• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure*

    2021-07-30 07:40:30BowenZhang張博文ChaoAn安超XuliangChen陳緒亮YingZhou周穎YonghuiZhou周永惠YifangYuan袁亦方ChunhuaChen陳春華LiliZhang張麗麗XiaopingYang楊曉萍andZhaorongYang楊昭榮
    Chinese Physics B 2021年7期
    關(guān)鍵詞:周穎春華博文

    Bowen Zhang(張博文) Chao An(安超) Xuliang Chen(陳緒亮) Ying Zhou(周穎)Yonghui Zhou(周永惠) Yifang Yuan(袁亦方) Chunhua Chen(陳春華)Lili Zhang(張麗麗) Xiaoping Yang(楊曉萍) and Zhaorong Yang(楊昭榮)

    1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory,Chinese Academy of Sciences,Hefei 230031,China

    2Science Island Branch,Graduate School of University of Science and Technology of China,Hefei 230026,China

    3Information Materials and Intelligent Sensing Laboratory of Anhui Province,Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China

    4Key Laboratory of Structure and Functional Regulation of Hybrid Materials(Anhui University),Ministry of Education,Hefei 230601,China

    5Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 200031,China

    6High Magnetic Field Laboratory of Anhui Province,Hefei 230031,China

    Keywords: high pressure,charge density wave,crystal structure,electrical transport

    1. Introduction

    Rare-earth silver antimonidesRAgSb2(R=La-Nd,Sm,Gd-Tm) have attracted intense interests due to their peculiar physical properties,[1-11]such as anisotropic magnetism,[2,3]Dirac-cone-like band structure,[6,7]and charge density wave(CDW) order.[9-11]Among these antimonides, LaAgSb2has been paid special attention to because it hosts both CDW and Dirac fermions.[7,9]LaAgSb2crystallizes in a simple tetragonal ZrCuSi2-type structure(P4/nmm,No.129),with La atoms intercalating between Sb and AgSb layers.[6-8]As temperature decreases,LaAgSb2experiences two CDW transitions at~209 K and~185 K,respectively.[12]The former transition corresponds to a periodic charge/lattice modulation along theaaxis,while the latter one relates to a weaker modulation along thecaxis.[9]Accompanying with the CDW transitions,striking anomalies have been observed in electrical transport,magnetic susceptibility, thermoelectric power, and infrared spectroscopy measurements.[1,8,13]

    More recently, angle-resolved photoemission spectroscopy investigation and first-principle calculations consistently revealed that LaAgSb2possesses linear energy bands and a Dirac-cone-like structure near the Fermi level.[7]In particular,the segments of the Fermi surface pocket that is associated with the Dirac-cone-like structure are well nested with a small wave vector, documenting a close relationship of the Dirac cone to the CDW ordering.[7]Moreover, LaAgSb2exhibits a large linear magnetoresistance (MR) due to the existence of linear band dispersion, which disappears just above the CDW transition temperature of 207 K and provides additional evidence of the correlation between the Dirac cone and CDW ordering.[6,7]These unique properties make LaAgSb2a promising material for applications in CDW-based electronic devices.

    Applying external pressure and chemical substitution are two effective ways to tune the CDW order.[10,11,14]Based on earlier studies,elements doping in both La and Ag sites disfavors the CDW in LaAgSb2, which was partially attributed to the disorder generated by element substitution.[10,11]In contrast,without inducing additional impurities,applying external pressure provides a clean way for the modulation of the CDW.Previous electrical resistance measurements unveiled that the CDW is gradually suppressed by the applied pressure.[10,11,15]However, the highest pressure studied in the electrical transport measurements so far is limited to~3.8 GPa.[15]How the CDW involves and whether novel phenomena can be induced at higher pressures are not clear and deserve further investigation.

    Here,using pressure as a tuning knob,we systematically investigate the evolution of structural and electrical properties of LaAgSb2single crystals throughin-situsynchrotron x-ray diffraction (XRD), Raman spectroscopy, and electrical transport measurements under pressures up to 41.6-49.0 GPa,combined with first-principles calculation. With increasing pressure, the magnetoresistance is monotonically suppressed and completely disappears at 21.5 GPa. In addition, atPC~22 GPa,the sign change of the Hall coefficient is observed at 5 K. While no evident structural phase transition is observed via XRD, the simultaneous occurrence ofc/aanomaly and new Raman peak unravels a structural modification atPC.

    2. Experimental details

    Single crystals of LaAgSb2were grown by Sb self-flux method.[8]After removing the excessive Sb by centrifuging,plate-like crystals were obtained, as shown in the inset of Fig. S1(b). The temperature (T)-dependent electrical resistivity(ρxx)measurements at ambient pressure were conducted in a physical property measurements system(PPMS,Quantum Design Inc.).

    High-pressure electrical transport measurements were conducted in a screw-pressure-type diamond anvil cell(DAC)made of Be-Cu alloy. The culet size of the diamond was 300 μm. The T301 stainless-steel gasket was pre-indented from thickness of 200 μm to 30 μm and a hole of about 280 μm was drilled in the center of the pit. Platinum foil served as the electrical contact. Soft NaCl fine powder was used as the pressure-transmitting medium (PTM). A piece of cleaved single crystal with dimensions of~100×50×10 μm3together with some ruby powders was loaded into the chamber.ρxx(T)curve was measured by using standard four-probe method. The current was introduced along theabplane. Hall resistivityρxywas measured at 5 K via five-probe method with external magnetic field along thecaxis.

    High-pressure powder x-ray diffraction experiments were conducted at beamline 15U1,Shanghai Synchrotron Radiation Facility(SSRF)at room temperature. Pressure was generated by a Mao-Bell type symmetric DAC.The culet of the diamond was 300 μm in diameter. The Re gasket was pre-indented to thickness of 30 μm and a hole of 150 μm was drilled as sample chamber. LaAgSb2powders were obtained by crushing and grinding the as prepared LaAgSb2single crystals. Pressed powder (~50×50×10 μm3) together with some ruby balls was loaded in the chamber. Daphne 7373 oil was used as the PTM.A focused monochromatic x-ray beam with wavelength 0.6199 ?A was used for the angle-dispersive diffraction. The size of the focused x-ray beam at the sample position is 3 μm×2.5 μm. Two-dimensional area detector Mar165 CCD was used to collect the powder diffraction patterns.[16]The detector was 185.88 mm away from the sample. The Dioptas[17]and Rietica programs[18]were employed for image integrations and structure refinement,respectively.

    The high-pressure Raman spectrum measurement was performed at room temperature in a Mao-Bell type symmetric DAC using a commercial Renishaw Raman spectroscopy measurement system with a 532-nm laser excitation line. The diamond culet was 300 μm in diameter. The T301 stainless-steel gasket was pre-indented from thickness of 200 μm to 30 μm and a hole of about 150 μm was drilled as the sample chamber. Daphne 7373 oil served as the pressure medium. Pressure was calibrated by using the ruby fluorescence shift at room temperature for all above experiments.[19]

    3. Results and discussion

    Figure 1(a) displays the temperature-dependent resistivityρxx(T)measured at ambient pressure under 0 T and 14 T,respectively. One can see that accompanying with the formation of CDW order at around 210 K, the difference of resistivity Δρ=ρxx(H)-ρxx(0 T) starts to develop and becomes pronounced with decreasing temperature, in accordance with previous reports.[6,8]Due to the simultaneous occurrence of CDW and Δρ,the onset temperature of Δρ(T*)is equal to the CDW transition temperatureTCDWat ambient pressure,see the inset of Fig.1(a). To trace the evolution of CDW under compression,we measured theρxx(T)at each pressure under 0 T and 7 T,respectively. As seen from Figs.1(b)-1(f),the Δρis suppressed gradually with increasing pressure,meanwhile theT*decreases monotonically. Both the suppression of Δρa(bǔ)nd decrease ofT*are in line with the collapse of CDW order as reported in a previous study.[15]The Δρeventually disappears at 21.5 GPa. However, it should be noted that the CDW order was found to be suppressed completely around~3 GPa according to Ref. [15], which is much smaller than the critical pressurePC~21.5 GPa and may indicate the decoupling of Δρa(bǔ)nd CDW order under high pressure. Meanwhile, as shown in Fig.S3,it can be seen that the linear range of MR is monotonically reduced upon compression and the whole curve can be fitted by a quadratic-field relation abovePC. In addition,ρxxmaintains the metallic conduction behavior and no superconductivity is observed down to 1.8 K, see Fig. 1(g).The resistivity at 300 K initially decreases with increasing pressure up to 5.1 GPa and then persistently increases upon further compression, accompanying with a sudden jump between 18.6 GPa and 21.5 GPa[Fig.1(g)]. In general,the pressure enhances the band overlapping and the resistivity should decrease with increasing pressure. The abnormal enhancement of resistivity under high pressure could be attributed to different factors, such as non-hydrostatic compression, structural phase transition/electronic phase transition, and structural distortion.[20-24]

    Fig.1. (a)-(f)Temperature dependence of resistivity under 0 T(black line)and external magnetic field(red line)with H parallel to c axis at various pressures. Arrow marks the transition temperature TCDW at ambient pressure and T* under high pressure. The insets of(a)-(f)display temperature dependence of Δρ =ρ(H)-ρ(0 T).(g)Temperature-dependent electrical resistivity of LaAgSb2 in the pressure range of 0.7-44.0 GPa.

    Fig.2. (a)Field-dependent Hall resistivity ρxy of LaAgSb2 single crystal under various pressures at 5 K with H parallel to c axis.(b)Pressuredependent Hall coefficient RH. The RH is determined from the initial slope of ρxy at H →0.

    Figure 2(a) displays the magnetic field (H)-dependent Hall resistivityρxy(H) at 5 K and various pressures. At 0.7 GPa,ρxyshows a quadratic field dependence in the lowfield region while increases linearly at higher fields, consistent with the result at ambient pressure.[6]The nonmonotonic field dependence and positive slope ofρxy(H) indicate that LaAgSb2exhibits a multiband feature and the hole-type carriers dominate the transport behavior. Hall coefficientRHis extracted from the slope ofρxy(H) around zero field, as displayed in Fig. 2(b). Upon compression,RHdecreases monotonically and changes into negative at pressures above 21.5 GPa. The sign change ofRHdemonstrates that the holedominated conductivity maintains up to 21.5 GPa and is replaced by electron-dominated behavior at higher pressure. In general,the sign change of Hall coefficient directly reflects the modification of the Fermi surface, which could be caused by not only electronic phase transition,[25]but also the occurrence of structural instability.[26]

    We further investigate the structural stability of LaAgSb2under high pressure via synchrotron XRD measurement. Figure 3(a)shows the XRD patterns at selected pressures. Upon compression, all Bragg peaks shift to larger angles due to the lattice shrinkage without appearing extra peaks up to 41.6 GPa. The XRD pattern at each pressure can be well indexed by the space groupP4/nmm(No.129),see the representative refinements at 1.7 GPa and 41.6 GPa in Figs. 3(b) and 3(c). The volume versus pressure plotted in Fig.3(d)is fitted by the third-order Birch-Murnaghan formula,which yields the ambient pressure volumeV0=103.3(±0.2) ?A3,bulk modulusB0=84.3(±1.4) GPa with its first-order derivativeB′0being fixed as 4. The extracted lattice parameters(aandc)are displayed in Fig. 3(f). Without detecting an evident structural transition, it can be seen that bothaandcdecrease monotonically with the applied pressure. Nevertheless,the axis ratioc/a, a measure of the relative compressibility along different crystal axis, displays a clear kink at around 22 GPa.On one hand,such a feature can be caused by non-hydrostatic compression due to the solidification of pressure transmitting medium.[27,28]However,we used Daphne 7373 as the pressure medium in the high pressure XRD measurement, which normally leads to the kink anomaly in lattice ratioc/aat around 7-8 GPa.[27,28]On the other hand,we notice that characteristic pressure of 22 GPa agrees well with the critical pressure where the Hall coefficient changes sign,which indicates that change in the electronic state could be correlated with the modification of lattice degree of freedom.

    Fig.3. (a)Synchrotron radiation x-ray diffraction patterns of LaAgSb2 under various pressures(λ =0.6199 ?A).The XRD pattern upon decompression back to 5.0 GPa is denoted by d. (b),(c)The refinements at 1.7 GPa and 41.6 GPa were performed using RIETICA program with the Le Bail method.(d) The open symbols stand for unit volume. The solid red line is the fitting result based on the third-order Birch-Murnaghan equation of states. (e)Pressure dependence of the refined lattice parameters. The inset shows the lattice ratio of c/a as a function of pressure.

    As an effective and powerful tool in detecting lattice vibrations, Raman scattering is sensitive to the local lattice symmetry and can provide information including electronphonon coupling, weak lattice distortion, and structural transition.[29,30]For LaAgSb2, a factor-group analysis yields a total number of 24Γ-point phonons, of which 12 (4Eg⊕2A1g⊕2B1g) are Raman-active modes, 9 (3Eu⊕3A2u) are IR-active modes, and 3 (Eu⊕A2u) are acoustic modes. Both Egand Euare double degenerate modes. At ambient pressure(see Fig.S4(a)and Table SI in supplementary material),three prominent peaks with Lorentzian line shape are observed at~98.7 GPa,~108.1 GPa, and~126.3 GPa, which can be assigned to B11g, A11g, and A21gRaman vibrational modes, respectively. As displayed in Fig.S4(b),all these Raman modes represent out-of-plane atomic vibrations, with B1ginvolving Ag and Sb1 atoms while A1ginvolving La and Sb2 atoms.Figure 4 shows the room-temperature Raman spectra at various pressures up to 49.0 GPa.One can see that all three Raman modes move towards higher frequencies monotonically with increasing pressure. Strikingly, in line with the appearance ofc/aanomaly, a new peak (labeled as N) starts to appear at ca. 22.1 GPa and becomes prominent upon further compression. In principle, the emergence of new Raman modes normally involves a crystal symmetry breaking.[31-33]However,the XRD measurement indicates that the original tetragonal structure is maintained upon compression across the critical pressure. The discrepancy could be attributed to different sensitivity of the two methods. Comparing with XRD that is determined by the periodicity of crystal lattice, Raman spectrum depends on the point group symmetry and probes the structure on a local scale. Without detecting an evident structural transition by XRD, the simultaneous occurrence ofc/aanomaly and new Raman peak is reminiscent of a pressureinduced structural modification, such as isostructural transition or a weak structural phase transition.[34-41]Especially,if the lattice structure of the new phase is very similar to the initial one,this transition will be too weak to be detected due to peak broadening of XRD pattern under pressure. In addition to the appearance of the new Raman peak,the structural modification is also reflected in the pressure dependences of other Raman modes plotted in Fig. 5(a), which demonstrate slope changes around 22 GPa. Meanwhile, the full width at half maximum (FWHM) of A21gmode decreases initially and displays a minimum aroundPC[Fig.5(b)], rather than broadens monotonically. Recalling the sign change of Hall coefficient atPC,this structural modification should be the main reason.

    Fig.4. Room-temperature Raman spectra of LaAgSb2 single crystal in the pressure ranges of(a)1.2-18.9 GPa and(b)20.4-49.0 GPa,respectively. The blue solid dots and red diamonds indicate the appearance of new peak above 22.1 GPa. The Raman spectrum upon decompression back to 2.8 GPa is denoted by d.

    After constructing a phase diagram in Fig. 5(c), a vivid correlation between the electrical and structural properties presents in the pressurized LaAgSb2. The sign change of the Hall coefficient evidences the changes of the Fermi surface atPC. As the CDW in LaAgSb2originates from nesting of segments of the Fermi surface pocket associated with the Diraccone-like structure,the collapse of CDW should be concomitant with the disappearance of Dirac fermions. Along with the modulation in the Fermi surface, the structural modification and an abrupt increment of room temperature resistivity are detected at the same critical pressure. Accordingly,a question arises as what is the origin behind these changes.On one hand,the modulation of electronic state could be attributed to the structural modification. On the other hand,the structural modification might be caused by the reconstruction of the Fermi surface,which accords with a scenario of electronic topological transition(ETT)or Lifshitz transition.[42]The ETT or Lifshitz transition does not require the structural transition, but normally leads to anomalies in the phonon spectrum or anomalies inc/aratio.[43-47]

    Fig. 5. (a) Pressure dependence of Raman frequencies of LaAgSb2. Solid lines are linear fits to data. (b)FWHM of the A21g Raman mode as a function of pressure and solid line is drawn as guide to the eyes. (c) Pressuretemperature phase diagram of LaAgSb2. The left axis stands for the temperature T and the right axis corresponds to the resistivity ρxx.

    4. Conclusion

    In summary, the pressure effects on structural and electronic properties of single crystal LaAgSb2were investigated by combining electronic transport, XRD, and Raman experiments.With increasing pressure,the magnetoresistance is suppressed gradually. Both XRD and Raman experiments consistently uncover a structural modification atPC=22 GPa. The structural modification is characterized by a kink anomaly inc/aand a newly appeared Raman mode, and is accompanied by the sign change in the Hall coefficient.

    猜你喜歡
    周穎春華博文
    木碗
    最健康的烹飪方式——蒸
    第一次掙錢
    待到春華爛漫時(shí)
    黃河之聲(2020年5期)2020-05-21 08:24:38
    我們?cè)撊绾伪磉_(dá)苦難?——讀黃春華《扁腦殼》
    誰和誰好
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    春華而后秋實(shí)
    海峽姐妹(2015年3期)2015-02-27 15:10:04
    打電話2
    校園里的石榴樹
    久久久久久久久大av| 成人无遮挡网站| 久久这里只有精品中国| 国产三级中文精品| 成人高潮视频无遮挡免费网站| 国产91av在线免费观看| 国模一区二区三区四区视频| 国产高清视频在线观看网站| 午夜福利高清视频| 熟妇人妻久久中文字幕3abv| 国产乱人偷精品视频| 少妇熟女欧美另类| av视频在线观看入口| av播播在线观看一区| 国产综合懂色| 能在线免费看毛片的网站| 亚洲av福利一区| 国内揄拍国产精品人妻在线| 在线天堂最新版资源| 国产欧美日韩精品一区二区| 国产69精品久久久久777片| 乱系列少妇在线播放| 少妇裸体淫交视频免费看高清| 亚洲欧美日韩东京热| 精品99又大又爽又粗少妇毛片| 日韩一区二区三区影片| 久久亚洲精品不卡| 国产高清不卡午夜福利| av在线亚洲专区| 国产在视频线在精品| 久久精品国产亚洲网站| 丰满少妇做爰视频| 国产精品av视频在线免费观看| 小说图片视频综合网站| 熟女人妻精品中文字幕| 色综合站精品国产| av免费观看日本| 国产精品1区2区在线观看.| 99久久人妻综合| 欧美色视频一区免费| 少妇裸体淫交视频免费看高清| 美女黄网站色视频| 欧美日韩在线观看h| 国产熟女欧美一区二区| 欧美变态另类bdsm刘玥| 国产久久久一区二区三区| 国产老妇伦熟女老妇高清| 偷拍熟女少妇极品色| 日韩欧美三级三区| 黄片无遮挡物在线观看| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利高清视频| www.av在线官网国产| 久久久精品大字幕| 亚洲国产成人一精品久久久| 99热全是精品| АⅤ资源中文在线天堂| 成人毛片60女人毛片免费| 日韩一区二区视频免费看| 国产毛片a区久久久久| 色尼玛亚洲综合影院| 亚洲欧美清纯卡通| 日日干狠狠操夜夜爽| 一级二级三级毛片免费看| 我要看日韩黄色一级片| 亚洲国产欧洲综合997久久,| 色吧在线观看| 久久久久精品久久久久真实原创| 麻豆久久精品国产亚洲av| 亚洲,欧美,日韩| 美女被艹到高潮喷水动态| 亚洲人成网站在线播| 国产精品永久免费网站| 日本黄色片子视频| 久久久久网色| 禁无遮挡网站| 亚洲国产精品成人久久小说| 午夜爱爱视频在线播放| 嫩草影院新地址| 黑人高潮一二区| 国产一区二区在线观看日韩| 日本免费一区二区三区高清不卡| 老司机影院毛片| 久久精品国产亚洲av涩爱| 国产欧美日韩精品一区二区| videos熟女内射| 免费黄色在线免费观看| 欧美xxxx性猛交bbbb| 亚洲高清免费不卡视频| 中文字幕精品亚洲无线码一区| 啦啦啦啦在线视频资源| 热99re8久久精品国产| 成人特级av手机在线观看| 五月伊人婷婷丁香| 国产高潮美女av| 久久久亚洲精品成人影院| av在线蜜桃| av在线蜜桃| 久久人妻av系列| 国产综合懂色| 十八禁国产超污无遮挡网站| 欧美丝袜亚洲另类| 水蜜桃什么品种好| 99热6这里只有精品| 精品人妻熟女av久视频| 一二三四中文在线观看免费高清| 九九热线精品视视频播放| 精品久久久久久电影网 | 成人午夜高清在线视频| 欧美性猛交╳xxx乱大交人| 国国产精品蜜臀av免费| 中文精品一卡2卡3卡4更新| 久久久成人免费电影| 日韩中字成人| 黄片无遮挡物在线观看| 久久久午夜欧美精品| 国产精品综合久久久久久久免费| av.在线天堂| 黄色日韩在线| 久久鲁丝午夜福利片| 国产成人一区二区在线| 国产在线男女| 日韩视频在线欧美| 亚洲在线自拍视频| 亚洲在线观看片| 99热全是精品| 18禁在线无遮挡免费观看视频| 在线免费观看的www视频| 亚洲精品aⅴ在线观看| 99久久精品一区二区三区| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲网站| 人妻系列 视频| 午夜激情福利司机影院| 国产美女午夜福利| 在线免费观看不下载黄p国产| 久久精品国产99精品国产亚洲性色| 三级毛片av免费| 亚洲精品影视一区二区三区av| 国产黄片视频在线免费观看| 天美传媒精品一区二区| 91久久精品国产一区二区成人| 最近最新中文字幕免费大全7| 午夜a级毛片| 日本wwww免费看| 亚洲国产精品专区欧美| 美女黄网站色视频| 亚洲av成人av| 国产成人精品婷婷| 国产亚洲91精品色在线| 日本午夜av视频| 国产精品福利在线免费观看| 国产美女午夜福利| 观看美女的网站| 欧美一区二区亚洲| 免费观看人在逋| 国产精品女同一区二区软件| 久久综合国产亚洲精品| 国产精品女同一区二区软件| 在线观看美女被高潮喷水网站| 亚洲av电影在线观看一区二区三区 | 中文字幕熟女人妻在线| 男女边吃奶边做爰视频| 九色成人免费人妻av| 麻豆国产97在线/欧美| 国国产精品蜜臀av免费| or卡值多少钱| 青春草亚洲视频在线观看| 床上黄色一级片| 一级二级三级毛片免费看| 国产视频首页在线观看| 免费搜索国产男女视频| 亚洲伊人久久精品综合 | 在线免费观看的www视频| 免费电影在线观看免费观看| 色哟哟·www| 国产高清国产精品国产三级 | 只有这里有精品99| 最新中文字幕久久久久| 26uuu在线亚洲综合色| 少妇被粗大猛烈的视频| 亚洲av成人精品一二三区| 有码 亚洲区| 成人特级av手机在线观看| 舔av片在线| 国产男人的电影天堂91| av免费在线看不卡| 国产成人免费观看mmmm| 免费观看人在逋| 久久久久网色| 欧美3d第一页| 如何舔出高潮| 精品99又大又爽又粗少妇毛片| 美女被艹到高潮喷水动态| 国产精品一区二区三区四区免费观看| 亚洲最大成人中文| 人人妻人人澡人人爽人人夜夜 | 人妻少妇偷人精品九色| 午夜激情欧美在线| 久久精品国产99精品国产亚洲性色| 中文字幕亚洲精品专区| 亚洲精品一区蜜桃| 欧美成人免费av一区二区三区| 中文字幕亚洲精品专区| 午夜久久久久精精品| 亚洲三级黄色毛片| 国产伦理片在线播放av一区| 国产精品国产高清国产av| 国产老妇女一区| 欧美精品一区二区大全| 久久99精品国语久久久| 免费播放大片免费观看视频在线观看 | 亚洲国产精品合色在线| 日本熟妇午夜| 午夜福利网站1000一区二区三区| 欧美日韩综合久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 欧美一级a爱片免费观看看| 亚洲丝袜综合中文字幕| 99久久九九国产精品国产免费| 国产高潮美女av| 又粗又爽又猛毛片免费看| 精华霜和精华液先用哪个| 欧美精品国产亚洲| 一夜夜www| 国产精品嫩草影院av在线观看| 精品一区二区三区视频在线| 九九爱精品视频在线观看| 亚洲在线自拍视频| 欧美日本视频| 少妇高潮的动态图| 日本-黄色视频高清免费观看| 婷婷色麻豆天堂久久 | 水蜜桃什么品种好| 91精品国产九色| 男女那种视频在线观看| 国产亚洲精品av在线| 黄色日韩在线| 日韩人妻高清精品专区| www日本黄色视频网| 亚洲精品色激情综合| 超碰av人人做人人爽久久| 亚洲欧美日韩卡通动漫| 插阴视频在线观看视频| 能在线免费观看的黄片| 高清毛片免费看| 久久99热6这里只有精品| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区四区激情视频| 能在线免费看毛片的网站| 干丝袜人妻中文字幕| videos熟女内射| 人妻制服诱惑在线中文字幕| 午夜福利高清视频| 爱豆传媒免费全集在线观看| 亚洲五月天丁香| 热99re8久久精品国产| 午夜精品国产一区二区电影 | 欧美变态另类bdsm刘玥| 亚洲中文字幕日韩| 美女脱内裤让男人舔精品视频| ponron亚洲| 国产精品av视频在线免费观看| 日韩强制内射视频| 午夜福利视频1000在线观看| 免费看av在线观看网站| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久成人| 欧美最新免费一区二区三区| 伦理电影大哥的女人| 2022亚洲国产成人精品| 精品人妻偷拍中文字幕| 97人妻精品一区二区三区麻豆| 亚洲精品色激情综合| 亚洲av熟女| 午夜激情欧美在线| 国产在视频线在精品| 国产伦一二天堂av在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区精品小视频在线| 97人妻精品一区二区三区麻豆| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近最新中文字幕免费大全7| 久久这里只有精品中国| 国产精品一及| 精品久久国产蜜桃| 一本一本综合久久| 国产乱人偷精品视频| 网址你懂的国产日韩在线| 国语自产精品视频在线第100页| 日韩欧美 国产精品| 美女黄网站色视频| 毛片一级片免费看久久久久| 久久久久久久国产电影| 免费av观看视频| 日日啪夜夜撸| 国产一区二区亚洲精品在线观看| 精品欧美国产一区二区三| 欧美3d第一页| 免费人成在线观看视频色| 亚洲成av人片在线播放无| 网址你懂的国产日韩在线| 久久久午夜欧美精品| 少妇的逼好多水| 好男人在线观看高清免费视频| 特大巨黑吊av在线直播| 亚洲性久久影院| 22中文网久久字幕| 男女国产视频网站| 久久久久性生活片| 夜夜爽夜夜爽视频| 国产精品一区二区三区四区免费观看| 日本-黄色视频高清免费观看| 色噜噜av男人的天堂激情| 久久久精品欧美日韩精品| 欧美色视频一区免费| 亚洲美女搞黄在线观看| 中文资源天堂在线| 成人毛片a级毛片在线播放| 99热网站在线观看| av在线播放精品| 乱系列少妇在线播放| 蜜桃亚洲精品一区二区三区| 大又大粗又爽又黄少妇毛片口| 小说图片视频综合网站| 少妇被粗大猛烈的视频| 国国产精品蜜臀av免费| 亚洲av免费高清在线观看| 高清在线视频一区二区三区 | 国产av码专区亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 超碰av人人做人人爽久久| 免费黄色在线免费观看| 国产淫语在线视频| 精品一区二区三区人妻视频| 国产私拍福利视频在线观看| 欧美成人一区二区免费高清观看| 亚洲精品一区蜜桃| 在线观看66精品国产| 少妇被粗大猛烈的视频| 免费看美女性在线毛片视频| 1024手机看黄色片| 天堂影院成人在线观看| 国产精品一区二区在线观看99 | 日韩一区二区视频免费看| .国产精品久久| 久久久成人免费电影| 亚洲精品影视一区二区三区av| 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 成人国产麻豆网| 一本久久精品| 国产淫语在线视频| 亚洲精品久久久久久婷婷小说 | 久久国内精品自在自线图片| 国产久久久一区二区三区| 少妇高潮的动态图| 黄片wwwwww| 亚洲欧美日韩卡通动漫| 欧美成人免费av一区二区三区| 一级黄色大片毛片| 婷婷色麻豆天堂久久 | 国产成人a区在线观看| 亚洲国产高清在线一区二区三| 国产成人免费观看mmmm| videossex国产| 天堂影院成人在线观看| 亚洲成人av在线免费| 国产精品久久久久久精品电影| 亚洲婷婷狠狠爱综合网| 久久久久久久亚洲中文字幕| 国产精品综合久久久久久久免费| 变态另类丝袜制服| 一级av片app| 国产精品国产高清国产av| 美女大奶头视频| av卡一久久| 亚洲久久久久久中文字幕| www.av在线官网国产| eeuss影院久久| 亚洲av熟女| 一级爰片在线观看| 亚洲av中文av极速乱| 日本爱情动作片www.在线观看| 国产在线一区二区三区精 | 又粗又爽又猛毛片免费看| 国国产精品蜜臀av免费| 麻豆av噜噜一区二区三区| 日本熟妇午夜| 欧美日韩精品成人综合77777| 国产免费视频播放在线视频 | 水蜜桃什么品种好| 看黄色毛片网站| 久久精品国产自在天天线| 最后的刺客免费高清国语| 晚上一个人看的免费电影| 伦精品一区二区三区| 亚洲欧美成人综合另类久久久 | 九草在线视频观看| 精品午夜福利在线看| 色视频www国产| 国产av码专区亚洲av| 少妇的逼好多水| 51国产日韩欧美| 亚洲性久久影院| 成人国产麻豆网| 午夜精品在线福利| 中文资源天堂在线| 亚洲av中文av极速乱| 国产亚洲最大av| 亚洲久久久久久中文字幕| 亚洲电影在线观看av| 又粗又硬又长又爽又黄的视频| 99在线视频只有这里精品首页| 久久精品熟女亚洲av麻豆精品 | 精品久久久噜噜| 久久热精品热| 亚洲最大成人av| 国产乱来视频区| h日本视频在线播放| 国产成人福利小说| 韩国av在线不卡| 久久久久国产网址| eeuss影院久久| 午夜老司机福利剧场| av在线老鸭窝| 日韩欧美精品v在线| 99久久精品国产国产毛片| 国产伦理片在线播放av一区| 精品久久久久久电影网 | av专区在线播放| eeuss影院久久| 日韩欧美精品免费久久| 夜夜爽夜夜爽视频| 亚洲中文字幕一区二区三区有码在线看| 国产精品人妻久久久影院| 能在线免费观看的黄片| 熟妇人妻久久中文字幕3abv| 婷婷六月久久综合丁香| 久久国内精品自在自线图片| 亚洲三级黄色毛片| 亚洲激情五月婷婷啪啪| 97在线视频观看| 国产精品国产三级国产专区5o | 汤姆久久久久久久影院中文字幕 | 久久久欧美国产精品| 只有这里有精品99| 卡戴珊不雅视频在线播放| 国产精品麻豆人妻色哟哟久久 | 欧美一级a爱片免费观看看| 成年女人看的毛片在线观看| 变态另类丝袜制服| 精品无人区乱码1区二区| 伦精品一区二区三区| 插逼视频在线观看| 亚洲av成人精品一二三区| 我要搜黄色片| 久久久久九九精品影院| 联通29元200g的流量卡| 亚洲精品亚洲一区二区| 两个人视频免费观看高清| 国产大屁股一区二区在线视频| 久久久久久九九精品二区国产| 久久人人爽人人爽人人片va| 97人妻精品一区二区三区麻豆| 国产亚洲91精品色在线| 超碰97精品在线观看| 国产极品精品免费视频能看的| 嫩草影院精品99| 尤物成人国产欧美一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩卡通动漫| 国产免费又黄又爽又色| 亚洲欧美日韩无卡精品| 大香蕉97超碰在线| 欧美激情国产日韩精品一区| 国产精品国产三级国产av玫瑰| 国产乱来视频区| 最近中文字幕2019免费版| 国产亚洲午夜精品一区二区久久 | 国产精品一区二区性色av| 国产黄色小视频在线观看| 国产成人精品一,二区| 少妇人妻一区二区三区视频| 亚洲四区av| 少妇熟女aⅴ在线视频| 国产成人精品婷婷| 老司机福利观看| 成人毛片a级毛片在线播放| 少妇猛男粗大的猛烈进出视频 | 少妇的逼好多水| 国产乱人偷精品视频| 少妇人妻一区二区三区视频| 精品一区二区三区视频在线| 久久久久久久久久久免费av| 97超视频在线观看视频| 一级av片app| 亚洲激情五月婷婷啪啪| av国产久精品久网站免费入址| 日韩成人伦理影院| 国产精品人妻久久久影院| 亚洲av不卡在线观看| 欧美又色又爽又黄视频| 亚洲四区av| 亚洲成色77777| 91在线精品国自产拍蜜月| 小蜜桃在线观看免费完整版高清| 美女黄网站色视频| 欧美成人免费av一区二区三区| 国产乱人视频| 2021少妇久久久久久久久久久| 女人久久www免费人成看片 | 99久久精品一区二区三区| 国产精品,欧美在线| 欧美极品一区二区三区四区| 亚洲精品日韩在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 久久精品国产亚洲av涩爱| 亚洲18禁久久av| 欧美高清性xxxxhd video| 亚洲自拍偷在线| 热99re8久久精品国产| 小说图片视频综合网站| 一夜夜www| 熟妇人妻久久中文字幕3abv| 久久综合国产亚洲精品| 高清视频免费观看一区二区 | 黑人高潮一二区| 日本三级黄在线观看| 欧美日韩在线观看h| 精品无人区乱码1区二区| 1000部很黄的大片| 禁无遮挡网站| 小说图片视频综合网站| 亚洲aⅴ乱码一区二区在线播放| 久久久久免费精品人妻一区二区| 国产精品一及| 国产91av在线免费观看| 精品人妻视频免费看| 麻豆精品久久久久久蜜桃| 国产高潮美女av| 99久久精品国产国产毛片| 女人久久www免费人成看片 | 欧美97在线视频| 亚洲av.av天堂| 亚洲人成网站在线播| 久久99蜜桃精品久久| 欧美xxxx性猛交bbbb| 亚洲av日韩在线播放| 午夜老司机福利剧场| 国产精品.久久久| 日本av手机在线免费观看| 亚洲精华国产精华液的使用体验| 国产男人的电影天堂91| 亚洲天堂国产精品一区在线| 久久精品久久久久久噜噜老黄 | 又粗又爽又猛毛片免费看| 老司机影院成人| 亚洲中文字幕日韩| 国模一区二区三区四区视频| www.av在线官网国产| 天美传媒精品一区二区| 久久久久免费精品人妻一区二区| 国产一区二区亚洲精品在线观看| 夜夜爽夜夜爽视频| 亚洲av免费在线观看| 国产 一区 欧美 日韩| 亚洲伊人久久精品综合 | 亚洲,欧美,日韩| 成人漫画全彩无遮挡| 日韩欧美在线乱码| 国产高清国产精品国产三级 | 成人综合一区亚洲| 精品午夜福利在线看| 丝袜喷水一区| 在线免费观看的www视频| 观看免费一级毛片| 日韩欧美三级三区| 又黄又爽又刺激的免费视频.| 高清日韩中文字幕在线| 久久精品国产鲁丝片午夜精品| 久久精品夜夜夜夜夜久久蜜豆| 一级av片app| eeuss影院久久| 蜜桃久久精品国产亚洲av| 亚洲欧美成人综合另类久久久 | 国产精品无大码| 国产精品伦人一区二区| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 美女国产视频在线观看| 国产又黄又爽又无遮挡在线| 国产成年人精品一区二区| 中文字幕久久专区| 国产精品三级大全| 波多野结衣巨乳人妻| 亚洲欧洲日产国产| 中文字幕av在线有码专区| a级毛片免费高清观看在线播放| 成人美女网站在线观看视频| 日韩三级伦理在线观看| 国产免费又黄又爽又色| 有码 亚洲区| 97超碰精品成人国产| 综合色丁香网| 国产白丝娇喘喷水9色精品| 亚洲高清免费不卡视频| 精品国产露脸久久av麻豆 | 日本与韩国留学比较| 一级av片app| 在线观看一区二区三区| av线在线观看网站| 在线免费观看的www视频| 天堂网av新在线| 精品久久国产蜜桃|