劉婉婷,遲子芳*,胡文華
MRGO-FMBO原位修復砷污染含水層
劉婉婷1,遲子芳1*,胡文華2
(1.吉林大學環(huán)境與資源學院,地下水資源與環(huán)境教育部重點實驗室,吉林 長春 130021;2.中科華魯土壤修復工程有限公司,山東 德州 253000)
為了探究磁性氧化石墨烯負載鐵錳氧化物復合材料(MRGO-FMBO)修復砷污染地下水的可行性,通過一維模擬柱和二維模擬槽實驗探討了MRGO-FMBO在含水層的遷移和分布情況,分析了材料注入濃度和注入速度對其遷移的影響,研究了MRGO-FMBO在注入模擬地下水含水層后反應帶的形成及演化過程.結果表明,MRGO-FMBO在飽和多孔介質中遷移性能良好,在設定的濃度范圍(1~8g/L)內,升高注入濃度能減少材料在介質中的殘留百分比,增強其遷移性能.當注入速度為0.023~0.057cm/s時,存在一個速度臨界值,當注入速度小于此值時,改變速度對MRGO-FMBO在含水層中的遷移性影響顯著;當注入速度大于此值時,速度不再是影響遷移的主要因素.MRGO-FMBO在注入地下含水層后能夠形成穩(wěn)定的反應帶,反應帶在20d內對砷的去除效率達到70.6%,在整個反應帶的發(fā)展過程中可去除7.79mg As.MRGO-FMBO在砷污染含水層原位修復中具有較好的應用前景.
MRGO-FMBO;砷;遷移特征;原位修復
砷(As)作為地下水中毒性最強的重金屬污染物之一,對人類健康危害極大.相較于As(V), As(III)的毒性更高,且能夠在環(huán)境中長期存在,增加了處理的難度[1].將吸附法與氧化法相結合是常見的除砷方法之一,近年來應用鐵錳二元氧化物作為吸附劑的砷污染修復技術逐漸成為學者們研究的熱點.Zhang等[2]利用氧化共沉淀法制備了鐵錳二元氧化物,證實了鐵錳氧化物對水中的As(V)和As(III)均具有良好的去除效果,且吸附能力高于非晶態(tài)FeOOH. Lin等[3]制備的生物碳改性鐵錳氧化物復合材料進一步提高了鐵錳氧化物的吸附能力,最大吸附量達到8.25mg/g.鐵錳氧化物能夠通過氧化性較強的高價態(tài)Mn把As(III)氧化成As(V),由于As(V)毒性較低且更易被鐵氧化物吸附去除,因而能夠顯著提高吸附劑的除砷效率[4].在實際修復中,鐵錳二元氧化物的應用具有一定局限性,其分散性較差,易團聚和沉積在介質表面造成遷移性的降低,限制了吸附效率和有效修復范圍,且顆粒易殘留在介質中,造成二次污染.因此,為了更好地解決上述問題,如何提高鐵錳氧化物復合材料的分散性、穩(wěn)定性和遷移性逐漸成為了研究的焦點.本文研發(fā)的磁性氧化石墨烯負載鐵錳氧化物復合材料(MRGO-FMBO)以氧化石墨烯(GO)作為骨架支撐,利用GO巨大的比表面積充分分散鐵錳氧化物納米顆粒,有效緩解了團聚問題,同時增加了吸附劑的吸附位點,提高其吸附效率.根據課題組前期研究的結果,As(III)接觸到MRGO- FMBO后,在范德華力和絡合作用下被吸附于材料表面,隨后被Mn(IV)氧化為較為穩(wěn)定的As(V),從而顯著提高了吸附劑的吸附穩(wěn)定性和砷去除率,表明 MRGO-FMBO能夠有效克服鐵錳氧化物在實際應用時存在的易團聚和遷移性差等問題[5].基于此,研究MRGO-FMBO在地下含水層中的遷移分布特征及原位反應帶的形成及演化情況對實際污染場地修復設計具有重要意義[6].目前國內外不乏應用鐵錳氧化物改性材料去除地下水中砷的研究[7-10],但對于改性材料的遷移分布及反應帶動態(tài)演化過程鮮有報道.本文通過一系列模擬柱和模擬槽實驗考察了不同注入條件下MRGO-FMBO在飽和多孔介質中的遷移特征及殘留情況,研究了MRGO-FMBO在注入模擬槽含水層后所形成反應帶的演化規(guī)律及對砷的修復效能,為原位注入MRGO-FMBO去除砷污染地下水實際工程修復提供參考.
實驗所用介質為石英砂,粒徑為0.5~1mm,購自長春金衡化玻公司.實驗所用試劑均為分析純,購自吉林省金泰化玻有限公司,實驗用水為去離子水.
MRGO通過原位沉淀法制備[11]:將一定量的FeCl3、FeSO4×7H2O混合溶液逐滴加入超聲后的氧化石墨烯懸浮液中,持續(xù)攪拌并加入質量分數(shù)為25%~28%的氨水升高溶液pH值至10,待混合液加熱至90℃后,滴加10mL水合肼并持續(xù)攪拌4h,冷卻后依次用乙醇及超純水洗滌沉淀物,經70℃真空干燥得到MRGO.稱取制備好的MRGO 2.25g超聲得到穩(wěn)定的懸浮液,加入1mL聚乙二醇400及一定量的MnSO4、FeCl3混合液和NaOH溶液后,持續(xù)攪拌20min,向所得沉淀中逐滴加入15mL NaClO并攪拌,所得沉淀經離心、洗滌、真空干燥后得到MRGO- FMBO.
實驗采用有機玻璃模擬柱,長為28cm,內徑3cm,進水端設有布水板和濾布,以粒徑為0.5~1mm的石英砂為填充介質均勻填充并夯實,避免介質中出現(xiàn)非均質現(xiàn)象.利用蠕動泵控制MRGO-FMBO注入模擬柱的流速.實驗前通入去離子水對其進行飽水,隨后注入2PV(孔隙體積, PV/cm3)復合材料漿液,再繼續(xù)通入去離子水直至出水中不含MRGO-FMBO.出水每10mL收集1次,用鹽酸超聲溶解后分別用硫氰酸鉀比色法和原子吸收法測定水樣中TFe和Mn的濃度并繪制穿透曲線.實驗結束后,將砂柱每隔2cm逐段取出,測定每段介質中TFe和Mn的含量.實驗共進行2組,實驗條件及模擬柱運行參數(shù)見表1,模擬柱示意見圖1.
表1 模擬柱實驗運行參數(shù)
圖1 模擬柱實驗裝置
圖2 模擬槽實驗裝置
原位修復實驗裝置采用二維有機玻璃槽,其尺寸為50cm×2cm×40cm(長×寬×高),槽內均勻填充石英砂并夯實,兩側設有布水板和濾布.MRGO- FMBO注入井位于距離左側布水板11cm處,內徑1cm,井身布滿小孔,井下端口距槽底部4cm.模擬槽正面設置3排4列共12個取樣口.在對其進行飽水后,調節(jié)蠕動泵以0.3m/d的模擬地下水流速持續(xù)通入500mg/L As(III)溶液至As(III)均勻污染整個含水層,隨后以12mL/min的速度由注入井注入4g/L MRGO-FMBO漿液.模擬槽示意圖見圖2.定期從取樣口取樣測定TFe、Mn及砷濃度變化情況,使用suffer8.5軟件繪制等值線圖,考察反應帶的演變情況及砷的去除效果.
圖3 不同MRGO-FMBO注入濃度下TFe和Mn的穿透曲線
與0分別表示出流濃度與初始濃度
圖4 不同MRGO-FMBO注入濃度下TFe和Mn在模擬柱中的殘留情況
2.1.1 注入濃度的影響 當注入速度為0.046cm/ s時,如圖3所示,MRGO-FMBO能在模擬柱中較好地遷移,隨著初始注入濃度的升高,TFe和Mn的最大相對出流濃度逐漸升高,這是由于MRGO- FMBO顆粒占據了介質中有限的截留位點,使后續(xù)材料能夠穿過較大的孔隙而流出模擬柱.當MRGO-FMBO的初始濃度從4g/L增加到8g/L,相對出流濃度的變化減弱.這是由于較高的注入濃度加劇了粒子之間的碰撞,由于范德華力和磁力的作用,材料顆粒會產生一定程度的團聚,在遷移過程中,大顆粒流會促使介質表面產生應變,多孔介質中的孔喉(孔隙中最狹窄的部分)不斷縮小,進而影響材料在介質中的遷移[12-15].由圖4可以看出,TFe和Mn較均勻地分散在模擬砂柱中,表明材料具有良好的分散性,利于形成原位反應帶.對不同注入濃度的MRGO-FMBO進行TFe和Mn的質量衡算,結果如表2~表3所示.當初始TFe濃度由0.41g/L增加至3.21g/L, Mn濃度由0.03g/L增加至0.34g/L時,模擬柱內殘留量分別由105.42%和102.91%降低至24.78%和16.05%,表明在1~8g/L的注入濃度范圍內,MRGO- FMBO能夠保持良好的遷移性,且濃度越高,遷移性越好.在原位修復中,要成功建立具有一定影響范圍的反應帶,修復材料不僅要具備對污染物高效、持續(xù)的處理能力,同時也要有良好的穩(wěn)定性和遷移性[14,16].根據課題組前期研究結果[5],本文所制備的MRGO-FMBO利用氧化石墨烯作為碳骨架支撐,能夠使納米顆粒充分分散于薄層結構之間,有效緩解了磁性顆粒易團聚和易被氧化的問題,增強了材料的分散性,進而增強了其在含水層中的遷移.因此當MRGO-FMBO注入量在1~8g/L之間時,提高注入濃度有利于提升修復效果.
表2 不同MRGO-FMBO注入濃度下模擬柱中總鐵的質量衡算
注:當模擬柱中鐵含量與出水鐵含量相加之和超過100%時,總鐵的損失值為負值.
表3 不同MRGO-FMBO注入濃度下模擬柱中錳的質量衡算
注:當模擬柱中錳含量與出水錳含量相加之和超過100%時,錳的損失值為負值.
2.1.2 注入速度的影響 注入速率對MRGO- FMBO的遷移和沉積存在一定的影響.在注入濃度為4g/L時,如圖5所示,隨著注入速度由0.023cm/s增加到0.057cm/s, TFe和Mn的最大相對出流濃度比分別由0.02和0.09升高至0.73和0.77.由剪切速率與注入流速之間的關系,在介質孔隙度、滲透率及孔隙結構形狀參數(shù)一定時,增加流速會增加水動力剪切速率,增大剪切力,納米顆粒遷移性增強,減少在多孔介質表面的沉積[17-18].當注入速度高于0.046cm/s時,隨注入速度的增加,穩(wěn)定出流濃度增幅減小,這說明對于一定濃度的MRGO-FMBO,存在一個臨界速度,當注入速度低于這一臨界值時,最大出流比隨濃度的增加有明顯增大;當注入速度高于這一臨界值時,注入速度對材料遷移影響不顯著[14].由TFe和Mn在砂柱中的殘留情況(圖6)可知在不同注入速度下,MRGO-FMBO均能在模擬柱介質中均勻分布,表現(xiàn)出氧化石墨烯對鐵錳氧化物良好的分散能力.對模擬柱內和出水中的TFe和Mn進行質量衡算(表4和表5),結果表明較高的注入速度下介質中材料的殘留率減少,與穿透曲線所得結論相同.當注入速度為0.023cm/s時,TFe和Mn的損失較大,可能由于測樣誤差或模擬柱和泵水管中的少量殘留導致.
圖6 不同MRGO-FMBO注入速度下TFe和Mn在模擬柱中的殘留量
表4 不同MRGO-FMBO注入速度下柱中TFe的質量衡算
注:當模擬柱中鐵含量與出水鐵含量相加之和超過100%時,總鐵的損失值為負值.
表5 不同MRGO-FMBO注入速度下柱中Mn的質量衡算
注:當模擬柱中錳含量與出水錳含量相加之和超過100%時,錳的損失值為負值.
圖7 含水層中TFe濃度變化情況
圖8 含水層中Mn濃度變化情況
如圖7、圖8所示,鐵和錳的分布規(guī)律相似,顯示出鐵錳氧化物性質的穩(wěn)定.MRGO-FMBO注入模擬槽后,以注入井為中心,在井中心及下游區(qū)域形成了一定范圍的原位反應帶.在水力作用下, MRGO-FMBO沿水流方向逐漸遷移,運行到2d時,模擬槽末端檢測到TFe和Mn的分布,表明材料遷移性能良好.由于介質的阻截作用,MRGO-FMBO在遷移過程中不斷沉積,導致形成的反應帶沿水流方向分布的不均勻性,注入井中心吸附劑濃度最高,向下游濃度逐漸降低.在整個實驗運行過程中,鐵和錳的分布特征變化不大,表明形成的原位反應帶具有良好的穩(wěn)定性.
如圖9所示,材料注入后,由于水流的稀釋作用,注入井附近及下游區(qū)域砷濃度低于0.5μg/L.運行至2d時,注入井前端及正后方砷濃度均明顯下降,靠近注入井的區(qū)域砷濃度為零,表明MRGO-FMBO對溶液中的砷的吸附效果顯著.繼續(xù)通入As(III),下游至模擬槽末端砷濃度始終保持在較低水平,結果表明MRGO-FMBO在注入含水層后能夠形成穩(wěn)定的原位反應帶,有效修復注入井下游區(qū)域砷污染含水層.實驗運行至20d時,出水端附近As略有回升,出水口流出液中砷濃度為0.15mg/L,計算出As的去除率為70.6%,而此時注入井下游砷濃度依然較低.這是由于注入井下端口距離模擬槽底端有一段距離,部分介質中未直接注入修復試劑,使得少量污染物從注入井底端繞流至出水口排出,致使出水端附近區(qū)域污染物與吸附劑接觸不充分,出水口砷濃度升高.到23d時,注入井附近砷濃度逐漸上升,檢測到出水口砷濃度為0.19mg/L,表明MRGO-FMBO對砷的吸附逐漸達到飽和,反應帶逐漸失去修復能力.在反應帶從形成到失效的全周期內,共去除了7.79mg砷,去除效率為62.7%,其中20d內對砷的去除效率最高,可達70.6%.
圖9 含水層中As濃度變化情況
3.1 MRGO-FMBO在飽和多孔介質中的分散性和遷移性能良好,利于形成原位反應帶.在本研究設定的濃度范圍內(1~8g/L),升高注入濃度能減少材料在介質中的殘留,提升其遷移性能.
3.2 當MRGO-FMBO濃度為4g/L時,注入速度存在一個臨界值0.046cm/s,當注入速度小于0.046cm/s時,改變速度對MRGO-FMBO在含水層中的遷移性影響顯著,在水動力剪切作用下,MRGO-FMBO的遷移性隨注入速度的增加而明顯增強;當注入速度大于0.046cm/s時,速度不再是影響遷移的主要因素.
3.3 MRGO-FMBO注入含水層后形成了穩(wěn)定的原位反應帶,反應帶在20d內對濃度為500μg/L的As(III)污染含水層具有較高的修復效能,去除效率達到70.6%,在整個反應帶的演變過程中可去除7.79mg砷.但上述結論是基于實驗室小尺度范圍內得出,對于大尺度實際污染場地的指導意義將在今后的研究中進一步驗證.
[1] Raven K P, Jain A, Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes [J]. Environmental Science & Technology, 1998,32(3):344-349.
[2] Zhang G S, Liu F D, Liu H J, et al. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation [J]. Environmental Science & Technology, 2014,48(17):10316?10322.
[3] Lin L N, Qiu W W, Wang D, et al. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism [J]. Ecotoxicology and Environmental Safety, 2017,144:514-521.
[4] Siddiqui S I, Chaudhry S A. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement [J]. Process Safety and Environmental Protection, 2017,111:592-626.
[5] Sha T, Hu W H, Dong J, et al. Influence of the structure and composition of Fe–Mn binary oxides on rGO on As(III) removal from aquifers [J]. Journal of Environmental Sciences, 2020,88(2):133-144.
[6] 韓建江,李常鎖,溫春宇,等.乳化納米鐵漿液在含水層中的遷移特征研究[J]. 中國環(huán)境科學, 2018,38(6):2175-2181.
Han J J, Li C S, Wen C Y, et al. Transport characteristics of emulsified nanoscale-zero-valent-iron in saturated porous media [J]. China Environmental Science, 2018,38(6):2175-2181.
[7] 李海寧.鐵錳復合氧化物/殼聚糖珠吸附材料制備及其去除水中砷、磷的研究[D]. 煙臺:煙臺大學, 2016.
Li H N. Fe–Mn binary oxide impregnated chitosan bead and its arsenic and phosphate adsorption properties [D]. Yantai:Yantai University, 2016.
[8] 林麗娜,黃 青,劉仲齊,等.生物炭-鐵錳氧化物復合材料制備及去除水體砷(Ⅲ)的性能研究 [J]. 農業(yè)資源與環(huán)境學報, 2017,34(2): 182-188.
Lin L N, Huang Q, Liu Z Q, et al. Preparation of biochar-Ferro manganese oxide composite material and properties of removal of arsenic(III) from aqueous solution [J]. Journal of Agricultural Resources and Environment,2017,34(2):182-188.
[9] 廉佩佩. Fe3O4-MnO2磁性納米盤吸附劑的制備及除砷(Ⅲ)效能研究[D]. 哈爾濱:哈爾濱工業(yè)大學, 2013.
Kang P P. Preparation of Fe3O4-MnO2magnetic nanoplates and research on its adsorption capacity for arsenite removal [D]. Harbin: Harbin Institute of Technology, 2013.
[10] 周曉馨.鐵錳氧化物/介孔氧化硅復合材料對水中砷的吸附性能及機理研究[D]. 杭州:浙江大學, 2018.
Zhou X X. Adsorption behavior and mechanism of arsenic on mesoporous silica modified by iron-manganese binary oxide (FeMnO/SBA-15) from aqueous systems [D]. Hangzhou: Zhejiang University, 2018.
[11] Shan C, Tong M P. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide [J]. Water Research, 2013,47(10):3411-3421.
[12] 任黎明.黃原膠穩(wěn)定氧化石墨烯負載納米鐵去除地下水中六價鉻污染的研究[D]. 長春:吉林大學, 2019.
Ren L M. Study on removal of chromium (VI) polluted groundwater using xanthan gum stabilized graphene oxide-supported nanoscale zero-valent iron [D]. Changchun: Jilin University, 2019.
[13] Molnar I L, Johnson W P, Gerhard J I. Predicting colloid transport through saturated porous media: A critical review [J]. Water Resources Research, 2015,51(9):6804–6845.
[14] 李 卉.蔗糖改性納米鐵原位反應帶修復硝基苯污染地下水研究[D]. 長春:吉林大學, 2014.
Li H. Study on remediation of nitrobenzene contaminated groundwater with in situ reactive zone of sucrose-modified nano-iron [D]. Changchun: Jilin University, 2014.
[15] 龍 菲.溫度對多孔介質中顆粒遷移特性影響的試驗研究 [D]. 北京:北京交通大學, 2016.
Long F. Laboratory test on the effect of temperature on particle transport in porous media [D]. Beijing: Beijing Jiaotong University, 2016.
[16] Zhao X, Liu W, Cai Z Q. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation [J]. Water Research, 2016,100:245–266.
[17] 殷憲強,孫慧敏,易 磊,等.孔隙水流速對膠體在飽和多孔介質中運移的影響[J].水土保持學報, 2010,24(5):101-104.
Yin X Q, Sun H M, Yi L, et al. Effect of flowrate of pore water on the transport of colloid in saturated porous media [J]. Journal of Soil and Water Conservation,2010,24(5):101-104.
[18] Strutz T J, Hornbruch G, Dahmke A, et al. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media [J]. Journal of Contaminant Hydrology, 2016,191:54-65.
[19] Zhang G S, Liu Y, Wang J Y, et al. Efficient arsenic(III) removal from aqueous solution by a novel nanostructured iron-copper-manganese trimetal oxide [J]. Journal of Molecular Liquids, 2020,309:1-8.
[20] Zhou J S, Zhou X X, Yang K L, et al. Adsorption behavior and mechanism of arsenic on mesoporous silica modified by iron-manganese binary oxide (FeMnO/SBA-15) from aqueous systems [J]. Journal of Hazardous Materials, 2020,384:1-11.
[21] 徐方男.新型鐵錳氧化物對水體中砷鎘吸附性能及機理研究[D]. 杭州:浙江大學, 2020.
Xu F N. Research on the adsorption performance and mechanism of arsenic and cadmium in water by novel iron and manganese oxides [D]. Hangzhou: Zhejiang University, 2020.
[22] Phanthasri J, Khamdahsag P, Jutaporn P, et al. Enhancement of arsenite removal using manganese oxide coupled with iron (III) trimesic [J]. Applied Surface Science, 2018,427:545-552.
[23] Bui T H, Kim C, Hong S P, et al. Effective adsorbent for arsenic removal: core/shell structural nano zero-valent iron/manganese oxide [J]. Environmental Science and Pollution Research, 2017,24(31): 24235-24242.
[24] Zheng Q, Hou J T, Hartley W, et al. As(III) adsorption on Fe-Mn binary oxides: Are Fe and Mn oxides synergistic or antagonistic for arsenic removal? [J]. Chemical Engineering Journal, 2020,389:1-12.
[25] 曾輝平,王繁爍,于亞萍,等.殼聚糖海藻酸鈉鐵錳泥吸附劑制備與除As(V)研究 [J]. 中國環(huán)境科學, 2020,40(3):1146-1155.
Zeng H P, Wang F S, Yu Y P, et al. Preparation of chitosan-alginate adsorbent contained Fe-Mn sludge and its potential for As(V) removal [J]. China Environmental Science, 2020,40(3):1146-1155.
[26] 于冰冰,顏湘華,王興潤,等.不同穩(wěn)定化材料對廢渣中As的固定效果 [J]. 中國環(huán)境科學, 2019,39(9):3887-3896.
Yu B B, Yan X H, Wang X R, et al. Stabilization effects of different materials on arsenic-containing slag [J]. China Environmental Science,2019,39(9):3887-3896.
[27] 李永奎,祝 星,祁先進,等.銅渣與含砷污酸反應行為及除砷機理 [J]. 中國環(huán)境科學, 2019,39(10):4228-4238.
Li Y Q, Zhu X, Qi X J, et al. Reaction behavior of copper slag with waste acid and its arsenic removal mechanism [J]. China Environmental Science,2019,39(10):4228-4238.
[28] 曾輝平,尹 燦,李 冬,等.基于鐵錳泥的除砷吸附劑性能比較及吸附機理 [J]. 中國環(huán)境科學, 2018,38(9):3373-3379.
Zeng H P, Yin C, Li D, et al. Performance comparison and adsorption mechanism of arsenic removal adsorbents made of backwashing sludge from biofilter for iron and manganese removal [J]. China Environmental Science,2018,38(9):3373-3379.
In-situ remediation of arsenic contaminated aquifer by MRGO-FMBO.
LIU Wan-ting1, CHI Zi-fang1*, HU Wen-hua2
(Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China;2.Zhongkehualu Soil Remediation Engineering LTD, Dezhou 253000, China)., 2021,41(6):2698~2705
To explore the feasibility of magnetic graphene oxide based Fe-Mn composite oxides (MRGO-FMBO) for remediation of As(III) polluted groundwater, simulation column experiments and two-dimensional sand box experiments were conducted to discuss the migration and distribution of MRGO-FMBO in aquifers. The effects of injection rate and concentration on the migration were explored and the development and evolution of reaction zone after the injection of MRGO-FMBO into the aquifer were studied. MRGO-FMBO presented good mobility in saturated porous media. Within the concentration range set in this study(1~8g/L), higher injection concentration led to better material mobility and less residue in simulated columns. A critical velocity value between 0.023~0.057cm/s existed that the change of injection velocity had a significant impact on the migration when it was under the critical value. However, the velocity was not the main factor affecting migration when the value was higher than the critical velocity. Besides, MRGO-FMBO could form a stable reaction zone after being injected into the underground aquifer with As remediation efficiency of 70.6% in 20days. During the whole development of the reaction zone, 7.79mg of As could be removed totally. Therefore, these results indicated that MRGO-FMBO had a good application prospect in in-situ remediation of arsenic-contaminated aquifers.
MRGO-FMBO;As;migration characteristics;in-situ remediation
X523
A
1000-6923(2021)06-2695-08
2020-10-22
國家重點研發(fā)資助項目(2020YFC1806403-2);國家自然科學基金資助項目(41977158,41772244)
* 責任作者, 副教授, chizifang@jlu.edu.cn
劉婉婷(1995-),女,遼寧阜新人,吉林大學碩士研究生,主要從事污染場地控制與修復方面的研究.