• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Y2O3-MgO Composite Nano-ceramics Prepared from Core-shell Nano-powders

    2021-07-23 04:18:36JIANGHongtaoQINHaimingFENGShaoweiCHENHongbingJIANGJun
    發(fā)光學(xué)報(bào) 2021年7期
    關(guān)鍵詞:納米粉體核殼沉淀法

    JIANG Hong-tao, QIN Hai-ming, FENG Shao-wei, CHEN Hong-bing, JIANG Jun

    (1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315201, China;2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;3. University of Chinese Academy of Sciences, Beijing 100049, China;4. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)

    Abstract: Y2O3-MgO composite nano-ceramics are regarded as a significant candidate of infrared transparent ceramics on account of excellent optical and mechanical properties. Nevertheless, a huge challenge remains regarding the critical optical scattering and needless absorption in the near- and mid-infrared bands, which hinders its applications in extreme harsh environments. In present work, Y2O3-MgO core-shell structure nano-powders were prepared via urea precipitation method before that Y2O3-MgO composite nano-ceramics were prepared under spark plasma sintering. Thermogravimetric and differential scanning calorimetry(TG/DSC), X-ray diffraction and scanning electron microscope were performed to analyze as prepared core-shell structure nano-powders and composite nano-ceramics. The size of Y2O3-MgO core-shell structure nano-powders is about 250 nm, and average grain size of the prepared ceramics is approximately 360 nm. The transmittance is 57% at 6 μm, and the Vickers hardness is 820 HV. The powder synthesis method accomplished in present work offers a novel solution for composite nano-ceramics, which easily regulate particle size and proportion of different components.

    Key words: Y2O3-MgO composite nano-ceramics; core-shell structure nano-powder; urea precipitation method; spark plasma sintering

    關(guān) 鍵 詞:Y2O3-MgO復(fù)相納米陶瓷; 核殼結(jié)構(gòu)納米粉體; 尿素沉淀法; 放電等離子燒結(jié)

    1 Introduction

    In recent years, infrared window materials are brought into focus due to widely used in infrared tracking, identification, search, guidance, navigation, and thermal imaging[1-7]. In order to cope with various application environments, the performance of infrared window materials need to meet the following requirements: infrared transparency, high mechanical strength, high thermal conductivity, and resistance to thermal shock and erosion[5-6]. However, it is not realistic to improve the operational properties of infrared materials(ZnS, Al2O3and MgAl2O4) that have been widely used in extreme environments and under severe loads, such as aerospace applications[7]. Recently, progress of the composite ceramic as a competitive candidate in this area brings new driving power.

    Among all nano-composite ceramics, the Y2O3-MgO nano-composite ceramics are presentative infrared transparent ceramic, since the Y2O3-MgO nano-composite ceramics process outstanding thermal and mechanical properties for extreme environments[8-10]. The most commonly approach to sintering Y2O3-MgO nano-composite ceramics is the spark plasma sintering(SPS). SPS regarded as a rapid solidification sintering method is an especially efficient technique, through which the sintering time can be massively decreased owing to the rapid heating rate at a speed higher than 100 ℃/min compared with conventional sintering methods. For the pressureless sintering, the higher sintering temperature and the longer sintering time lead to dramatically grain growth, particularly in the final period of the densification. For another, SPS enhances the driving force of sintering by dynamically activating plastic deformation and diffusion processes, which is efficacious to restrict the grain growth under a lower sintering temperature and high intensity of pressure. In 2010, Jiangetal.[11]prepared Y2O3-MgO nano-composite ceramics with the grain size less than 100 nm by SPS sintering under a load of 80 MPa. Liuetal.[12]used SPS to sinter the powders after ultrasonic horn treatment to prepare the Y2O3-MgO nano-composite ceramics at 50 MPa. Huangetal.[13]prepared the Y2O3-MgO nano-composite ceramics with a grain size of 100-200 nm through SPS sintering with 100 MPa. Then, Xuetal.[14]prepared the Y2O3-MgO nano-composite ceramics with a grain size of 100-300 nm through SPS sintering under 50 MPa, which got the nano-powder through the esterification sol-gel route. Recently, Safronovaetal.[15]explored the influence of temperature on the Y2O3-MgO nano-composite ceramics during SPS sintering. At the same time, Liuetal.[16]and Maetal.[17]independently explored the influence of pressure and LiF sintering aid on grain growth of Y2O3-MgO ceramics.

    In present work, the homogenous Y2O3-MgO core-shell structure nano-powders were prepared through urea precipitation approach. In order to obtain high sinterability powders, the calcination temperature, powder morphology and size of Y2O3-MgO core-shell structure nano-powders were studied compared with that of single-phase Y2O3. Y2O3-MgO composite nano-ceramics were sintered by SPS using core-shell powders as the beginning powders. This core-shell nano-powders preparation method and SPS procedure are simple and inexpensive, which provide a novel way to fabricate Y2O3-MgO composite nano-ceramics.

    2 Experimental and Characterizations

    Y2O3-MgO core-shell structure nano-powders were prepared by urea precipitation. The raw materials were Y2O3(5N), nitric acid(AR), urea(99%), and MgO(99.9%, 50 nm). Firstly, 0.015 mol Y(NO3)3solution was prepared by dissolving 0.007 5 mol Y2O3in a certain number of HNO3. Next, Y(NO3)3solution was added together with 0.5 mol urea into a three-necked flask of 2 000 mL. Then, MgO was weighted with a volume ratio of 1∶1 to Y2O3into the container through stirring and dispersing sufficiently. After that, MgO was transferred to the solution in the three-necked flask. Currently, there were about 1 300 mL of solution in the three-necked flask. Finally, the three-necked flask was placed in a heating mantle to heat the solution temperature from room temperature to (85±1) ℃ in about 40 min. At the same time, an electric stirrer was used to stir at a rate of 500 r/min. When the solution was obviously turbid, the reaction was maintained in this state for 2 h. After two hours, the resulting suspension was obtained by suction filtration, and then the suspension was placed in an oven and dried at 80 ℃ for 24 h. The dried precursors were put into the muff furnace and calcined at the selected temperature for 1 h, after which 0.25% LiF(99%) was added and the powders were ground, and then screened with a 140-mesh sieve.

    Transparent Y2O3ceramics powders were also prepared by urea precipitation method, and then ground and screened with 140 mesh, and then compressed intoφ10 discs by a powder tablet machine. The ceramic tablets were compacted at 200 MPa using a cold isostatic press. The sintering method was vacuum sintering, the temperature was 1 750 ℃, and the holding time was 4 h.

    The powders obtained above were sintered into ceramics through SPS(LABOX-1575, SinterL and Inc., Japan). The powder samples loaded into the graphite mold were heated from room temperature to a pre-set temperature(1 200 ℃) at the heating rate of 100 ℃/min under vacuum(10 Pa) and the dwell time was 8 min with the pressure of 50 MPa. The sintered Y2O3-MgO composite nano-ceramics were annealed in the air at 1 000 ℃ for 15 h to eliminate oxygen vacancies, carbon and residual stress. When measuring infrared transmittance, the sample is polished on both sides to a thickness of~0.9 mm.

    XRD patterns were measured by a Bruker D8 X-ray diffractometer with Cu Kα radiation(λ=0.154 056 nm) at 40 kV and 40 mA. Thermal analysis of the precursors was measured by thermogravimetric/differential scanning calorimetry(TG/DSC, STA 449F3, NETZSCH, Germany) at a heating rate of 10 K/min in air. A thermal field emission scanning electron microscope(TFE-SEM, Thermo Scientific Verios G4 UC) was used to observe the microscopic morphology of the powders. The particle size distributions of the powders were measured by Laser particle size analyzer(HELOS-OASIS, Sympatec GmbH, Germany). The grain and grain boundary morphology of the ceramic were measured by a field emission scanning electron microscope(FE-SEM, Hitachi S4800, Japan). The transmittance in the wavelength range ofλ=0.25-2.5 μm was conducted by using a spectrometer(Lambda 950, Perkin Elmer Co., USA). Fourier transform infrared spectroscopy(NICOLET 6700, Thermo Co, USA) was used to measure the transmittance of the mirror polished samples at a range of 2.5-10 μm. An image analysis microhardness tester(HV-1000/S, SIOMM, Shanghai) was used to carry out a 10 s, 100 N load test to obtain the Vickers hardness result.

    3 Results and Discussion

    Fig.1 TG-DSC curves of the Y2O3-MgO core-shell structure nano-powder precursors

    Fig.2 shows XRD patterns of MgO nano-powders, Y2O3nano-powder precursors, Y2O3-MgO core-shell structure nano-powder precursors and Y2O3-MgO core-shell structure nano-powders calcined at different temperatures. Compared with Y2O3nano-powder precursors, Y2O3-MgO core-shell structure nano-powder precursors appear weaker MgO peaks. The other peaks may be caused by the formation of the coating structure and some changes in the disordered structure of the outer layer. According to thermal analysis, the powders have reached its crystallization temperature at 650 ℃. After reaching 750 ℃, the powders have been completely crystallized, and no obvious heat absorption and exotherm were observed, and the quality almost no longer changes. As a result, 750 ℃ is the optimum calcination temperature for the powders. The XRD of core-shell structure nano-powders calcined at 650, 750, 850 ℃are consistent with that of Y2O3and MgO, and there is no obvious change between them, except that the peak shape gradually becomes sharp with the increase of temperature, indicating that the powders have basically formed phase at 650 ℃. Therefore, the calcined temperature of Y2O3-MgO core-shell structure nano-powder precursors is higher about 100 ℃ than precursor crystallization temperature in order to remove possible traces of carbon- and nitrogen-containing compounds.

    Fig.2 XRD patterns of MgO nano-powders, Y2O3 nano-powder precursors, Y2O3-MgO core-shell structure nano-powder precursors and Y2O3-MgO core-shell structure nano-powders calcined at different temperatures.

    Fig.3 shows the micromorphology of MgO nano-powders, Y2O3powders, Y2O3-MgO core-shell structure nano-powder precursors and Y2O3-MgO core-shell structure nano-powders. The powder size of MgO nano-powders in Fig.3(a) is about 50 nm, and the powder morphology are relatively uniform. Fig.3(b) shows the prepared Y2O3powders by the urea precipitation method. The size of Y2O3powders with good sphericity and good monodispersity is about 200-300 nm. The micrograph of Y2O3-MgO core-shell structure nano-powder precursors (Fig.3(c)) is much more similar to that of MgO nano-powders due to the nucleation process starting on the surface of MgO nano-powders. As shown in Fig.3(d), Y2O3-MgO core-shell structure nano-powders with soft agglomeration are composed of microcrystals. Y2O3-MgO core-shell structure nano-powders exhibit a clear interface between core and shell, which indicates the MgO nano-powders as a core are successfully cladded with Y2O3powders as a shell. The size distribution of all the powders is shown in Fig.4. Compared with the SEM images, the four kinds of powders have different degrees of agglomeration. Fig.4(a) shows the particle size distribution of MgO nano-powders is around 600 nm, which is quite different from the SEM image. This is due to the small size of MgO nano-powders and large specific surface area, which is easy to form large agglomerated particles. According to Fig.4(b), the size of Y2O3powders is mainly concentrated in 200-300 nm, which is more consistent with Fig.3(b) image. Therefore, the larger particles are ascribed to slightly agglomerating of Y2O3powders. Fig.4(c) shows that the particle size distribution of Y2O3-MgO core-shell structure nano-powder precursors is mainly 100-300 nm. Since the precursors have not undergone crystallization after calcination, the particles have not grown. From Fig.4(d), the agglomeration of Y2O3-MgO core-shell structure nano-powders nearly disappear with uniform size distribution at about 250 nm. After calcined at low temperature, the inorganic acid ions are decomposed and core-shell structure powders did not happen growing up. Fig.5 shows the EDS mapping images of Y2O3-MgO core-shell structure nano-powders calcined at 750 ℃. As represented in Fig.5, Y, Mg and O elements are evenly distributed throughout Y2O3-MgO core-shell

    Fig.3 SEM images of MgO nano-powders(a), Y2O3 powders(b), Y2O3-MgO core-shell structure nano-powder precursors(c), Y2O3-MgO core-shell structure nano-powders(d).

    Fig.4 Particle size distributions of MgO nano-powders(a), Y2O3 powders(b), Y2O3-MgO core-shell structure nano-powder precursors(c), Y2O3-MgO core-shell structure nano-powders(d).

    Fig.5 EDS mapping images of Y2O3-MgO core-shell structure nano-powders calcined at 750 ℃ structure nano-powders. However, the content distribution of Y is denser than that of Mg due to Y distributing on the outer surface of core-shell structure.

    Fig.6 shows the micro-morphology of Y2O3ceramics and Y2O3-MgO composite nano-ceramics, and the EDS mapping images of Y2O3-MgO composite nano-ceramics. From Fig.6(a) and (b), the average grain size of the Y2O3ceramics is about 100 μm, while the average grain size of the Y2O3-MgO composite nano-ceramics is about 360 nm. It can be seen from the image that Y2O3ceramics show larger grains and irregular grain growth, while the grains of Y2O3-MgO composite nano-ceramics are smaller and the grain growth is more uniform. Following BSE images and EDS mapping images, in Fig.6(d), the white phase and black phase are respectively Y2O3and MgO. At the same time, the grain size of MgO is generally smaller than that of Y2O3, and the larger MgO grains may be caused by the incomplete coating structure. And from the Fig.6(d), obviously, it can be seen that the black phase is surrounded by the white phase, that is, MgO is surrounded by Y2O3, which corresponds to the prepared core-shell structure nano-powders, thus confirming the construction of the core-shell structure. The core-shell structure nano-powders are beneficial to a more even distribution of the two grains, which is conducive to inhibiting growth of ceramic grains in a smaller scale. It indicates that the core-shell structure nano-powders has a certain binding effect on the grain growth during sintering, making the grains unable to grow at will.

    Fig.7 shows IR transmittance spectra of Y2O3ceramics and Y2O3-MgO composite nano-ceramics.

    Fig.6 SEM images of Y2O3 ceramics(a) and Y2O3-MgO composite nano-ceramics(b). BSE images of Y2O3 ceramics(c) and Y2O3-MgO composite nano-ceramics(d). (e)-(g)EDS mapping images of (b).

    Fig.7 IR transmittance spectra of Y2O3 ceramics and Y2O3-MgO composite nano-ceramics with the thickness of 0.9 mm. Inset: the photo of synthesized Y2O3 ceramics(left) and Y2O3-MgO composite nano-ceramics(right).

    Fig.8 shows the comparison of Vickers hardness of Y2O3ceramics and Y2O3-MgO composite nano-ceramics. The Vickers hardness of Y2O3ceramics is about 780 HV, and the Vickers hardness of Y2O3-MgO composite nano-ceramics is about 820 HV. Compared with Y2O3ceramics, after adding MgO, its mechanical properties have indeed improved. However, its hardness is far from reaching the required level, so the powder preparation and sintering process still need to be improved.

    Fig.8 Vickers hardness of Y2O3 ceramics and Y2O3-MgO composite nano-ceramics

    4 Conclusion

    Y2O3-MgO core-shell structure nano-powders with the particle size of about 250 nm were successfully prepared by urea precipitation method. Y2O3-MgO composite nano-ceramics with the average grain size of 360 nm are accomplishedviaSPS treatment. Grain size of Y2O3-MgO composite nano-ceramics is more uniform and smaller compared with Y2O3ceramics, indicating that the core-shell structure has certain binding effect on the grain growth. This core-shell structure nano-powders preparation method offers a new approach to further control the grain size of nano-composite ceramics. However, the transmittance and Vickers hardness of Y2O3-MgO composite nano-ceramics are not good enough, so the powder preparation and sintering process still need to be explored. Together with the SPS treatment, the method accomplished in this work provides a novel way to fabricate Y2O3-MgO composite nano-ceramics.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.

    20210095.

    猜你喜歡
    納米粉體核殼沉淀法
    硝酸銀沉淀法去除高鹽工業(yè)廢水中鹵化物對(duì)COD測(cè)定的干擾
    溶液燃燒法制備Mo–La2O3納米粉體及燒結(jié)性能的研究
    核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    陶瓷可飽和吸收體用Co:MgAl2O4納米粉體的制備
    納米粉體改性瀝青的流變性能分析
    石油瀝青(2018年4期)2018-08-31 02:29:40
    核殼型含氟硅丙烯酸酯無(wú)皂拒水劑的合成及應(yīng)用
    濕法磷酸化學(xué)沉淀法除鎂工藝
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點(diǎn)的水熱法合成及其光致發(fā)光性能
    混凝沉淀法處理含鉛礦坑涌水
    Y2O3:Er3+和Y2O3:Er3+,Yb3+納米粉體的制備及上轉(zhuǎn)換發(fā)光性能的研究
    成在线人永久免费视频| 欧美精品亚洲一区二区| 精品亚洲乱码少妇综合久久| 欧美日韩中文字幕国产精品一区二区三区 | 午夜激情av网站| 丝袜喷水一区| 欧美激情高清一区二区三区| 老司机午夜十八禁免费视频| 大片免费播放器 马上看| 免费在线观看影片大全网站| 午夜福利,免费看| 纵有疾风起免费观看全集完整版| 久久这里只有精品19| 午夜免费鲁丝| 国产精品久久久久久精品古装| 国产又色又爽无遮挡免| 国产精品偷伦视频观看了| 国产精品欧美亚洲77777| 欧美精品啪啪一区二区三区 | 国产av又大| 国产高清videossex| 国产老妇伦熟女老妇高清| 免费黄频网站在线观看国产| 狠狠狠狠99中文字幕| 国产精品亚洲av一区麻豆| 99久久99久久久精品蜜桃| 国产一级毛片在线| 久久精品人人爽人人爽视色| 日韩大片免费观看网站| av电影中文网址| 精品人妻1区二区| www.999成人在线观看| 亚洲av国产av综合av卡| 久久久久久久久免费视频了| 女人被躁到高潮嗷嗷叫费观| 国产三级黄色录像| 日本撒尿小便嘘嘘汇集6| 国产成人精品久久二区二区免费| 久久精品国产a三级三级三级| 亚洲中文av在线| 久久久国产成人免费| 黑人欧美特级aaaaaa片| 久久久久久久国产电影| 久久人妻福利社区极品人妻图片| 久久久国产一区二区| 免费日韩欧美在线观看| 国产又爽黄色视频| 男女边摸边吃奶| 中文精品一卡2卡3卡4更新| 日韩免费高清中文字幕av| 女人高潮潮喷娇喘18禁视频| 亚洲av日韩在线播放| 各种免费的搞黄视频| 欧美人与性动交α欧美软件| 男女无遮挡免费网站观看| 男女下面插进去视频免费观看| 精品久久蜜臀av无| 久热爱精品视频在线9| 久久亚洲精品不卡| 亚洲人成电影观看| av天堂久久9| 日韩一区二区三区影片| 久久久水蜜桃国产精品网| 波多野结衣一区麻豆| 我的亚洲天堂| www.自偷自拍.com| 国产有黄有色有爽视频| 午夜成年电影在线免费观看| 亚洲精品国产区一区二| 日韩熟女老妇一区二区性免费视频| 日韩有码中文字幕| av不卡在线播放| 少妇精品久久久久久久| 久久久久久久久久久久大奶| 精品第一国产精品| 伊人久久大香线蕉亚洲五| 美女高潮到喷水免费观看| bbb黄色大片| 精品卡一卡二卡四卡免费| 韩国精品一区二区三区| 中文字幕人妻丝袜制服| 多毛熟女@视频| 秋霞在线观看毛片| 久久久水蜜桃国产精品网| 女警被强在线播放| 美国免费a级毛片| 少妇精品久久久久久久| 18在线观看网站| 中国国产av一级| 18禁观看日本| 免费观看av网站的网址| 国产片内射在线| 国产亚洲一区二区精品| 亚洲av日韩精品久久久久久密| 国产成人一区二区三区免费视频网站| 国产精品熟女久久久久浪| 国产精品香港三级国产av潘金莲| 1024视频免费在线观看| 亚洲精品av麻豆狂野| 成人国产一区最新在线观看| 狠狠狠狠99中文字幕| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 国内毛片毛片毛片毛片毛片| 欧美少妇被猛烈插入视频| 亚洲欧美激情在线| 久久久国产精品麻豆| av片东京热男人的天堂| 老司机亚洲免费影院| 久热这里只有精品99| 亚洲精品自拍成人| 啦啦啦中文免费视频观看日本| 韩国精品一区二区三区| 欧美在线一区亚洲| 亚洲情色 制服丝袜| 欧美日韩亚洲高清精品| 免费观看人在逋| 中文精品一卡2卡3卡4更新| 午夜激情av网站| 国产又色又爽无遮挡免| av网站免费在线观看视频| 操出白浆在线播放| 欧美少妇被猛烈插入视频| 黑人操中国人逼视频| 麻豆乱淫一区二区| 搡老岳熟女国产| 国产免费现黄频在线看| 最近最新免费中文字幕在线| 99热网站在线观看| 人人澡人人妻人| 老熟妇乱子伦视频在线观看 | 国产一区二区三区在线臀色熟女 | 中文字幕最新亚洲高清| 中文字幕精品免费在线观看视频| 国产在线一区二区三区精| 十八禁网站网址无遮挡| 在线av久久热| 久久人人爽人人片av| 日韩,欧美,国产一区二区三区| 99久久精品国产亚洲精品| 女性被躁到高潮视频| kizo精华| 精品国产一区二区久久| 黄色视频在线播放观看不卡| 国产免费现黄频在线看| 高清av免费在线| 国产视频一区二区在线看| a级片在线免费高清观看视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 亚洲av成人不卡在线观看播放网 | 性色av一级| 国产免费现黄频在线看| 久久ye,这里只有精品| 亚洲中文字幕日韩| 国产伦人伦偷精品视频| 久久99热这里只频精品6学生| 乱人伦中国视频| 大型av网站在线播放| 久久热在线av| 国产又爽黄色视频| 国产极品粉嫩免费观看在线| 亚洲欧美精品综合一区二区三区| 久久久久精品人妻al黑| 亚洲国产中文字幕在线视频| 少妇粗大呻吟视频| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 国产在线观看jvid| 免费在线观看黄色视频的| 老司机影院成人| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 久久国产精品影院| 俄罗斯特黄特色一大片| 午夜免费鲁丝| 人妻 亚洲 视频| 后天国语完整版免费观看| 黑人操中国人逼视频| 国产av一区二区精品久久| 美女主播在线视频| 一级a爱视频在线免费观看| 91精品三级在线观看| 国产区一区二久久| 飞空精品影院首页| 纵有疾风起免费观看全集完整版| 淫妇啪啪啪对白视频 | 免费观看a级毛片全部| 女人爽到高潮嗷嗷叫在线视频| 少妇被粗大的猛进出69影院| 国产成人免费观看mmmm| 国产高清视频在线播放一区 | 黄网站色视频无遮挡免费观看| 精品久久久久久久毛片微露脸 | 在线观看人妻少妇| 亚洲人成电影观看| a级毛片黄视频| 欧美黄色片欧美黄色片| 一级片'在线观看视频| 亚洲熟女毛片儿| 90打野战视频偷拍视频| 精品一区在线观看国产| 国产精品久久久av美女十八| tocl精华| 亚洲一区中文字幕在线| 视频区欧美日本亚洲| 免费久久久久久久精品成人欧美视频| 精品人妻一区二区三区麻豆| 久久性视频一级片| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 91大片在线观看| 人人妻,人人澡人人爽秒播| 1024视频免费在线观看| 在线十欧美十亚洲十日本专区| 91精品三级在线观看| 国产男人的电影天堂91| 亚洲少妇的诱惑av| 最黄视频免费看| 老熟妇乱子伦视频在线观看 | 久久人人爽av亚洲精品天堂| 一区二区日韩欧美中文字幕| 各种免费的搞黄视频| 老汉色∧v一级毛片| 亚洲av日韩在线播放| 国精品久久久久久国模美| avwww免费| 18禁黄网站禁片午夜丰满| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区黑人| 国产免费一区二区三区四区乱码| 亚洲久久久国产精品| av又黄又爽大尺度在线免费看| 91九色精品人成在线观看| 亚洲第一青青草原| 91麻豆av在线| 99国产极品粉嫩在线观看| 嫁个100分男人电影在线观看| av电影中文网址| 十八禁网站免费在线| 熟女少妇亚洲综合色aaa.| 纯流量卡能插随身wifi吗| av网站免费在线观看视频| 大片免费播放器 马上看| a级片在线免费高清观看视频| 各种免费的搞黄视频| 欧美日韩亚洲高清精品| 欧美精品一区二区免费开放| 国产精品久久久久久精品电影小说| 久久久国产精品麻豆| 中国国产av一级| 国产在线观看jvid| 国产97色在线日韩免费| 老熟女久久久| 亚洲五月婷婷丁香| 老司机影院成人| 91成年电影在线观看| 国产高清国产精品国产三级| 青春草视频在线免费观看| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| 亚洲色图 男人天堂 中文字幕| 手机成人av网站| 国产成人精品在线电影| 免费一级毛片在线播放高清视频 | 国产精品成人在线| 一二三四在线观看免费中文在| 欧美日韩亚洲综合一区二区三区_| 精品少妇久久久久久888优播| 久久精品aⅴ一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 在线观看www视频免费| 国产成人精品久久二区二区91| 色播在线永久视频| 大香蕉久久网| 男女国产视频网站| 午夜福利乱码中文字幕| 国产97色在线日韩免费| 日本五十路高清| 欧美精品一区二区免费开放| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 一二三四在线观看免费中文在| 狠狠婷婷综合久久久久久88av| 一级毛片女人18水好多| 中文字幕人妻丝袜一区二区| 亚洲av电影在线观看一区二区三区| 精品一区二区三卡| 可以免费在线观看a视频的电影网站| 天天躁夜夜躁狠狠躁躁| 别揉我奶头~嗯~啊~动态视频 | 久久这里只有精品19| 亚洲精品国产区一区二| 欧美精品一区二区免费开放| 国产亚洲一区二区精品| 一区二区三区精品91| 下体分泌物呈黄色| 在线看a的网站| 丰满少妇做爰视频| 最近中文字幕2019免费版| 一级毛片精品| 人妻一区二区av| 日本猛色少妇xxxxx猛交久久| 91成人精品电影| 一区二区av电影网| 天天躁夜夜躁狠狠躁躁| 女警被强在线播放| 自线自在国产av| 亚洲天堂av无毛| 午夜两性在线视频| 国产黄频视频在线观看| 一级黄色大片毛片| 国产黄色免费在线视频| 国产日韩欧美视频二区| 亚洲人成电影观看| 一区二区三区激情视频| 最新的欧美精品一区二区| 久久久久网色| 精品国产乱码久久久久久男人| 午夜日韩欧美国产| 精品久久久久久久毛片微露脸 | 亚洲第一青青草原| 高清在线国产一区| 国产主播在线观看一区二区| 国产亚洲欧美精品永久| 成年动漫av网址| 一本—道久久a久久精品蜜桃钙片| 老汉色∧v一级毛片| 国产黄频视频在线观看| 999久久久精品免费观看国产| 亚洲人成电影观看| 999久久久精品免费观看国产| 国产成人影院久久av| 亚洲专区国产一区二区| 又大又爽又粗| 水蜜桃什么品种好| 亚洲国产欧美一区二区综合| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品在线电影| 精品久久久精品久久久| 免费观看av网站的网址| 老司机影院成人| 欧美xxⅹ黑人| 又黄又粗又硬又大视频| 亚洲欧美精品自产自拍| 美女国产高潮福利片在线看| 国产精品 国内视频| 老司机在亚洲福利影院| a级毛片在线看网站| 手机成人av网站| 国产成人精品久久二区二区91| 国产精品熟女久久久久浪| 国产伦人伦偷精品视频| 一边摸一边抽搐一进一出视频| 亚洲精品中文字幕一二三四区 | 国产又爽黄色视频| 2018国产大陆天天弄谢| 日韩欧美一区二区三区在线观看 | 免费高清在线观看视频在线观看| 动漫黄色视频在线观看| 一区在线观看完整版| 丝袜在线中文字幕| 人人妻人人澡人人看| 伊人久久大香线蕉亚洲五| 女警被强在线播放| 97在线人人人人妻| 国产97色在线日韩免费| 美女午夜性视频免费| 大码成人一级视频| 啦啦啦免费观看视频1| av又黄又爽大尺度在线免费看| 国产精品麻豆人妻色哟哟久久| 中文字幕色久视频| 久久亚洲精品不卡| 亚洲国产精品一区三区| 久久久水蜜桃国产精品网| 国产av国产精品国产| 美女高潮到喷水免费观看| 在线观看免费高清a一片| 成人亚洲精品一区在线观看| 一本综合久久免费| 在线看a的网站| 一边摸一边抽搐一进一出视频| 啪啪无遮挡十八禁网站| 国产视频一区二区在线看| 亚洲五月婷婷丁香| 中文字幕制服av| 99久久国产精品久久久| 免费黄频网站在线观看国产| 国产男女内射视频| 国产又色又爽无遮挡免| 久久久久久久精品精品| 国产免费现黄频在线看| 免费在线观看视频国产中文字幕亚洲 | 精品国产乱子伦一区二区三区 | 欧美性长视频在线观看| 男女下面插进去视频免费观看| 老司机在亚洲福利影院| 久久精品亚洲av国产电影网| 黄色 视频免费看| 在线观看免费午夜福利视频| 99国产极品粉嫩在线观看| 最新在线观看一区二区三区| 亚洲国产看品久久| 91大片在线观看| 99re6热这里在线精品视频| av在线播放精品| 视频区欧美日本亚洲| 欧美乱码精品一区二区三区| 国产成人精品无人区| 精品福利观看| 黄片大片在线免费观看| 天天躁夜夜躁狠狠躁躁| 国产成人欧美在线观看 | 亚洲少妇的诱惑av| 熟女少妇亚洲综合色aaa.| 久久毛片免费看一区二区三区| 日本撒尿小便嘘嘘汇集6| tube8黄色片| 亚洲综合色网址| 在线观看免费视频网站a站| 久久久久精品国产欧美久久久 | svipshipincom国产片| kizo精华| 精品少妇久久久久久888优播| 女性生殖器流出的白浆| 免费在线观看视频国产中文字幕亚洲 | 美女福利国产在线| 肉色欧美久久久久久久蜜桃| 手机成人av网站| 欧美亚洲 丝袜 人妻 在线| 啦啦啦啦在线视频资源| 国产麻豆69| 亚洲少妇的诱惑av| 午夜久久久在线观看| 欧美老熟妇乱子伦牲交| 国产99久久九九免费精品| 国产一区二区三区在线臀色熟女 | 欧美成狂野欧美在线观看| 狠狠精品人妻久久久久久综合| 亚洲国产av影院在线观看| 在线观看一区二区三区激情| 国产高清videossex| 国产在线视频一区二区| 亚洲精品国产av成人精品| 国产福利在线免费观看视频| 熟女少妇亚洲综合色aaa.| 欧美97在线视频| 免费av中文字幕在线| 久久亚洲国产成人精品v| 啦啦啦中文免费视频观看日本| 久久女婷五月综合色啪小说| 在线 av 中文字幕| 中文欧美无线码| 久久久久久久大尺度免费视频| 日本wwww免费看| 天天躁狠狠躁夜夜躁狠狠躁| 高清在线国产一区| 美女高潮到喷水免费观看| 又黄又粗又硬又大视频| 又大又爽又粗| 丝瓜视频免费看黄片| 成年女人毛片免费观看观看9 | 在线观看www视频免费| 国产成人av教育| 国产日韩欧美在线精品| 国产一区二区 视频在线| 国产三级黄色录像| 五月天丁香电影| 免费高清在线观看视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 午夜激情久久久久久久| 人人妻人人爽人人添夜夜欢视频| 国产免费一区二区三区四区乱码| 电影成人av| 悠悠久久av| 国产97色在线日韩免费| 国产不卡av网站在线观看| 亚洲精品av麻豆狂野| 久久人妻熟女aⅴ| 国产视频一区二区在线看| 一进一出抽搐动态| 日韩精品免费视频一区二区三区| 午夜免费鲁丝| 免费女性裸体啪啪无遮挡网站| 黑人巨大精品欧美一区二区mp4| 别揉我奶头~嗯~啊~动态视频 | 国产一区二区 视频在线| 国产精品一区二区在线观看99| 美女国产高潮福利片在线看| 国产av又大| 久久久国产欧美日韩av| 久久午夜综合久久蜜桃| 成人亚洲精品一区在线观看| 精品福利观看| 一进一出抽搐动态| 亚洲精品久久成人aⅴ小说| 精品少妇久久久久久888优播| 精品国产乱码久久久久久男人| 秋霞在线观看毛片| 日韩一卡2卡3卡4卡2021年| 久久精品aⅴ一区二区三区四区| 免费在线观看日本一区| 亚洲av日韩在线播放| 999久久久精品免费观看国产| 国产成人免费观看mmmm| 宅男免费午夜| 欧美日韩国产mv在线观看视频| av超薄肉色丝袜交足视频| 成人av一区二区三区在线看 | 高清视频免费观看一区二区| 日韩免费高清中文字幕av| 亚洲精品久久久久久婷婷小说| 99久久人妻综合| 夫妻午夜视频| 成人免费观看视频高清| 欧美日韩精品网址| 国产国语露脸激情在线看| 男女无遮挡免费网站观看| 精品国内亚洲2022精品成人 | av欧美777| 国精品久久久久久国模美| 国产福利在线免费观看视频| 女人被躁到高潮嗷嗷叫费观| 久久久国产一区二区| 亚洲国产日韩一区二区| 男人爽女人下面视频在线观看| 香蕉国产在线看| 一个人免费看片子| 高潮久久久久久久久久久不卡| 狠狠婷婷综合久久久久久88av| 在线观看www视频免费| 成人国语在线视频| 美女高潮喷水抽搐中文字幕| 一本久久精品| 日本av免费视频播放| 国产在线观看jvid| 国产99久久九九免费精品| 国产成人精品无人区| 亚洲国产成人一精品久久久| 亚洲avbb在线观看| 视频区欧美日本亚洲| 欧美精品亚洲一区二区| 精品久久久久久电影网| 亚洲成人国产一区在线观看| 人妻人人澡人人爽人人| 成年人黄色毛片网站| 免费少妇av软件| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美免费精品| 欧美亚洲日本最大视频资源| 2018国产大陆天天弄谢| 视频区欧美日本亚洲| 亚洲精品一卡2卡三卡4卡5卡 | 欧美日韩黄片免| 爱豆传媒免费全集在线观看| 亚洲国产精品999| 高清欧美精品videossex| 91国产中文字幕| 国产一区有黄有色的免费视频| 日本av手机在线免费观看| 满18在线观看网站| 好男人电影高清在线观看| 黑人猛操日本美女一级片| 久久久国产精品麻豆| 国产精品1区2区在线观看. | 亚洲中文av在线| 国产精品免费视频内射| 夜夜夜夜夜久久久久| 国产伦理片在线播放av一区| av不卡在线播放| 欧美日韩福利视频一区二区| 国产精品久久久人人做人人爽| 久久国产亚洲av麻豆专区| 伊人亚洲综合成人网| 久久精品国产a三级三级三级| 成人18禁高潮啪啪吃奶动态图| 久久中文字幕一级| 每晚都被弄得嗷嗷叫到高潮| 久久久久国产一级毛片高清牌| www.av在线官网国产| 97精品久久久久久久久久精品| 国产成人av教育| 亚洲第一青青草原| 老司机影院成人| 午夜老司机福利片| 久久中文看片网| www日本在线高清视频| 日韩有码中文字幕| 他把我摸到了高潮在线观看 | 少妇精品久久久久久久| 亚洲精品av麻豆狂野| 免费看十八禁软件| av在线老鸭窝| 亚洲精品久久午夜乱码| 人成视频在线观看免费观看| 欧美+亚洲+日韩+国产| 国产高清videossex| 欧美激情高清一区二区三区| 欧美日韩亚洲高清精品| 国产人伦9x9x在线观看| 久久人妻熟女aⅴ| 成年av动漫网址| 91大片在线观看| 国产成人精品无人区| 老熟女久久久| 午夜免费鲁丝| 伊人亚洲综合成人网| 亚洲少妇的诱惑av| 脱女人内裤的视频| 丝袜人妻中文字幕| 波多野结衣av一区二区av| 高潮久久久久久久久久久不卡| 永久免费av网站大全|