• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Y2O3-MgO Composite Nano-ceramics Prepared from Core-shell Nano-powders

    2021-07-23 04:18:36JIANGHongtaoQINHaimingFENGShaoweiCHENHongbingJIANGJun
    發(fā)光學(xué)報(bào) 2021年7期
    關(guān)鍵詞:納米粉體核殼沉淀法

    JIANG Hong-tao, QIN Hai-ming, FENG Shao-wei, CHEN Hong-bing, JIANG Jun

    (1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315201, China;2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;3. University of Chinese Academy of Sciences, Beijing 100049, China;4. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)

    Abstract: Y2O3-MgO composite nano-ceramics are regarded as a significant candidate of infrared transparent ceramics on account of excellent optical and mechanical properties. Nevertheless, a huge challenge remains regarding the critical optical scattering and needless absorption in the near- and mid-infrared bands, which hinders its applications in extreme harsh environments. In present work, Y2O3-MgO core-shell structure nano-powders were prepared via urea precipitation method before that Y2O3-MgO composite nano-ceramics were prepared under spark plasma sintering. Thermogravimetric and differential scanning calorimetry(TG/DSC), X-ray diffraction and scanning electron microscope were performed to analyze as prepared core-shell structure nano-powders and composite nano-ceramics. The size of Y2O3-MgO core-shell structure nano-powders is about 250 nm, and average grain size of the prepared ceramics is approximately 360 nm. The transmittance is 57% at 6 μm, and the Vickers hardness is 820 HV. The powder synthesis method accomplished in present work offers a novel solution for composite nano-ceramics, which easily regulate particle size and proportion of different components.

    Key words: Y2O3-MgO composite nano-ceramics; core-shell structure nano-powder; urea precipitation method; spark plasma sintering

    關(guān) 鍵 詞:Y2O3-MgO復(fù)相納米陶瓷; 核殼結(jié)構(gòu)納米粉體; 尿素沉淀法; 放電等離子燒結(jié)

    1 Introduction

    In recent years, infrared window materials are brought into focus due to widely used in infrared tracking, identification, search, guidance, navigation, and thermal imaging[1-7]. In order to cope with various application environments, the performance of infrared window materials need to meet the following requirements: infrared transparency, high mechanical strength, high thermal conductivity, and resistance to thermal shock and erosion[5-6]. However, it is not realistic to improve the operational properties of infrared materials(ZnS, Al2O3and MgAl2O4) that have been widely used in extreme environments and under severe loads, such as aerospace applications[7]. Recently, progress of the composite ceramic as a competitive candidate in this area brings new driving power.

    Among all nano-composite ceramics, the Y2O3-MgO nano-composite ceramics are presentative infrared transparent ceramic, since the Y2O3-MgO nano-composite ceramics process outstanding thermal and mechanical properties for extreme environments[8-10]. The most commonly approach to sintering Y2O3-MgO nano-composite ceramics is the spark plasma sintering(SPS). SPS regarded as a rapid solidification sintering method is an especially efficient technique, through which the sintering time can be massively decreased owing to the rapid heating rate at a speed higher than 100 ℃/min compared with conventional sintering methods. For the pressureless sintering, the higher sintering temperature and the longer sintering time lead to dramatically grain growth, particularly in the final period of the densification. For another, SPS enhances the driving force of sintering by dynamically activating plastic deformation and diffusion processes, which is efficacious to restrict the grain growth under a lower sintering temperature and high intensity of pressure. In 2010, Jiangetal.[11]prepared Y2O3-MgO nano-composite ceramics with the grain size less than 100 nm by SPS sintering under a load of 80 MPa. Liuetal.[12]used SPS to sinter the powders after ultrasonic horn treatment to prepare the Y2O3-MgO nano-composite ceramics at 50 MPa. Huangetal.[13]prepared the Y2O3-MgO nano-composite ceramics with a grain size of 100-200 nm through SPS sintering with 100 MPa. Then, Xuetal.[14]prepared the Y2O3-MgO nano-composite ceramics with a grain size of 100-300 nm through SPS sintering under 50 MPa, which got the nano-powder through the esterification sol-gel route. Recently, Safronovaetal.[15]explored the influence of temperature on the Y2O3-MgO nano-composite ceramics during SPS sintering. At the same time, Liuetal.[16]and Maetal.[17]independently explored the influence of pressure and LiF sintering aid on grain growth of Y2O3-MgO ceramics.

    In present work, the homogenous Y2O3-MgO core-shell structure nano-powders were prepared through urea precipitation approach. In order to obtain high sinterability powders, the calcination temperature, powder morphology and size of Y2O3-MgO core-shell structure nano-powders were studied compared with that of single-phase Y2O3. Y2O3-MgO composite nano-ceramics were sintered by SPS using core-shell powders as the beginning powders. This core-shell nano-powders preparation method and SPS procedure are simple and inexpensive, which provide a novel way to fabricate Y2O3-MgO composite nano-ceramics.

    2 Experimental and Characterizations

    Y2O3-MgO core-shell structure nano-powders were prepared by urea precipitation. The raw materials were Y2O3(5N), nitric acid(AR), urea(99%), and MgO(99.9%, 50 nm). Firstly, 0.015 mol Y(NO3)3solution was prepared by dissolving 0.007 5 mol Y2O3in a certain number of HNO3. Next, Y(NO3)3solution was added together with 0.5 mol urea into a three-necked flask of 2 000 mL. Then, MgO was weighted with a volume ratio of 1∶1 to Y2O3into the container through stirring and dispersing sufficiently. After that, MgO was transferred to the solution in the three-necked flask. Currently, there were about 1 300 mL of solution in the three-necked flask. Finally, the three-necked flask was placed in a heating mantle to heat the solution temperature from room temperature to (85±1) ℃ in about 40 min. At the same time, an electric stirrer was used to stir at a rate of 500 r/min. When the solution was obviously turbid, the reaction was maintained in this state for 2 h. After two hours, the resulting suspension was obtained by suction filtration, and then the suspension was placed in an oven and dried at 80 ℃ for 24 h. The dried precursors were put into the muff furnace and calcined at the selected temperature for 1 h, after which 0.25% LiF(99%) was added and the powders were ground, and then screened with a 140-mesh sieve.

    Transparent Y2O3ceramics powders were also prepared by urea precipitation method, and then ground and screened with 140 mesh, and then compressed intoφ10 discs by a powder tablet machine. The ceramic tablets were compacted at 200 MPa using a cold isostatic press. The sintering method was vacuum sintering, the temperature was 1 750 ℃, and the holding time was 4 h.

    The powders obtained above were sintered into ceramics through SPS(LABOX-1575, SinterL and Inc., Japan). The powder samples loaded into the graphite mold were heated from room temperature to a pre-set temperature(1 200 ℃) at the heating rate of 100 ℃/min under vacuum(10 Pa) and the dwell time was 8 min with the pressure of 50 MPa. The sintered Y2O3-MgO composite nano-ceramics were annealed in the air at 1 000 ℃ for 15 h to eliminate oxygen vacancies, carbon and residual stress. When measuring infrared transmittance, the sample is polished on both sides to a thickness of~0.9 mm.

    XRD patterns were measured by a Bruker D8 X-ray diffractometer with Cu Kα radiation(λ=0.154 056 nm) at 40 kV and 40 mA. Thermal analysis of the precursors was measured by thermogravimetric/differential scanning calorimetry(TG/DSC, STA 449F3, NETZSCH, Germany) at a heating rate of 10 K/min in air. A thermal field emission scanning electron microscope(TFE-SEM, Thermo Scientific Verios G4 UC) was used to observe the microscopic morphology of the powders. The particle size distributions of the powders were measured by Laser particle size analyzer(HELOS-OASIS, Sympatec GmbH, Germany). The grain and grain boundary morphology of the ceramic were measured by a field emission scanning electron microscope(FE-SEM, Hitachi S4800, Japan). The transmittance in the wavelength range ofλ=0.25-2.5 μm was conducted by using a spectrometer(Lambda 950, Perkin Elmer Co., USA). Fourier transform infrared spectroscopy(NICOLET 6700, Thermo Co, USA) was used to measure the transmittance of the mirror polished samples at a range of 2.5-10 μm. An image analysis microhardness tester(HV-1000/S, SIOMM, Shanghai) was used to carry out a 10 s, 100 N load test to obtain the Vickers hardness result.

    3 Results and Discussion

    Fig.1 TG-DSC curves of the Y2O3-MgO core-shell structure nano-powder precursors

    Fig.2 shows XRD patterns of MgO nano-powders, Y2O3nano-powder precursors, Y2O3-MgO core-shell structure nano-powder precursors and Y2O3-MgO core-shell structure nano-powders calcined at different temperatures. Compared with Y2O3nano-powder precursors, Y2O3-MgO core-shell structure nano-powder precursors appear weaker MgO peaks. The other peaks may be caused by the formation of the coating structure and some changes in the disordered structure of the outer layer. According to thermal analysis, the powders have reached its crystallization temperature at 650 ℃. After reaching 750 ℃, the powders have been completely crystallized, and no obvious heat absorption and exotherm were observed, and the quality almost no longer changes. As a result, 750 ℃ is the optimum calcination temperature for the powders. The XRD of core-shell structure nano-powders calcined at 650, 750, 850 ℃are consistent with that of Y2O3and MgO, and there is no obvious change between them, except that the peak shape gradually becomes sharp with the increase of temperature, indicating that the powders have basically formed phase at 650 ℃. Therefore, the calcined temperature of Y2O3-MgO core-shell structure nano-powder precursors is higher about 100 ℃ than precursor crystallization temperature in order to remove possible traces of carbon- and nitrogen-containing compounds.

    Fig.2 XRD patterns of MgO nano-powders, Y2O3 nano-powder precursors, Y2O3-MgO core-shell structure nano-powder precursors and Y2O3-MgO core-shell structure nano-powders calcined at different temperatures.

    Fig.3 shows the micromorphology of MgO nano-powders, Y2O3powders, Y2O3-MgO core-shell structure nano-powder precursors and Y2O3-MgO core-shell structure nano-powders. The powder size of MgO nano-powders in Fig.3(a) is about 50 nm, and the powder morphology are relatively uniform. Fig.3(b) shows the prepared Y2O3powders by the urea precipitation method. The size of Y2O3powders with good sphericity and good monodispersity is about 200-300 nm. The micrograph of Y2O3-MgO core-shell structure nano-powder precursors (Fig.3(c)) is much more similar to that of MgO nano-powders due to the nucleation process starting on the surface of MgO nano-powders. As shown in Fig.3(d), Y2O3-MgO core-shell structure nano-powders with soft agglomeration are composed of microcrystals. Y2O3-MgO core-shell structure nano-powders exhibit a clear interface between core and shell, which indicates the MgO nano-powders as a core are successfully cladded with Y2O3powders as a shell. The size distribution of all the powders is shown in Fig.4. Compared with the SEM images, the four kinds of powders have different degrees of agglomeration. Fig.4(a) shows the particle size distribution of MgO nano-powders is around 600 nm, which is quite different from the SEM image. This is due to the small size of MgO nano-powders and large specific surface area, which is easy to form large agglomerated particles. According to Fig.4(b), the size of Y2O3powders is mainly concentrated in 200-300 nm, which is more consistent with Fig.3(b) image. Therefore, the larger particles are ascribed to slightly agglomerating of Y2O3powders. Fig.4(c) shows that the particle size distribution of Y2O3-MgO core-shell structure nano-powder precursors is mainly 100-300 nm. Since the precursors have not undergone crystallization after calcination, the particles have not grown. From Fig.4(d), the agglomeration of Y2O3-MgO core-shell structure nano-powders nearly disappear with uniform size distribution at about 250 nm. After calcined at low temperature, the inorganic acid ions are decomposed and core-shell structure powders did not happen growing up. Fig.5 shows the EDS mapping images of Y2O3-MgO core-shell structure nano-powders calcined at 750 ℃. As represented in Fig.5, Y, Mg and O elements are evenly distributed throughout Y2O3-MgO core-shell

    Fig.3 SEM images of MgO nano-powders(a), Y2O3 powders(b), Y2O3-MgO core-shell structure nano-powder precursors(c), Y2O3-MgO core-shell structure nano-powders(d).

    Fig.4 Particle size distributions of MgO nano-powders(a), Y2O3 powders(b), Y2O3-MgO core-shell structure nano-powder precursors(c), Y2O3-MgO core-shell structure nano-powders(d).

    Fig.5 EDS mapping images of Y2O3-MgO core-shell structure nano-powders calcined at 750 ℃ structure nano-powders. However, the content distribution of Y is denser than that of Mg due to Y distributing on the outer surface of core-shell structure.

    Fig.6 shows the micro-morphology of Y2O3ceramics and Y2O3-MgO composite nano-ceramics, and the EDS mapping images of Y2O3-MgO composite nano-ceramics. From Fig.6(a) and (b), the average grain size of the Y2O3ceramics is about 100 μm, while the average grain size of the Y2O3-MgO composite nano-ceramics is about 360 nm. It can be seen from the image that Y2O3ceramics show larger grains and irregular grain growth, while the grains of Y2O3-MgO composite nano-ceramics are smaller and the grain growth is more uniform. Following BSE images and EDS mapping images, in Fig.6(d), the white phase and black phase are respectively Y2O3and MgO. At the same time, the grain size of MgO is generally smaller than that of Y2O3, and the larger MgO grains may be caused by the incomplete coating structure. And from the Fig.6(d), obviously, it can be seen that the black phase is surrounded by the white phase, that is, MgO is surrounded by Y2O3, which corresponds to the prepared core-shell structure nano-powders, thus confirming the construction of the core-shell structure. The core-shell structure nano-powders are beneficial to a more even distribution of the two grains, which is conducive to inhibiting growth of ceramic grains in a smaller scale. It indicates that the core-shell structure nano-powders has a certain binding effect on the grain growth during sintering, making the grains unable to grow at will.

    Fig.7 shows IR transmittance spectra of Y2O3ceramics and Y2O3-MgO composite nano-ceramics.

    Fig.6 SEM images of Y2O3 ceramics(a) and Y2O3-MgO composite nano-ceramics(b). BSE images of Y2O3 ceramics(c) and Y2O3-MgO composite nano-ceramics(d). (e)-(g)EDS mapping images of (b).

    Fig.7 IR transmittance spectra of Y2O3 ceramics and Y2O3-MgO composite nano-ceramics with the thickness of 0.9 mm. Inset: the photo of synthesized Y2O3 ceramics(left) and Y2O3-MgO composite nano-ceramics(right).

    Fig.8 shows the comparison of Vickers hardness of Y2O3ceramics and Y2O3-MgO composite nano-ceramics. The Vickers hardness of Y2O3ceramics is about 780 HV, and the Vickers hardness of Y2O3-MgO composite nano-ceramics is about 820 HV. Compared with Y2O3ceramics, after adding MgO, its mechanical properties have indeed improved. However, its hardness is far from reaching the required level, so the powder preparation and sintering process still need to be improved.

    Fig.8 Vickers hardness of Y2O3 ceramics and Y2O3-MgO composite nano-ceramics

    4 Conclusion

    Y2O3-MgO core-shell structure nano-powders with the particle size of about 250 nm were successfully prepared by urea precipitation method. Y2O3-MgO composite nano-ceramics with the average grain size of 360 nm are accomplishedviaSPS treatment. Grain size of Y2O3-MgO composite nano-ceramics is more uniform and smaller compared with Y2O3ceramics, indicating that the core-shell structure has certain binding effect on the grain growth. This core-shell structure nano-powders preparation method offers a new approach to further control the grain size of nano-composite ceramics. However, the transmittance and Vickers hardness of Y2O3-MgO composite nano-ceramics are not good enough, so the powder preparation and sintering process still need to be explored. Together with the SPS treatment, the method accomplished in this work provides a novel way to fabricate Y2O3-MgO composite nano-ceramics.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.

    20210095.

    猜你喜歡
    納米粉體核殼沉淀法
    硝酸銀沉淀法去除高鹽工業(yè)廢水中鹵化物對(duì)COD測(cè)定的干擾
    溶液燃燒法制備Mo–La2O3納米粉體及燒結(jié)性能的研究
    核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    陶瓷可飽和吸收體用Co:MgAl2O4納米粉體的制備
    納米粉體改性瀝青的流變性能分析
    石油瀝青(2018年4期)2018-08-31 02:29:40
    核殼型含氟硅丙烯酸酯無(wú)皂拒水劑的合成及應(yīng)用
    濕法磷酸化學(xué)沉淀法除鎂工藝
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點(diǎn)的水熱法合成及其光致發(fā)光性能
    混凝沉淀法處理含鉛礦坑涌水
    Y2O3:Er3+和Y2O3:Er3+,Yb3+納米粉體的制備及上轉(zhuǎn)換發(fā)光性能的研究
    日日摸夜夜添夜夜添小说| 级片在线观看| 亚洲第一电影网av| 国产av一区在线观看免费| 美女高潮的动态| 桃色一区二区三区在线观看| 性色avwww在线观看| 最近中文字幕高清免费大全6 | 身体一侧抽搐| 悠悠久久av| 亚洲 国产 在线| 国产爱豆传媒在线观看| 三级国产精品欧美在线观看| 亚洲国产高清在线一区二区三| 国产精品亚洲美女久久久| 色综合婷婷激情| 特级一级黄色大片| 欧美一区二区精品小视频在线| 97超视频在线观看视频| 男插女下体视频免费在线播放| 国内久久婷婷六月综合欲色啪| 国内精品一区二区在线观看| 一级a爱片免费观看的视频| 国产一区二区亚洲精品在线观看| 免费大片18禁| 国产av不卡久久| 国产精品三级大全| 少妇的逼好多水| 黄色女人牲交| 亚洲av免费在线观看| 麻豆国产97在线/欧美| 久久久精品欧美日韩精品| 精品免费久久久久久久清纯| av在线天堂中文字幕| 国产精品久久久久久人妻精品电影| 69av精品久久久久久| 欧美xxxx黑人xx丫x性爽| 熟女人妻精品中文字幕| 99久久99久久久精品蜜桃| 日本免费一区二区三区高清不卡| 哪里可以看免费的av片| 国产中年淑女户外野战色| a级一级毛片免费在线观看| 我的老师免费观看完整版| 亚洲精品色激情综合| 男插女下体视频免费在线播放| 国产大屁股一区二区在线视频| 日本成人三级电影网站| 香蕉av资源在线| 性色av乱码一区二区三区2| 欧美成人性av电影在线观看| 国产毛片a区久久久久| 老女人水多毛片| 日本在线视频免费播放| 级片在线观看| 老女人水多毛片| 人妻丰满熟妇av一区二区三区| 国产伦精品一区二区三区四那| 赤兔流量卡办理| 91九色精品人成在线观看| 久久久久国产精品人妻aⅴ院| 欧美不卡视频在线免费观看| 九九在线视频观看精品| 欧美最黄视频在线播放免费| 精品福利观看| 婷婷精品国产亚洲av在线| 午夜影院日韩av| 久久久成人免费电影| 国产欧美日韩精品亚洲av| av视频在线观看入口| 欧美色视频一区免费| 99热这里只有精品一区| 久久久久免费精品人妻一区二区| 国产一级毛片七仙女欲春2| 午夜a级毛片| 久久久久久大精品| АⅤ资源中文在线天堂| 岛国在线免费视频观看| 午夜福利视频1000在线观看| 日本撒尿小便嘘嘘汇集6| 免费看光身美女| 天天躁日日操中文字幕| 99在线人妻在线中文字幕| 欧美成人性av电影在线观看| 午夜精品在线福利| 在线看三级毛片| 欧美极品一区二区三区四区| 淫妇啪啪啪对白视频| 欧美+日韩+精品| 欧美日韩综合久久久久久 | 成人亚洲精品av一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷六月久久综合丁香| 一本久久中文字幕| 成人一区二区视频在线观看| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| 欧美3d第一页| 欧美日韩综合久久久久久 | 18禁在线播放成人免费| 一卡2卡三卡四卡精品乱码亚洲| 白带黄色成豆腐渣| 宅男免费午夜| 在线免费观看不下载黄p国产 | 亚洲国产精品999在线| 美女 人体艺术 gogo| 99热这里只有是精品50| 国产三级中文精品| 51午夜福利影视在线观看| 99热这里只有精品一区| 欧美日韩黄片免| 国产一区二区亚洲精品在线观看| 欧美丝袜亚洲另类 | 18禁黄网站禁片免费观看直播| 99久久无色码亚洲精品果冻| 高潮久久久久久久久久久不卡| 亚洲 国产 在线| 亚洲性夜色夜夜综合| 蜜桃亚洲精品一区二区三区| 黄色日韩在线| 床上黄色一级片| 国产中年淑女户外野战色| 久久久久久久久久成人| 91久久精品国产一区二区成人| 91麻豆av在线| 欧美三级亚洲精品| 午夜福利免费观看在线| 内地一区二区视频在线| 动漫黄色视频在线观看| 免费看美女性在线毛片视频| 精品久久久久久成人av| 亚洲第一区二区三区不卡| 久久久久久久午夜电影| 校园春色视频在线观看| 一进一出抽搐gif免费好疼| 嫩草影院精品99| 婷婷丁香在线五月| 欧美区成人在线视频| 一二三四社区在线视频社区8| 非洲黑人性xxxx精品又粗又长| 日本熟妇午夜| 91麻豆精品激情在线观看国产| 一级作爱视频免费观看| 亚洲午夜理论影院| 精品一区二区免费观看| 无人区码免费观看不卡| 国产精品国产高清国产av| 精品乱码久久久久久99久播| 中文字幕精品亚洲无线码一区| 日韩国内少妇激情av| 久久久成人免费电影| av女优亚洲男人天堂| 国产精品不卡视频一区二区 | 亚洲人成网站高清观看| 少妇人妻一区二区三区视频| 亚洲五月婷婷丁香| 在线播放无遮挡| a在线观看视频网站| 国产在视频线在精品| 在线观看av片永久免费下载| 老鸭窝网址在线观看| 亚洲av成人精品一区久久| 大型黄色视频在线免费观看| 夜夜爽天天搞| 真人做人爱边吃奶动态| 久久99热这里只有精品18| 男人和女人高潮做爰伦理| 在线国产一区二区在线| 他把我摸到了高潮在线观看| 18禁黄网站禁片午夜丰满| 免费看光身美女| 91在线精品国自产拍蜜月| 亚洲男人的天堂狠狠| 国产午夜福利久久久久久| 亚洲狠狠婷婷综合久久图片| 校园春色视频在线观看| 91字幕亚洲| 精品免费久久久久久久清纯| 可以在线观看毛片的网站| 桃红色精品国产亚洲av| 欧美最黄视频在线播放免费| 国内少妇人妻偷人精品xxx网站| 日韩欧美三级三区| 高清毛片免费观看视频网站| 成人亚洲精品av一区二区| 成人欧美大片| 日本成人三级电影网站| 神马国产精品三级电影在线观看| 亚洲av.av天堂| 99国产精品一区二区蜜桃av| 国产视频内射| 可以在线观看毛片的网站| 国产精品久久久久久久电影| 亚洲美女视频黄频| 一夜夜www| 两人在一起打扑克的视频| 啦啦啦韩国在线观看视频| 一级黄色大片毛片| 精品人妻视频免费看| 久久久久久久午夜电影| 无人区码免费观看不卡| 夜夜看夜夜爽夜夜摸| 18禁在线播放成人免费| 窝窝影院91人妻| 亚洲成人中文字幕在线播放| bbb黄色大片| 亚洲经典国产精华液单 | 天天一区二区日本电影三级| 欧美黑人欧美精品刺激| 亚洲美女搞黄在线观看 | 狂野欧美白嫩少妇大欣赏| 又爽又黄a免费视频| 久久久久久九九精品二区国产| 午夜亚洲福利在线播放| 国产视频内射| 国产高潮美女av| 嫩草影院新地址| 男女那种视频在线观看| 18禁黄网站禁片免费观看直播| 亚洲av免费高清在线观看| 国产精品99久久久久久久久| www.色视频.com| 免费在线观看亚洲国产| 亚洲国产高清在线一区二区三| av在线天堂中文字幕| 国产大屁股一区二区在线视频| 国产三级中文精品| 男女之事视频高清在线观看| 两人在一起打扑克的视频| 亚洲国产日韩欧美精品在线观看| 亚洲美女黄片视频| а√天堂www在线а√下载| 夜夜躁狠狠躁天天躁| 搡老岳熟女国产| 简卡轻食公司| 亚洲精品在线美女| 中亚洲国语对白在线视频| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 国产精品久久久久久久久免 | 欧美成人一区二区免费高清观看| 少妇熟女aⅴ在线视频| 国产一区二区激情短视频| 国产成人啪精品午夜网站| 又粗又爽又猛毛片免费看| 日韩欧美国产在线观看| 午夜福利在线观看免费完整高清在 | 能在线免费观看的黄片| 亚洲色图av天堂| 综合色av麻豆| 欧美潮喷喷水| 99热只有精品国产| 精品午夜福利视频在线观看一区| 国产av在哪里看| 在现免费观看毛片| 亚洲中文字幕日韩| 亚洲精品影视一区二区三区av| 中文字幕av在线有码专区| 国产欧美日韩一区二区三| 夜夜夜夜夜久久久久| 欧美日韩黄片免| 亚洲真实伦在线观看| 免费搜索国产男女视频| 特级一级黄色大片| 嫩草影院精品99| 国产成人a区在线观看| 久久精品久久久久久噜噜老黄 | 国产精品久久久久久久电影| 久久天躁狠狠躁夜夜2o2o| 色5月婷婷丁香| 波多野结衣高清作品| 国产精品久久电影中文字幕| 99国产极品粉嫩在线观看| 久久性视频一级片| 国产精品亚洲一级av第二区| 日韩av在线大香蕉| 国产精品乱码一区二三区的特点| 色综合站精品国产| 99精品在免费线老司机午夜| 美女高潮喷水抽搐中文字幕| 精品久久久久久久久久久久久| 美女免费视频网站| 亚洲成a人片在线一区二区| 国产精品一区二区性色av| 中亚洲国语对白在线视频| 国产免费男女视频| 国产精品精品国产色婷婷| 夜夜躁狠狠躁天天躁| 99久久精品热视频| 欧美另类亚洲清纯唯美| 中文字幕人成人乱码亚洲影| 亚洲精品456在线播放app | 最近视频中文字幕2019在线8| 淫妇啪啪啪对白视频| 男女做爰动态图高潮gif福利片| 色视频www国产| 国产高清视频在线播放一区| 好男人在线观看高清免费视频| 亚洲最大成人av| 91麻豆av在线| 18禁黄网站禁片免费观看直播| 能在线免费观看的黄片| 永久网站在线| 国产亚洲精品久久久com| 黄色日韩在线| 午夜福利在线观看吧| 亚洲欧美日韩东京热| 乱人视频在线观看| 欧美高清成人免费视频www| 久久精品影院6| 在线播放国产精品三级| www.色视频.com| 欧美另类亚洲清纯唯美| 午夜福利欧美成人| 特大巨黑吊av在线直播| 亚洲精品成人久久久久久| 免费在线观看亚洲国产| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| 琪琪午夜伦伦电影理论片6080| 亚洲av成人精品一区久久| 久久久久久久久大av| 亚洲av电影不卡..在线观看| 久久精品久久久久久噜噜老黄 | .国产精品久久| 日韩有码中文字幕| 一级黄色大片毛片| 性色avwww在线观看| 国产乱人伦免费视频| а√天堂www在线а√下载| 9191精品国产免费久久| 我要看日韩黄色一级片| 在线播放无遮挡| 国产亚洲欧美在线一区二区| 丁香六月欧美| 欧美性猛交黑人性爽| 男女那种视频在线观看| 宅男免费午夜| 亚洲avbb在线观看| av国产免费在线观看| 性欧美人与动物交配| 婷婷精品国产亚洲av在线| 最近在线观看免费完整版| 国产视频一区二区在线看| 久久午夜福利片| h日本视频在线播放| 丝袜美腿在线中文| 国产精品98久久久久久宅男小说| 中国美女看黄片| 国产精品98久久久久久宅男小说| 看免费av毛片| 哪里可以看免费的av片| 精品久久久久久久人妻蜜臀av| 亚洲熟妇熟女久久| 99久久精品一区二区三区| 99在线人妻在线中文字幕| 日韩大尺度精品在线看网址| 国产一区二区激情短视频| 窝窝影院91人妻| www.999成人在线观看| 精品久久久久久久久久免费视频| 国产av不卡久久| 99热精品在线国产| 九九热线精品视视频播放| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 波多野结衣高清作品| 天堂网av新在线| 日本精品一区二区三区蜜桃| 99热精品在线国产| 综合色av麻豆| 搞女人的毛片| 亚洲七黄色美女视频| 99国产精品一区二区三区| 国内毛片毛片毛片毛片毛片| 国内精品一区二区在线观看| 啪啪无遮挡十八禁网站| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久久中文| 91麻豆精品激情在线观看国产| 级片在线观看| 十八禁网站免费在线| 黄色丝袜av网址大全| 无遮挡黄片免费观看| 亚洲av免费高清在线观看| 一本综合久久免费| 亚洲自偷自拍三级| 很黄的视频免费| 日韩中文字幕欧美一区二区| 亚洲性夜色夜夜综合| 99热这里只有精品一区| 国产乱人视频| 夜夜夜夜夜久久久久| 最好的美女福利视频网| 亚洲av不卡在线观看| 一区福利在线观看| 国产 一区 欧美 日韩| 亚洲,欧美精品.| 国产又黄又爽又无遮挡在线| 久久人人爽人人爽人人片va | 美女大奶头视频| 亚洲成av人片在线播放无| 日韩中字成人| 亚洲av美国av| 男女做爰动态图高潮gif福利片| 51国产日韩欧美| 一个人看的www免费观看视频| 九色成人免费人妻av| 99热这里只有是精品50| 久久久久久国产a免费观看| 男女那种视频在线观看| 久久婷婷人人爽人人干人人爱| 婷婷丁香在线五月| 他把我摸到了高潮在线观看| 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 精品日产1卡2卡| 婷婷六月久久综合丁香| 夜夜躁狠狠躁天天躁| 国产精品三级大全| 91九色精品人成在线观看| 深爱激情五月婷婷| 国产毛片a区久久久久| 久久久精品欧美日韩精品| netflix在线观看网站| 性色av乱码一区二区三区2| 老熟妇乱子伦视频在线观看| 午夜老司机福利剧场| 亚洲国产高清在线一区二区三| 久久久国产成人免费| 成人毛片a级毛片在线播放| 三级毛片av免费| 国产午夜精品久久久久久一区二区三区 | 永久网站在线| 亚洲欧美激情综合另类| 色噜噜av男人的天堂激情| 亚洲国产精品久久男人天堂| 美女高潮喷水抽搐中文字幕| 看片在线看免费视频| 一级毛片久久久久久久久女| 久久久久国产精品人妻aⅴ院| 成人无遮挡网站| 国产精品98久久久久久宅男小说| 毛片女人毛片| 97碰自拍视频| 精品99又大又爽又粗少妇毛片 | 嫁个100分男人电影在线观看| 亚洲成人免费电影在线观看| 熟女人妻精品中文字幕| 搡老岳熟女国产| 天堂动漫精品| 国内精品久久久久精免费| 综合色av麻豆| 白带黄色成豆腐渣| 欧美色视频一区免费| 人人妻,人人澡人人爽秒播| 男女之事视频高清在线观看| 亚洲专区国产一区二区| 久久久国产成人免费| 午夜免费成人在线视频| 日本三级黄在线观看| 久久久久久久久久黄片| 中文字幕av在线有码专区| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女| 欧美成狂野欧美在线观看| 午夜福利高清视频| 欧美成人免费av一区二区三区| 我的女老师完整版在线观看| 天堂av国产一区二区熟女人妻| 午夜亚洲福利在线播放| 全区人妻精品视频| 午夜激情福利司机影院| 少妇丰满av| 午夜精品一区二区三区免费看| 亚洲无线在线观看| 成年版毛片免费区| 久9热在线精品视频| 亚洲自拍偷在线| 黄色丝袜av网址大全| 色哟哟·www| 日本熟妇午夜| 欧美成狂野欧美在线观看| 日本五十路高清| 国产精品久久电影中文字幕| 亚洲内射少妇av| 亚洲,欧美,日韩| 日韩高清综合在线| 久久欧美精品欧美久久欧美| 国产久久久一区二区三区| 国产高清视频在线观看网站| 熟妇人妻久久中文字幕3abv| 桃红色精品国产亚洲av| 亚洲精品一区av在线观看| 国内久久婷婷六月综合欲色啪| 国产av不卡久久| 伊人久久精品亚洲午夜| 禁无遮挡网站| av在线观看视频网站免费| www.熟女人妻精品国产| 成人特级av手机在线观看| 老熟妇乱子伦视频在线观看| 亚洲人成电影免费在线| eeuss影院久久| 国内精品久久久久精免费| 在线观看美女被高潮喷水网站 | 18禁在线播放成人免费| 欧美区成人在线视频| 精品无人区乱码1区二区| 婷婷六月久久综合丁香| 中文字幕高清在线视频| 精品久久久久久久末码| 波多野结衣高清无吗| 免费黄网站久久成人精品 | 亚洲欧美日韩东京热| 久久九九热精品免费| 国产午夜精品久久久久久一区二区三区 | 国产成人福利小说| 免费看光身美女| 男人和女人高潮做爰伦理| 深夜a级毛片| 国产成人a区在线观看| 少妇裸体淫交视频免费看高清| 熟女电影av网| 日本撒尿小便嘘嘘汇集6| 一进一出好大好爽视频| 91九色精品人成在线观看| 99riav亚洲国产免费| av中文乱码字幕在线| 国产aⅴ精品一区二区三区波| 舔av片在线| 国产老妇女一区| 在线免费观看不下载黄p国产 | 俺也久久电影网| 自拍偷自拍亚洲精品老妇| 久久国产精品人妻蜜桃| 欧美一区二区亚洲| 夜夜看夜夜爽夜夜摸| 欧美黄色淫秽网站| 国产高清视频在线观看网站| 国内精品一区二区在线观看| 日韩有码中文字幕| 九九久久精品国产亚洲av麻豆| 看黄色毛片网站| 欧美成人a在线观看| 神马国产精品三级电影在线观看| 乱码一卡2卡4卡精品| 超碰av人人做人人爽久久| 精品一区二区三区视频在线观看免费| 欧美3d第一页| 国产欧美日韩精品亚洲av| 日韩精品中文字幕看吧| 亚洲成人久久爱视频| 黄色女人牲交| 搡老熟女国产l中国老女人| 午夜免费激情av| 亚洲国产精品sss在线观看| 亚洲人成网站高清观看| 日日干狠狠操夜夜爽| 国产爱豆传媒在线观看| 黄色丝袜av网址大全| 偷拍熟女少妇极品色| 永久网站在线| 中文字幕免费在线视频6| 成人特级av手机在线观看| 国产精品亚洲一级av第二区| 久久99热6这里只有精品| 亚洲av免费在线观看| 757午夜福利合集在线观看| 亚洲成人久久爱视频| 亚洲综合色惰| 内射极品少妇av片p| 久久久国产成人免费| 日本 av在线| 中文资源天堂在线| 毛片女人毛片| 久久精品久久久久久噜噜老黄 | 久久人人精品亚洲av| 国产色婷婷99| 丝袜美腿在线中文| 欧美又色又爽又黄视频| 国产色爽女视频免费观看| 岛国在线免费视频观看| 国产三级中文精品| 又黄又爽又刺激的免费视频.| 嫩草影院新地址| 国产乱人视频| 久久国产精品人妻蜜桃| 女人十人毛片免费观看3o分钟| 久久精品人妻少妇| 真实男女啪啪啪动态图| 亚洲av第一区精品v没综合| 亚洲专区中文字幕在线| 最近最新中文字幕大全电影3| 一区二区三区四区激情视频 | 国产久久久一区二区三区| 听说在线观看完整版免费高清| 色哟哟哟哟哟哟| 欧美国产日韩亚洲一区| 一个人免费在线观看电影| 日韩欧美 国产精品| 99久久成人亚洲精品观看| 性色av乱码一区二区三区2| 国产乱人视频| 国产精品一区二区免费欧美| av视频在线观看入口| 99国产极品粉嫩在线观看| 国内精品久久久久精免费| 久久午夜福利片| 精品人妻视频免费看| 少妇的逼水好多| 禁无遮挡网站| 国产高清激情床上av| 欧美日韩国产亚洲二区|