 04:57:08
    騰格爾:草原就是我的天堂
    用音樂創(chuàng)造奇跡
    人民周刊(2011年1期)2011-01-09 03:08:52
    亚洲精品,欧美精品| 免费av不卡在线播放| 高清视频免费观看一区二区| 秋霞伦理黄片| 少妇的逼水好多| 秋霞伦理黄片| 国产毛片在线视频| 美女中出高潮动态图| 国产精品人妻久久久久久| 国产高清三级在线| 国产成人精品一,二区| 国产色婷婷99| 亚洲丝袜综合中文字幕| 美女中出高潮动态图| 蜜桃在线观看..| 亚洲性久久影院| 久久久久国产网址| 亚洲国产日韩一区二区| www.av在线官网国产| 日韩熟女老妇一区二区性免费视频| 欧美变态另类bdsm刘玥| 少妇被粗大的猛进出69影院 | 22中文网久久字幕| 一级毛片我不卡| 日本av手机在线免费观看| 黄色毛片三级朝国网站 | 少妇的逼水好多| 日韩在线高清观看一区二区三区| kizo精华| 久久久久久久久久成人| 国产一区二区三区综合在线观看 | 午夜老司机福利剧场| 久久国内精品自在自线图片| av卡一久久| 99九九在线精品视频 | 三级经典国产精品| 日韩欧美 国产精品| 婷婷色麻豆天堂久久| av在线观看视频网站免费| 26uuu在线亚洲综合色| 五月玫瑰六月丁香| 欧美日韩视频高清一区二区三区二| 久久 成人 亚洲| 午夜福利影视在线免费观看| 国产精品熟女久久久久浪| 99热这里只有是精品在线观看| 久久久久久久国产电影| 久久国产精品男人的天堂亚洲 | 热re99久久国产66热| 中文字幕精品免费在线观看视频 | av福利片在线| 中国三级夫妇交换| 中国国产av一级| 热re99久久国产66热| 下体分泌物呈黄色| 狠狠精品人妻久久久久久综合| 精品人妻一区二区三区麻豆| 日韩电影二区| 成人亚洲精品一区在线观看| 午夜福利在线观看免费完整高清在| 日本av免费视频播放| 久久久久精品久久久久真实原创| 久久久久久伊人网av| 国产亚洲午夜精品一区二区久久| 久久青草综合色| av不卡在线播放| 青春草国产在线视频| 最近手机中文字幕大全| 夜夜骑夜夜射夜夜干| 99热这里只有是精品在线观看| 精品人妻一区二区三区麻豆| 久久av网站| 欧美xxⅹ黑人| 日本av免费视频播放| 国产成人精品婷婷| 国产黄片视频在线免费观看| 乱系列少妇在线播放| 精品亚洲成a人片在线观看| 男人添女人高潮全过程视频| 十八禁网站网址无遮挡 | 久久国产亚洲av麻豆专区| 春色校园在线视频观看| 一级av片app| 久久精品国产鲁丝片午夜精品| 91精品一卡2卡3卡4卡| 欧美日韩综合久久久久久| 亚洲激情五月婷婷啪啪| 国产精品福利在线免费观看| 亚洲av福利一区| 亚洲精品国产成人久久av| 我要看黄色一级片免费的| 国产精品久久久久久精品电影小说| 晚上一个人看的免费电影| 国产欧美日韩一区二区三区在线 | 大又大粗又爽又黄少妇毛片口| 三级经典国产精品| 免费播放大片免费观看视频在线观看| av天堂久久9| 最后的刺客免费高清国语| 国产91av在线免费观看| 亚洲精品一二三| 国产高清不卡午夜福利| 日本与韩国留学比较| 成人18禁高潮啪啪吃奶动态图 | 国产视频首页在线观看| 国产淫片久久久久久久久| 国产日韩欧美视频二区| 日本91视频免费播放| 人人妻人人看人人澡| 亚洲国产精品一区二区三区在线| 少妇丰满av| 在线观看美女被高潮喷水网站| 人妻系列 视频| 久久精品国产a三级三级三级| 久久久久国产网址| 亚洲精品日韩在线中文字幕| 亚洲精品乱久久久久久| 久久韩国三级中文字幕| 美女cb高潮喷水在线观看| 建设人人有责人人尽责人人享有的| 一个人免费看片子| 国产高清不卡午夜福利| 成人国产麻豆网| 久久国产亚洲av麻豆专区| 如何舔出高潮| 日韩在线高清观看一区二区三区| 91久久精品电影网| 国产成人91sexporn| 精品少妇内射三级| 亚洲欧美一区二区三区国产| 18禁动态无遮挡网站| 久久久久久久久久成人| 免费人妻精品一区二区三区视频| 国产精品秋霞免费鲁丝片| 欧美另类一区| 色婷婷久久久亚洲欧美| 香蕉精品网在线| 午夜福利,免费看| 国产成人精品久久久久久| 亚洲怡红院男人天堂| 我要看日韩黄色一级片| 午夜91福利影院| 免费看av在线观看网站| 日韩电影二区| 国产av码专区亚洲av| 日韩伦理黄色片| 国产av国产精品国产| a级毛色黄片| 一级av片app| 亚洲精华国产精华液的使用体验| 欧美日韩综合久久久久久| 又大又黄又爽视频免费| xxx大片免费视频| 日日摸夜夜添夜夜爱| 国产日韩欧美视频二区| 国产色婷婷99| 熟女电影av网| 成人国产av品久久久| 精品久久久噜噜| 麻豆成人av视频| 亚洲精品,欧美精品| 欧美国产精品一级二级三级 | 国产av精品麻豆| 免费观看a级毛片全部| 亚洲国产欧美在线一区| 高清欧美精品videossex| 日韩 亚洲 欧美在线| 国产乱人偷精品视频| 国产成人精品福利久久| 永久免费av网站大全| 五月玫瑰六月丁香| 中文字幕精品免费在线观看视频 | 六月丁香七月| 国产精品伦人一区二区| 精品亚洲成a人片在线观看| 免费av不卡在线播放| 26uuu在线亚洲综合色| 国产免费视频播放在线视频| 久久99热6这里只有精品| 久久久精品免费免费高清| 国产免费一级a男人的天堂| 精品午夜福利在线看| 国产在视频线精品| 亚洲国产毛片av蜜桃av| 国产欧美亚洲国产| 久久99蜜桃精品久久| 2018国产大陆天天弄谢| 我要看黄色一级片免费的| 精品人妻一区二区三区麻豆| 黄色配什么色好看| 国产精品偷伦视频观看了| 日产精品乱码卡一卡2卡三| 成人亚洲欧美一区二区av| 日韩欧美一区视频在线观看 | 九草在线视频观看| 久久人人爽人人片av| 免费av中文字幕在线| 亚洲精品日韩av片在线观看| 少妇人妻 视频| 91精品伊人久久大香线蕉| 青春草国产在线视频| 欧美老熟妇乱子伦牲交| 国产免费福利视频在线观看| 一边亲一边摸免费视频| a 毛片基地| 大又大粗又爽又黄少妇毛片口| 欧美精品人与动牲交sv欧美| 各种免费的搞黄视频| 亚洲色图综合在线观看| a级毛色黄片| 在线精品无人区一区二区三| 亚洲美女黄色视频免费看| 青春草亚洲视频在线观看| 中文乱码字字幕精品一区二区三区| 自线自在国产av| 国产欧美亚洲国产| 九九久久精品国产亚洲av麻豆| 日本av手机在线免费观看| 亚洲国产成人一精品久久久| 亚洲经典国产精华液单| 搡女人真爽免费视频火全软件| 久久精品久久精品一区二区三区| 久久久久久人妻| 国产成人精品福利久久| 欧美日韩精品成人综合77777| av国产精品久久久久影院| 亚洲成人一二三区av| 免费大片黄手机在线观看| 国产真实伦视频高清在线观看| 国产亚洲午夜精品一区二区久久| 国产 精品1| 日韩成人伦理影院| 观看av在线不卡| 午夜免费鲁丝| 免费看av在线观看网站| 99re6热这里在线精品视频| 街头女战士在线观看网站| 99九九线精品视频在线观看视频| 啦啦啦啦在线视频资源| 国产毛片在线视频| 国产精品福利在线免费观看| 亚洲精品日本国产第一区| 国产欧美日韩一区二区三区在线 | 国产高清不卡午夜福利| 亚洲自偷自拍三级| av不卡在线播放| 一级毛片aaaaaa免费看小| 国产黄色免费在线视频| 成人漫画全彩无遮挡| 丰满饥渴人妻一区二区三| 欧美高清成人免费视频www| 亚洲精品日韩在线中文字幕| 美女xxoo啪啪120秒动态图| 国产精品久久久久久精品古装| 国产精品不卡视频一区二区| 久久热精品热| 欧美性感艳星| 亚洲美女搞黄在线观看| 免费看光身美女| 国产成人91sexporn| 麻豆成人午夜福利视频| kizo精华| 国产真实伦视频高清在线观看| 卡戴珊不雅视频在线播放| 高清在线视频一区二区三区| 国产免费福利视频在线观看| 91久久精品国产一区二区三区| 婷婷色av中文字幕| 成人亚洲精品一区在线观看| 黑人高潮一二区| 最后的刺客免费高清国语| 男女无遮挡免费网站观看| 亚洲欧美精品专区久久| av国产久精品久网站免费入址| 精品亚洲成国产av| 蜜臀久久99精品久久宅男| 日日爽夜夜爽网站| av黄色大香蕉| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 免费在线观看成人毛片| 国产成人午夜福利电影在线观看| 少妇丰满av| 国产亚洲精品久久久com| 国产一区有黄有色的免费视频| 亚洲欧美日韩东京热| 久久久亚洲精品成人影院| 国产高清有码在线观看视频| av在线老鸭窝| 伊人亚洲综合成人网| 青青草视频在线视频观看| 久久久久久久大尺度免费视频| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久| 性色av一级| 久久亚洲国产成人精品v| 日韩中字成人| 男人和女人高潮做爰伦理| 人妻 亚洲 视频| 视频区图区小说| 国产精品久久久久久av不卡| 秋霞在线观看毛片| 亚洲性久久影院| 街头女战士在线观看网站| 免费观看无遮挡的男女| 热re99久久精品国产66热6| 夜夜爽夜夜爽视频| 国产av精品麻豆| 69精品国产乱码久久久| 一本大道久久a久久精品| 成年女人在线观看亚洲视频| 最新的欧美精品一区二区| 91精品国产国语对白视频| 国产色婷婷99| 男女啪啪激烈高潮av片| 国产精品一区二区在线不卡| 女的被弄到高潮叫床怎么办| 黑丝袜美女国产一区| 日韩强制内射视频| 亚洲欧美中文字幕日韩二区| 久久av网站| 亚洲伊人久久精品综合| 最后的刺客免费高清国语| 大又大粗又爽又黄少妇毛片口| 街头女战士在线观看网站| 99久久精品国产国产毛片| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 婷婷色综合www| 色5月婷婷丁香| 精品一区二区免费观看| 国产精品嫩草影院av在线观看| 成年av动漫网址| 边亲边吃奶的免费视频| 成人漫画全彩无遮挡| 丝袜喷水一区| 亚洲av日韩在线播放| 人人妻人人添人人爽欧美一区卜| 精品亚洲成a人片在线观看| 亚洲精品久久久久久婷婷小说| 美女福利国产在线| 精品一品国产午夜福利视频| 亚洲欧美精品专区久久| 亚洲欧美清纯卡通| 在线观看免费视频网站a站| 午夜av观看不卡| 高清欧美精品videossex| 国产午夜精品一二区理论片| 国产精品无大码| av卡一久久| 在线观看免费视频网站a站| 婷婷色综合大香蕉| 性色avwww在线观看| 亚洲人成网站在线观看播放| 国产一区二区在线观看日韩| 午夜福利影视在线免费观看| 少妇被粗大的猛进出69影院 | 亚洲成人手机| 日本欧美视频一区| 精品人妻偷拍中文字幕| 亚洲高清免费不卡视频| 18+在线观看网站| 久久人妻熟女aⅴ| 啦啦啦中文免费视频观看日本| 中文字幕制服av| 五月开心婷婷网| 国产精品欧美亚洲77777| 狠狠精品人妻久久久久久综合| 成人毛片a级毛片在线播放| 在线观看美女被高潮喷水网站| 久久久a久久爽久久v久久| 一区在线观看完整版| 熟女人妻精品中文字幕| 人人妻人人澡人人爽人人夜夜| 日韩av免费高清视频| 啦啦啦啦在线视频资源| 肉色欧美久久久久久久蜜桃| 亚洲精品国产成人久久av| av黄色大香蕉| 国产精品福利在线免费观看| 99九九在线精品视频 | 亚洲欧美一区二区三区国产| 精品少妇黑人巨大在线播放| 亚洲自偷自拍三级| 亚洲国产欧美日韩在线播放 | 女性被躁到高潮视频| 国产欧美亚洲国产| 有码 亚洲区| 国产爽快片一区二区三区| 国产免费一级a男人的天堂| 久久久久久久精品精品| 乱码一卡2卡4卡精品| 只有这里有精品99| 插阴视频在线观看视频| 久久久精品免费免费高清| 九九久久精品国产亚洲av麻豆| 久久久久国产精品人妻一区二区| 伦理电影大哥的女人| 色哟哟·www| 日本黄色片子视频| 国产黄片美女视频| 久久午夜综合久久蜜桃| 夜夜爽夜夜爽视频| 亚洲欧美成人综合另类久久久| 免费黄色在线免费观看| 夜夜看夜夜爽夜夜摸| 久久青草综合色| 少妇的逼水好多| 十分钟在线观看高清视频www | 欧美日本中文国产一区发布| av又黄又爽大尺度在线免费看| 国产精品伦人一区二区| 午夜福利网站1000一区二区三区| 一级毛片久久久久久久久女| 国产淫语在线视频| 桃花免费在线播放| 午夜激情福利司机影院| 国产有黄有色有爽视频| 日本爱情动作片www.在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲av.av天堂| 亚洲成人一二三区av| 男人舔奶头视频| 精品久久久精品久久久| 国产一区二区三区综合在线观看 | .国产精品久久| 人人妻人人添人人爽欧美一区卜| av视频免费观看在线观看| 精品午夜福利在线看| videos熟女内射| 人人妻人人澡人人看| 亚洲精品中文字幕在线视频 | 少妇的逼好多水| 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 纯流量卡能插随身wifi吗| 这个男人来自地球电影免费观看 | 免费av中文字幕在线| 久久国产精品男人的天堂亚洲 | 国产伦在线观看视频一区| 国产男女内射视频| 日日啪夜夜爽| 亚洲精品视频女| 91精品伊人久久大香线蕉| 日韩成人伦理影院| 2018国产大陆天天弄谢| 丁香六月天网| 久久精品久久久久久噜噜老黄| 青春草国产在线视频| 午夜福利网站1000一区二区三区| 最后的刺客免费高清国语| av有码第一页| 成人影院久久| 免费人成在线观看视频色| 女人精品久久久久毛片| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 国产精品99久久99久久久不卡 | 国产高清三级在线| 免费观看a级毛片全部| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版| 成人无遮挡网站| 精品人妻熟女毛片av久久网站| 丰满乱子伦码专区| 青春草视频在线免费观看| 一本—道久久a久久精品蜜桃钙片| 内地一区二区视频在线| 亚洲性久久影院| 国产亚洲最大av| 又爽又黄a免费视频| 日韩伦理黄色片| 国产精品蜜桃在线观看| 国产一区二区三区av在线| 麻豆精品久久久久久蜜桃| 男的添女的下面高潮视频| 国内精品宾馆在线| 黑丝袜美女国产一区| 久久国产亚洲av麻豆专区| 国产探花极品一区二区| 国国产精品蜜臀av免费| 亚洲国产毛片av蜜桃av| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 久久免费观看电影| 一区二区三区乱码不卡18| 看免费成人av毛片| 精品久久久久久久久av| 亚洲av成人精品一区久久| 国产伦精品一区二区三区视频9| 中文字幕制服av| 久久久久精品久久久久真实原创| 18禁动态无遮挡网站| 少妇丰满av| 丝瓜视频免费看黄片| 美女大奶头黄色视频| 99久久精品国产国产毛片| 99视频精品全部免费 在线| av国产精品久久久久影院| 伊人久久精品亚洲午夜| 嫩草影院新地址| 亚洲欧美日韩东京热| 日韩强制内射视频| 在线播放无遮挡| 国产精品女同一区二区软件| 日韩成人伦理影院| 久久影院123| 欧美老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区| 国产成人一区二区在线| 日韩成人av中文字幕在线观看| 黄色配什么色好看| 最近中文字幕高清免费大全6| 欧美+日韩+精品| 9色porny在线观看| 午夜视频国产福利| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成国产av| 丰满人妻一区二区三区视频av| 一个人免费看片子| 亚洲自偷自拍三级| 成人综合一区亚洲| 亚洲av福利一区| 亚洲丝袜综合中文字幕| 丰满乱子伦码专区| 亚洲人成网站在线观看播放| 国产伦在线观看视频一区| xxx大片免费视频| 大又大粗又爽又黄少妇毛片口| 色哟哟·www| 赤兔流量卡办理| 亚洲精品乱久久久久久| 成人美女网站在线观看视频| 国产精品国产三级国产av玫瑰| 亚洲国产毛片av蜜桃av| 高清av免费在线| 蜜桃在线观看..| 精品久久久久久久久av| 国产又色又爽无遮挡免| 偷拍熟女少妇极品色| 内射极品少妇av片p| 中文字幕av电影在线播放| 国产精品一区二区三区四区免费观看| 精品少妇内射三级| 亚洲成人av在线免费| 中文字幕精品免费在线观看视频 | 国产69精品久久久久777片| 国产 一区精品| 免费看日本二区| 搡女人真爽免费视频火全软件| 高清在线视频一区二区三区| 女人精品久久久久毛片| 在线观看一区二区三区激情| 精品国产一区二区久久| 乱码一卡2卡4卡精品| 精品午夜福利在线看| h视频一区二区三区| 一级片'在线观看视频| 欧美变态另类bdsm刘玥| 成人18禁高潮啪啪吃奶动态图 | 精品人妻一区二区三区麻豆| 日日撸夜夜添| 男女无遮挡免费网站观看| av一本久久久久| 国产毛片在线视频| 国产成人免费无遮挡视频| 国产av精品麻豆| 曰老女人黄片| 久久久亚洲精品成人影院| 日本黄色片子视频| 国产欧美日韩综合在线一区二区 | 午夜福利在线观看免费完整高清在| 乱系列少妇在线播放| av在线观看视频网站免费| 婷婷色av中文字幕| 亚洲国产av新网站| 一个人免费看片子| 男女边吃奶边做爰视频| 80岁老熟妇乱子伦牲交| 黄色怎么调成土黄色| 黑丝袜美女国产一区| 久久久久网色| 交换朋友夫妻互换小说| 欧美丝袜亚洲另类| 亚洲怡红院男人天堂| 男人添女人高潮全过程视频| 中国国产av一级| 不卡视频在线观看欧美| 91精品国产国语对白视频| 欧美区成人在线视频| 欧美日韩av久久| 亚洲欧美精品专区久久| 蜜桃久久精品国产亚洲av| 中国三级夫妇交换| 国产在线男女| 又粗又硬又长又爽又黄的视频| 亚洲精品一二三| 美女福利国产在线| 欧美三级亚洲精品| 一级黄片播放器| 又大又黄又爽视频免费| 国产色爽女视频免费观看| 黑人猛操日本美女一级片| 不卡视频在线观看欧美| 能在线免费看毛片的网站| 伊人亚洲综合成人网| 国产一级毛片在线| 成人国产av品久久久| 精华霜和精华液先用哪个| 97在线人人人人妻| 大片电影免费在线观看免费| 国产伦理片在线播放av一区| 国产日韩一区二区三区精品不卡 | 久久久国产欧美日韩av| 亚洲自偷自拍三级|