• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于自適應(yīng)相關(guān)多采樣技術(shù)的CMOS圖像傳感器列級(jí)單斜ADC設(shè)計(jì)

    2021-07-16 08:36:06衡佳偉聶凱明徐江濤
    傳感技術(shù)學(xué)報(bào) 2021年4期
    關(guān)鍵詞:單斜微電子天津大學(xué)

    高 靜,衡佳偉,聶凱明,徐江濤

    (1.天津大學(xué)微電子學(xué)院,天津300072;2.天津市成像與感知微電子技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津300072)

    The readout noise originated from the pixel and the column readout chain is a significant factor to limit the performance of CMOS image sensors(CISs).Such readout noise includes the temporal random noise and the quantization noise during A/D conversion phase.Especially under low illumination,the noise has a considerable effect on signal-to-noise ratio(SNR).Considering the cost and performance,smaller device dimensions become a marked trend of CIS development.Since small size allows for a rise in the number of devices without increasing the chip area[1].However,the noise level is deteriorated as a small pixel source follower(SF)contributes worse temporal random noise in the readout circuits.Therefore,it is necessary to enhance SNR by mitigating the noise level.In general,it is an effective approach to reducing noise by using low-noise readout circuitry.The column-parallel single-slope(SS)ADC has been widely applied in CIS.The reason is that it provides relatively low noise with simple circuit topology,small area,and low power consumption.

    Recently multiple-slope architecture[2-3],pre-amplifier with gain-adaptive[4-6],and correlated multiple sampling(CMS)technique[7-11]have been presented to reduce the noise.The CMS technique employed in SS ADC is effective for suppressing the random noise originating from the in-pixel SF and the readout circuit.However,the total conversion time increases linearly with the number of sampling times(M),which slows down the readout speed.This problem is solved by using the two-step ADC architecture[12-13]or two-column ADCs for the parallel multi-sampling[14].Nevertheless,the larger power consumption and circuit area are serious problems.Additionally,a random noise reduction technique has been reported while keeping the A/D conversion time[8].The basic concept of the technique is to utilize a triangle waveform reference,which controls the number of sampling.However,owing to the average operation,the integer divider occupies a large area.Furthermore,a pseudo-multiple sampling technique has been achieved as well[10-11],which alters the resolution of SS ADC according to the number of samplings.It is an effective way to keep the readout speed,along with noise reduction by dividing a higher resolution A/D conversion into a few lower resolution conversions.However,the quantization noise limits the readout noise suppression.

    In this paper,a column-level SS ADC with an adaptive correlated multiple sampling(ACMS)technique is introduced to selectively reduce the readout noise.The basic concept of the proposed technique is that the range and gain of the ramp signal adaptively alter according to the output swing of pixels.For the small-swing signal,a ramp with small-range and highgain is applied for the CMS operation.In contrast,for the large-swing signal,a ramp with large-range and lowgain is enough.The reason is that SNR is dependent on the photon shot noise at high light intensity,which cannot be reduced by multi-sampling operation in a single frame[7].Therefore,the low readout noise is needed at low light while at high light it could be relaxed slightly without too much penalty on SNR.The proposed ACMS method reduces the random noise and the quantization noise in low light conditions.Moreover,the method solves the low frame rate problem of conventional CMS.A simple digital circuit with the signal swing detection function is designed as well.In this circuit,the suitable ramp signal is selected by means of the comparator output.

    1 Conventional CMS technique

    The A/D conversion of SS ADC is accomplished by lots of comparisons between the analog input voltage and a ramp voltage.Although the method is simple,it requires 2nclock periods for eachn-bit conversion.The scenario becomes worse when the multiple sampling operation is used for the A/D conversion.The conversion time is linearly proportional to the sampling times,which will significantly affect readout speed.Additionally,as the sampling time increases,the noise suppression capability of the CMS is limited by the low-frequency noise,i.e.,1/fand random telegraph signal(RTS)noise from the in-pixel SF[15].For further noise reduction,it is necessary to reduce the A/D conversion time of the multiple sampling operation.

    For the pixel output signal,in the initial phase,the pixel cell is reset and the reset level is output.Then,the signal level of the pixel is output after the exposure.The signal level is gradually decreased as the light intensity is increased.Therefore,the swing of the pixel output signal is proportional to the light intensity.Fig.1 shows the ramp and pixel output waveform of the A/D conversion with 3-times sampling operation.At low-light illumination,most of the full-range ramp is not valid because the output swing of the pixel is small.Therefore,the effective A/D conversion time is short.Accordingly,an ACMS technique is presented to overcome the drawbacks of the conventional CMS technique.

    Fig.1 Conventional CMS readout scheme with small output swing

    2 Proposed ACMS technique

    There are two main noise sources in SS ADC,namely,the input-referred random noise and the quantization noise of ADC.The main temporal random noise is contributed by the noise of in-pixel SF,pre-amplifier,and ADC.After digitization,the output of ADC will have an additional quantization noise.It is expressed as:

    whereVqunis the quantization noise depending on the resolutionn,VLSBis the quantization step size,andV Ris the input range of SS ADC.The quantization error is approximated as“white noise”.

    The relationship between incident light illumination and various noise sources is plotted on a graph,as shown in Fig 2(a).Most of the random noise is not influenced by light intensity.These noise sources form the constant random noise,including thermal,1/f,and RTS noise.The readout noise consists of constant random noise and quantization noise,which is a key factor to limit SNR under low illumination.In addition to readout noise,photon shot noise is present in CIS.During the exposure time,the number of photons striking the sensor is random,which results in the shot noise.The relation between the number of photoelectrons(Nsig)in the signal and its associated noiseNphs(both expressed by the number of electrons)is given by:

    Since the shot noiseNphsdepends on theNsig.Thus,under high illumination,SNR is limited by the shot noise.The readout noise does not have to be as low as it should be for the small-swing signal.

    Accordingly,an ACMS technique is proposed to compensate for SNR while keeping the frame rate.Relying on the light intensity,the suitable ramp voltage is automatically selected.For high-light pixels with the large output signal,a full-range and low-gain ramp is enough.Conversely,for the small-swing signal,the ACMS technique utilizes a small-range and high-gain ramp multiple times.In this way,the constant random noise is reduced by a large number of samplings and the quantization error would be improved with the highresolution.Therefore,SNR is enhanced by the proposed ACMS technique at low-light levels,as shown in Fig.2

    Fig.2 Conceptual plot of the relation between light illumination and noise

    (b).

    If the constant random noise is low enough by increasing the sampling number,the quantization noise becomes the limiting factor of the SNR at low light.Therefore,instead of a linear ramp,a piece-wise-linear ramp signal is adopted.For simplicity,the piece-wise-linear ramp is supposed to be a binary increasing gain.As shown in Fig.2(b),the quantization noise increases fromVqunto 2Vqun,then to 4Vqun,etc.

    The resolution of the piece-wise-linear ramp should be matched to the random noise.Therefore,it is essential to compute the pixel output levels at which the resolution and the number of sampling times need to be increased.A simple quality factorκis defined as follows:

    whereVphsis the shot noise voltage.The output thermal noise powerand 1/fnoise powerafter the CMS process are given by Refs.[16-17]

    whereS ntis the power spectrum density of the thermal noise,T0is the sampling period,k fis the flicker noise coefficient,andCi nandC f bare the input capacitor and the feedback capacitor of the pre-amplifier,respectively.

    The condition of the pixel output signal level is computed by combining equations(1)through(5),which yields the following expression:

    whereqis the elementary charge,GSFis the SF gain,Gamprepresents the voltage gain of the pre-amplifier,CFDis the capacitor of the floating diffusion(FD)node,andVrstandVsigare the reset level and signal level of the pixel output,respectively.According to equation(6),the optimal division of the signal level is obtained.

    SNR is the ratio between the signal and the total noise at a given input level.From Fig.2(a),it is clear that SNR should have different expressions under different illumination conditions:

    whereNreadis the readout noise.According to formula(7),the factorκis set to 0.4 and 0.04 under low and high light conditions,respectively.It is a conservative design to ensure that both the quantization noise and the random noise maintain a sufficiently low noise level.Considering the range of pixel output and ADC input,the default gain of the pre-amplifier is 2×,where CISs offer the maximum dynamic range.Conservatively,the initial resolution is 12-bit and the gain ratio of adjacent ramps is set to 6 dB.To sufficiently reduce noise by a large number of samplings at low-light illumination,M=2 is employed for the maximum ramp signal(ramp1).A summary of such a piecewise-linear ramp is given in Table 1.Each ramp covers a part of the signal swing.

    Table 1 Summary of the piece-wise-linear ramp scheme

    As can be seen in Table 1,the SS ADC with ACMS technique provides 12 to 14 bits variable-resolution in different ADC input ranges.The darkest pixel output signal is converted 15-times whereas the brightest one is done twice.Unlike the default ramp signal(ramp1),other ramps require to be reset after switching the ramp signal according to each comparator output.Thus,reset operation needs to be subtracted from the number of signal conversion times.In addition,the compensation among sampling number,resolution,and the ramp range forbids the counter overflow.

    Another advantage of the piece-wise-linear ramp is that the conversion time is not increased.In the proposed ACMS technique,TACMS,the total A/D conversion time with thek-th ramp,is given by:

    wheren0is the initial resolution of the SS ADC andTclkis the period of the counter clock.TCMS,the total A/D conversion time of conventional CMS,is given by:

    Fig.3 shows the total A/D conversion time histogram under different sampling number.n0=12 bit andTclk=5 ns in this paper.For proposed ACMS,the total conversion time is kept 40.96μs.For 15-times multiple sampling,the ACMS technique achieves a 7.5×reduction in A/D conversion time compared with the conventional CMS.

    Fig.3 A/D conversion time with proposed ACMS and conventional CMS

    3 Circuit design and operation principles

    3.1 Column-parallel SS ADC

    The column-parallel SS ADC is shown in Fig.4(a)along with the typical 4T pixel structure and preamplifier.The programmable gain amplifier(PGA)is an inverting voltage amplifier with 1×-8×variable analog gains(Gamp).The variableGampis dictated by the capacitance ratio ofC i n/C f b.The SS ADC with ACMS function consists of a multiple-ramp generator,a comparator,an up-counter,two latches,and a ramp selector.

    Fig.4 Column-parallel SS ADC design and operation principles

    Fig.4(b)shows the timing chart of the pixel devices and column readout circuits.Firstly,the photodiode(PD)and FD node of pixel are reset.The pre-amplifier and comparator are reset sequentially.The switch RST,S1,andS2are closed sequentially to isolate both the offset voltage and reset noise of every stage in a next capacitor[18-19].The noise is cancelled by the ACMS method later on.The up-counter is also reset at the same time.Then the amplified reset voltage is compared with the ramp signal generated by the multiple-ramp generator.In the case ofN-times amplified reset voltage sampling,the up-counter begins counting up synchronously when the comparator output(Vcomp)is“H”during the conversion phase.Finally,the reset voltage sampling data in the up-counter is stored in latch1 by enabling EN1.The latch1 output(Dout1)corresponds toN-times sampling of the amplified reset level and the offset voltage,which is expressed as:

    whereDrst,Nis theN-times sampled data of amplified reset voltage andDoffset,Nis the included offset voltage afterN-times multiple sampling.

    After the TX is closed and the photo charge from the PD is transferred to the FD node,TheVampascends to the amplified signal level accordingly.The conversion of signal level is divided into two phases,namely,a ramp selection phase and an A/D conversion phase.To save time,the first phase is combined with the second conversion phase.During the selection phase,the SS ADC compares signal voltage with ramp1 by default.Based on the results of the ramp selector(the detailed method is described in Section 3.2),each comparator is connected to the most appropriate ramp among ramp1,ramp2,ramp3,and ramp4 when the comparator flips.After selecting the ramp,the operation phase moves to the second and the subsequent multiple-sampling function is performed.Similarly,the signal voltage sampling data in the up-counter is stored in latch2 by enabling EN2.Dout2is expressed as follows:

    whereDsig,Mis theM-times sampled data of amplified signal voltage andDoffset,Mis the included offset voltage after multiple sampling.The final data processing is achieved byDout1,Dout2,and the output of the ramp selector.The final output(Dout)for each pixel is expressed as follows:

    Thus,the offset voltage is eliminated by digital correlated double sampling(D-CDS).

    The proposed ACMS technique is realized using a classical SS ADC architecture by changing the ramp generator.In this paper,four ramps are required.Therefore,the proposed technique increases area and power consumption due to the multiple-ramp generator.For a large-array CIS,the increase of area and power has a small impact.Since the multiple-ramp generator is shared by all column ADCs.The four ramps have different gains and ranges.However,the gain and range of the ramps are unchanged during the second conversion phase,which decreases the possibility of SS ADC nonlinearity and instability.

    3.2 Ramp selector

    The core idea of the ACMS technique is to abate readout noise in such a way that the suitable ramp signal is automatically chosen by the comparator output.Relying on the ACMS technique,SNR is compensated,especially at dark-light illumination.Thus,it is necessary to detect the amplified signal swing before A/D conversion.

    The designed ramp selector with its timing diagram is depicted in Fig.5.VampandVcompare the pre-amplifier and comparator output,respectively.Three index signals(index1,index2,and index3)are used to divide signal swing.Initially,the maximum ramp signal(ramp1)is connected to the comparator by resetting all DFFs to“L”.Once the comparator output flips from“L”to“H”,DFFs are used to lock the level of the three index signals.For example,in the case of Fig.5,a logic“011”is latched by the DFFs and stored in a data memory.Next,the logic value is fed back to a 3-to-8 decoder,which connects the suitable ramp to each comparator.The corresponding relationship between the output of the three DFFs(Q1Q2Q3)and the selected ramp is given in Table 2.

    Fig.5 Designed ramp selector with its timing diagram

    Table 2 Relationship between Q1 Q2 Q3 and selected ramp

    The ramp selector only requires some extra switches and digital circuits in every column.Therefore,the selector only leads to the slight increment of the area and power consumption.

    3.3 Multiple-ramp generator

    The proposed SS ADC requires four ramp waveforms instead of only one.Therefore,it is the most critical that the multiple ramps are well-matched.Since capacitors match better than resistors,the multiple-ramp generator is implemented by switch-capacitor(SC)circuits in this paper.There are many different coding architectures,such as binary-weighted,thermometer coded,and segmented DAC.Generally,to reduce the area and power,the DAC based on binary-weighted SC array with an attenuation capacitor is employed[20-21].However,the extra parasitic capacitor would affect the linearity and reliability of the DAC,particularly for the parasitic capacitor of the attenuation capacitor.In addition,the weight of each unit capacitor is different,which causes larger cross-talk and glitches when the state of the switch is changed.Therefore,the thermometer coded SC array is adopted.During each time,there is only onebit change,which is capable of effectively reducing the jitter and unreliability of the ramps[22].Moreover,the differential nonlinearity(DNL)of the ramp voltage is smaller,if the generator does not use the attenuation capacitor.Fig.6 shows a simplified circuit diagram of the proposed ramp generator.

    Fig.6 Simplified circuit diagram of the proposed ramp generator

    During the reset phase of the ramp generator,the switchSrstis closed.The bottom plates of all capacitors are also connected to the reference voltageVreflvia switchesb i(i=0,1,2,…,2n-1).Then theSrstgets open and the bottom plates of all capacitors are sequentially connected toVrefh.The output voltage of the DAC(VDAC)is given as:

    whereaandbare the number of capacitors connected to theVrefland theVrefh,respectively.Anda+b=2n-1.

    According to equation(13)and considering the parasitic capacitorC P,VDACis given by:

    The parasitic capacitor does not cause the nonlinearity of the ramp signal.However,whena=0 andb=2n-1,the above equation is simplified as:

    At this time,VDACis not equal toVrefh,which would reduce the output range of the DAC.This effect is reduced by increasing theVrefh.Thus,the reference voltageVreflandVrefhare generated by a programmable voltage generator(PVG).The PVG is implemented by a set of serial resistors.Every step voltage in the resistor ladder isIbg×Rload,whereIbgis generated by the bandgap voltage,Rloadis the unit resistors.TheVreflandVrefhare increased or decreased by the step voltage.

    Another advantage of the programmable voltage is that it could calibrate the offset voltage among multiple ramps.The offset voltage includes input offset voltage of the multiple-ramp generator,unstable reference voltage,and the offset of the output buffer.The offsets cause a vertical shift of the four ramps(the shift of ramp3 and ramp4 are not plotted),as shown in Fig.7(a).The residual error is converted to an incorrect digital code,resulting in a dead band.This error correction scheme is shown in Fig.7(b)with the ramp2 example.The range of the four ramps is programmable via digital codes,which could cover the residual errors.The offset voltage is removed by selecting an appropriate reference voltage.Moreover,the dead bands are avoided by creating some overlap between the four ramps.

    Fig.7 Ramp signal plots

    Because of the thermometer coded,the mismatch of the capacitors has little effect on the linearity of the four ramps.However,owing to the process mismatch,the gain error causes performance degradation at the threshold voltage between the four ramps.

    During the selection phase,the ramp selector switches the ramp voltage from ramp1 to the most appropriate ramp.Therefore,the output digital codes at the threshold voltage between the four ramps are expressed as:

    whereVthkis the threshold voltage between ramp1 and rampk(k=2,3,4),S1is the slope of ramp1,Skis the slope of rampk,Tclkis the period of the counter clock,andDkandD′kare the minimum voltage of ramp1 and the maximum voltage of rampk(both expressed by the output digital codes)at the threshold voltageVthk,respectively.The error is calculated as:

    From equation(18),the sampling number(M=2k)also affects the error.The problem is easily solved by resetting the up-counter after switching the ramp signal.At this time,equations(17)and(18)are rewritten as follows:

    From equation(20),the sampling number(M=2k-1)does not affect the error.Furthermore,to minimize the error,calibration technique is needed to calibrate the slope mismatch at the threshold voltage.A gain ratioβkof the four ramps is defined as:

    The calibration technique is shown in Fig.8.Three preset voltagesV1,V2,andV3are offered from a DAC.In the beginning,the preset voltagesV1is converted by both ramp1 and rampk to obtainD1,LandDk,L,where the SS ADC is forced to connect to either ramp1 or rampk.Then the preset voltagesV2andV3are converted sequentially by rampk and ramp1 to obtainDk,HandD1,H.Finally,the gain ratioβkis calculated as:

    Fig.8 Calibration technique of the gain error

    The digital output is calibrated byβkat the connecting points between the four ramps.Note that three preset voltages are not close to the connecting points.Since the better linearity and reliability in the middle of the four ramps.Combined with the description in Section 3,F(xiàn)ig.9 illustrates the CIS readout and calibration flow with the ACMS technique.

    Fig.9 CIS readout and calibration flow with the ACMS technique

    4 Simulation results

    The presented ACMS technique based on SS ADC is designed and simulated in a standard 0.11μm CMOS process.The supply voltage is 3.3 V for analog circuitry and 1.5 V for digital.A complete A/D conversion period from PGA to the SS ADC is set to 64μs,and it does not increase with the sampling number and resolution.The ADC provides 12 to 14 bits variable-resolution in different input ranges.The power consumption of each column is 125μW,which includes the consumption of the SS ADC(90μW)and the PGA(35μW).Moreover,the layout of column-parallel PGA and ADC is illustrated in Fig.10.The single-column PGA and ADC occupy the area of 6μm×750μm and 6μm×880μm,respectively.

    Fig.10 Layout of designed PGA and SS ADC

    The linearity and reliability of the SS ADC is determined by the performance of the multiple-ramp generator.Fig.11 shows the simulation results of the generator output signal.The ramp signal waveforms are relatively smooth and glitch-free.After the calibration of the offset voltage,the simulated DNL and integral nonlinearity(INL)of the ramp signals are shown in Fig.12.The DNL and INL are+0.001 36/-0.001 86 LSB and+1.609/-1.677 LSB,respectively.Furthermore,the noise of the entire multiple-ramp generator is 31.2μVrms.Thus,the multiple-ramp generator meets the accuracy and reliability demands without serious nonlinear problems.

    Fig.11 Simulation results of the generator output signal

    Fig.12 Performance of DNL and INL

    The simulated input-referred random noise under different PGA gain modes is shown in Fig.13.The input range of the SS ADC is divided into four intervals.As the input voltage decreases,the input-referred random noise is reduced from 200μVrmsto 90μVrmsatGamp=2.The temporal random noise reduction of the proposed ACMS technique is about 55% in low-light conditions.The random noise decreased with the increase of sampling number and PGA gain until it is finally down to 59μVrmsatM=15 andGamp=8.Another observation concluded from Fig.13 is that the noise reduction effect of the ACMS technique declines slightly at higher gain settings.

    Fig.13 Simulated input-referred random noise under different PGA gain

    The input-referred readout noise after the proposed ACMS process is shown in Fig.14.As the input voltage decreases,the readout noise is reduced from 211μVrmsto 92μVrmsatGamp=2.The noise reduction corresponds to 7.21 dB SNR improvement at low-light-level illumination.Compared with the random noise in Fig.13,the readout noise is only slightly increased in low light conditions.The conventional CMS is applied(Gamp=1,M=3,and 12-bit resolution)for comparison,the simulated readout noise is about 300μVrms.However,by applying ACMS technique(Gamp= 1,M= 3,and 12-bit resolution),312 μVrmsreadout noise is obtained.Equation(4)means that the ACMS technique with reducedT0increases the thermal noise.However,the 1/fnoise decreases with theT0decreases as equation(5)suggests.Therefore,in this paper,the dominant noise contributor is the thermal noise,instead of the 1/fnoise from the pixel SF.For the same M,though the noise performance of ACMS is slightly worse than the CMS,the A/D conversion time is effectively reduced.The simulation results confirm that the novel presented ACMS scheme achieves a good noise reduction effect while without any increase of total A/D conversion time.

    Fig.14 Simulated input-referred readout noise after the ACMS process

    Combining equation(2),the shot noise of the pixel is added by generating the random number using the Poisson distribution.Fig.15 shows SNR curves with proposed ACMS and conventional CMS(forM=2)technique atGamp=2.For large signals,the points of both curves are completely coincided.The reason is that the large signal is the shot noise dominated which cannot be reduced by the ACMS technique.For small signals,SNR is enhanced by the ACMS technique.Therefore,the proposed ACMS reduces the readout noise at low light.

    Fig.15 The relation between SNR and signal(expressed by the number of electrons)with proposed ACMS and conventional CMS technique

    Table 3 lists a noise performance summary and gives a comparison of this work with the prior arts.Compared with Refs.[8,12-13,23],this work achieves the state-of-the-art performance in input-referred random noise.The figure of merit(FoM)in Table 3 is defined as:

    Table 3 Performance summary and comparison

    wherevnis the input-referred random noise andTADCis the total A/D conversion time for each pixel output.This paper achieves a good FoM of 3.77 nVrms·s,which means the simultaneous capability of maintaining both low noise and high speed.

    5 Conclusion

    In this paper,an ACMS technique is presented to selectively suppress random noise and quantization noise according to the signal swing.The SS ADC architecture incorporates four ramps with different gains and durations.Each ramp covers a part of the input range of the ADC.Moreover,the calibration methods of offset voltage and gain error improve the linearity of the ramp signals.The simulated DNL and INL of the ramp signals are+0.001 36/-0.001 86 LSB and+1.609/-1.677 LSB,respectively.The proposed column-parallel SS ADC achieves 59μVrmsreadout noise atM=15 andGamp=8.The improvement of SNR is 7.21 dB atGamp=2.Additionally,The FoM of the implemented ADC realizes 3.77 nVrms·s while keeping the A/D conversion time.The simulation results show that the suggested ACMS technique successfully mitigates readout noise and enhances SNR at dark-light illumination.

    Acknowledgments

    This work was supported by the Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology.

    猜你喜歡
    單斜微電子天津大學(xué)
    合肥云之微電子有限公司
    先進(jìn)微電子與光電子材料與器件專題引言
    《天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》簡(jiǎn)介
    微電子封裝器件熱失效分析與優(yōu)化研究
    電子制作(2018年17期)2018-09-28 01:57:10
    學(xué)生寫話
    低溫單斜相BiPO4∶Tb3+納米晶的合成及其發(fā)光性能
    10位高速分級(jí)比較型單斜模數(shù)轉(zhuǎn)換器
    南海新生代玄武巖中單斜輝石地球化學(xué)特征及其地質(zhì)意義
    天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)2014年總目次
    具有物聯(lián)網(wǎng)特色的微電子專業(yè)人才培養(yǎng)機(jī)制探索
    国产视频一区二区在线看| 国产高清videossex| 久久久久国产一级毛片高清牌| 丰满迷人的少妇在线观看| 一级毛片女人18水好多 | 老熟女久久久| 亚洲人成网站在线观看播放| 国产有黄有色有爽视频| 久久久久久久久久久久大奶| 久久久精品国产亚洲av高清涩受| 国产高清videossex| 一区二区三区乱码不卡18| 亚洲欧美中文字幕日韩二区| 精品福利观看| 国产精品99久久99久久久不卡| 91九色精品人成在线观看| 久久精品久久精品一区二区三区| 黄片播放在线免费| 精品少妇久久久久久888优播| 搡老乐熟女国产| 国产亚洲欧美精品永久| 中文字幕色久视频| 女人精品久久久久毛片| 亚洲欧美清纯卡通| 国产一区二区 视频在线| 亚洲av男天堂| 9色porny在线观看| 亚洲欧美精品综合一区二区三区| 国产亚洲精品第一综合不卡| 黑丝袜美女国产一区| 国产黄频视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 色婷婷久久久亚洲欧美| 国产野战对白在线观看| 十八禁网站网址无遮挡| 99精品久久久久人妻精品| xxx大片免费视频| www.精华液| 国产精品人妻久久久影院| 亚洲综合色网址| 成人国产av品久久久| 亚洲,一卡二卡三卡| www日本在线高清视频| 精品亚洲成a人片在线观看| 99国产精品免费福利视频| av网站免费在线观看视频| 精品久久蜜臀av无| 不卡av一区二区三区| 老司机靠b影院| 深夜精品福利| 国产黄频视频在线观看| 欧美日韩视频高清一区二区三区二| 一边摸一边做爽爽视频免费| 午夜福利一区二区在线看| 人体艺术视频欧美日本| 777米奇影视久久| 亚洲国产欧美网| 欧美成人午夜精品| 老汉色av国产亚洲站长工具| 中文欧美无线码| 大片电影免费在线观看免费| 黄色毛片三级朝国网站| 美国免费a级毛片| 日韩大片免费观看网站| 亚洲黑人精品在线| 肉色欧美久久久久久久蜜桃| 肉色欧美久久久久久久蜜桃| 黑丝袜美女国产一区| 如日韩欧美国产精品一区二区三区| 国产精品成人在线| 欧美成狂野欧美在线观看| 交换朋友夫妻互换小说| 亚洲国产精品一区二区三区在线| 黑丝袜美女国产一区| 叶爱在线成人免费视频播放| 欧美激情高清一区二区三区| 国产福利在线免费观看视频| 18在线观看网站| 欧美日韩一级在线毛片| 亚洲av男天堂| 亚洲精品日韩在线中文字幕| 又大又黄又爽视频免费| 亚洲欧洲国产日韩| 91精品三级在线观看| 久久女婷五月综合色啪小说| 国产精品av久久久久免费| 纵有疾风起免费观看全集完整版| 电影成人av| 51午夜福利影视在线观看| 国产精品 国内视频| videosex国产| 美女高潮到喷水免费观看| 欧美日本中文国产一区发布| www.999成人在线观看| 免费在线观看完整版高清| 久久久久精品人妻al黑| 欧美日韩亚洲综合一区二区三区_| 大陆偷拍与自拍| 欧美日韩视频精品一区| 一本色道久久久久久精品综合| 午夜免费观看性视频| 精品久久久久久久毛片微露脸 | 中文字幕另类日韩欧美亚洲嫩草| 各种免费的搞黄视频| 国产成人av激情在线播放| 亚洲国产最新在线播放| av电影中文网址| 欧美精品亚洲一区二区| 国产av一区二区精品久久| 亚洲国产日韩一区二区| 99精品久久久久人妻精品| 天堂8中文在线网| 久久国产精品影院| a级片在线免费高清观看视频| 久久中文字幕一级| 高清av免费在线| 一本综合久久免费| 在线观看人妻少妇| 国产女主播在线喷水免费视频网站| 亚洲国产av影院在线观看| 成人影院久久| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产 | 亚洲色图 男人天堂 中文字幕| 国产片内射在线| 在现免费观看毛片| h视频一区二区三区| 最近最新中文字幕大全免费视频 | 日韩精品免费视频一区二区三区| 亚洲av日韩在线播放| 欧美黄色淫秽网站| 黄色视频在线播放观看不卡| 伊人久久大香线蕉亚洲五| 国产一区有黄有色的免费视频| 男女无遮挡免费网站观看| 亚洲视频免费观看视频| 十八禁网站网址无遮挡| 国产免费现黄频在线看| 天天躁夜夜躁狠狠久久av| 一级片'在线观看视频| 一级a爱视频在线免费观看| 国产真人三级小视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 狂野欧美激情性xxxx| 亚洲中文日韩欧美视频| videos熟女内射| 99国产精品一区二区蜜桃av | 建设人人有责人人尽责人人享有的| 高清视频免费观看一区二区| 99精品久久久久人妻精品| 欧美乱码精品一区二区三区| 精品国产一区二区三区四区第35| 亚洲精品自拍成人| 久久热在线av| 好男人电影高清在线观看| videosex国产| 成年女人毛片免费观看观看9 | 欧美黑人精品巨大| 亚洲av国产av综合av卡| 一级毛片我不卡| tube8黄色片| 国产成人精品久久久久久| 黑人猛操日本美女一级片| 欧美人与性动交α欧美软件| 国产又色又爽无遮挡免| 亚洲美女黄色视频免费看| 脱女人内裤的视频| 成人国产一区最新在线观看 | 曰老女人黄片| 久热这里只有精品99| 香蕉国产在线看| 色视频在线一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲av日韩精品久久久久久密 | 一二三四在线观看免费中文在| 午夜福利一区二区在线看| 日韩大码丰满熟妇| 婷婷色综合www| 少妇精品久久久久久久| 亚洲精品自拍成人| 亚洲成人手机| 天天躁狠狠躁夜夜躁狠狠躁| 免费高清在线观看日韩| 搡老乐熟女国产| 蜜桃国产av成人99| 国产精品.久久久| 免费在线观看黄色视频的| 免费一级毛片在线播放高清视频 | 免费一级毛片在线播放高清视频 | 久久久久久久久免费视频了| 老汉色∧v一级毛片| 亚洲av日韩精品久久久久久密 | 水蜜桃什么品种好| 久久精品aⅴ一区二区三区四区| 一级片免费观看大全| 七月丁香在线播放| 国产高清videossex| 男男h啪啪无遮挡| 欧美成人午夜精品| 在线观看一区二区三区激情| 大型av网站在线播放| 男女国产视频网站| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看| 777米奇影视久久| 国产精品一区二区精品视频观看| 久久女婷五月综合色啪小说| 国产男女内射视频| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看| 午夜久久久在线观看| 国产精品一区二区精品视频观看| 国产成人精品在线电影| 男女边吃奶边做爰视频| 天堂俺去俺来也www色官网| 久久女婷五月综合色啪小说| 亚洲av欧美aⅴ国产| 精品久久蜜臀av无| 亚洲精品第二区| 亚洲,欧美,日韩| 亚洲人成电影观看| 国产激情久久老熟女| 国产成人av激情在线播放| 一边摸一边抽搐一进一出视频| 青春草视频在线免费观看| 高清欧美精品videossex| av在线app专区| 美女大奶头黄色视频| 国产精品一区二区在线不卡| av天堂在线播放| 久久天躁狠狠躁夜夜2o2o | 91字幕亚洲| 精品福利永久在线观看| 日本av手机在线免费观看| 丝瓜视频免费看黄片| 亚洲黑人精品在线| 精品一区二区三区av网在线观看 | 国产精品人妻久久久影院| 又黄又粗又硬又大视频| 男女床上黄色一级片免费看| 精品一区在线观看国产| www.自偷自拍.com| 国产成人一区二区在线| 视频区图区小说| 免费在线观看日本一区| 又紧又爽又黄一区二区| 国产日韩欧美亚洲二区| 成年人免费黄色播放视频| 日韩一本色道免费dvd| www.精华液| 美女国产高潮福利片在线看| av在线app专区| 老司机影院毛片| 又粗又硬又长又爽又黄的视频| 中文字幕精品免费在线观看视频| 无遮挡黄片免费观看| 亚洲人成77777在线视频| 美女主播在线视频| 精品一区在线观看国产| 国产片特级美女逼逼视频| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲综合一区二区三区_| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频 | 国产xxxxx性猛交| 欧美激情高清一区二区三区| 各种免费的搞黄视频| 国产精品久久久久成人av| 日本五十路高清| 欧美人与善性xxx| av网站免费在线观看视频| 日韩制服骚丝袜av| 一本色道久久久久久精品综合| 亚洲欧美日韩高清在线视频 | 亚洲av日韩精品久久久久久密 | 青春草亚洲视频在线观看| 在线 av 中文字幕| 国产xxxxx性猛交| 亚洲黑人精品在线| 脱女人内裤的视频| 国产av一区二区精品久久| 国产精品亚洲av一区麻豆| 少妇 在线观看| 亚洲中文av在线| 亚洲精品国产色婷婷电影| 伊人久久大香线蕉亚洲五| 交换朋友夫妻互换小说| 久久久久网色| 捣出白浆h1v1| 免费久久久久久久精品成人欧美视频| 成人国产一区最新在线观看 | 高清欧美精品videossex| 亚洲成人国产一区在线观看 | 久久久久国产精品人妻一区二区| 性色av乱码一区二区三区2| 久久久久精品国产欧美久久久 | 777米奇影视久久| 韩国高清视频一区二区三区| 午夜福利,免费看| 国产黄色免费在线视频| 一级毛片电影观看| 精品福利观看| 91麻豆精品激情在线观看国产 | 久久青草综合色| 亚洲中文字幕日韩| 热99久久久久精品小说推荐| 欧美精品一区二区大全| 久久久国产一区二区| 亚洲精品国产av成人精品| 成年人免费黄色播放视频| 欧美中文综合在线视频| 乱人伦中国视频| 一区在线观看完整版| 美女国产高潮福利片在线看| 欧美日韩成人在线一区二区| 少妇猛男粗大的猛烈进出视频| 十八禁高潮呻吟视频| 免费观看av网站的网址| 又粗又硬又长又爽又黄的视频| 高清欧美精品videossex| 久久亚洲国产成人精品v| 欧美精品一区二区大全| 久久久精品94久久精品| 水蜜桃什么品种好| 国产免费又黄又爽又色| 国产福利在线免费观看视频| 国产视频首页在线观看| 在线观看www视频免费| 国产伦理片在线播放av一区| 亚洲成国产人片在线观看| 丰满饥渴人妻一区二区三| 久久久久久久久久久久大奶| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 午夜免费鲁丝| 午夜福利一区二区在线看| 少妇人妻久久综合中文| av线在线观看网站| 免费人妻精品一区二区三区视频| 又黄又粗又硬又大视频| 大香蕉久久网| 久久ye,这里只有精品| av天堂在线播放| 久9热在线精品视频| 国产片特级美女逼逼视频| 欧美激情极品国产一区二区三区| 亚洲av电影在线观看一区二区三区| 乱人伦中国视频| 国产精品成人在线| 999精品在线视频| 国产精品 国内视频| 精品久久久精品久久久| 久久久国产精品麻豆| www.熟女人妻精品国产| 国产成人系列免费观看| 菩萨蛮人人尽说江南好唐韦庄| 97精品久久久久久久久久精品| 国产熟女欧美一区二区| 丝袜美足系列| 亚洲中文av在线| 国产一区亚洲一区在线观看| 亚洲伊人色综图| 极品人妻少妇av视频| 亚洲成人免费电影在线观看 | 欧美性长视频在线观看| 欧美日韩综合久久久久久| 国产片内射在线| 涩涩av久久男人的天堂| 欧美人与性动交α欧美精品济南到| 亚洲中文字幕日韩| 日韩av不卡免费在线播放| 国产在视频线精品| 色94色欧美一区二区| 精品第一国产精品| 青春草视频在线免费观看| 狂野欧美激情性xxxx| 悠悠久久av| 欧美xxⅹ黑人| 下体分泌物呈黄色| 在线看a的网站| 超碰成人久久| 国产免费现黄频在线看| 色视频在线一区二区三区| 国产精品国产av在线观看| 欧美人与性动交α欧美精品济南到| 亚洲国产最新在线播放| 亚洲精品一二三| 亚洲熟女精品中文字幕| 日本av手机在线免费观看| 丝瓜视频免费看黄片| 亚洲成av片中文字幕在线观看| 黄片小视频在线播放| 汤姆久久久久久久影院中文字幕| 青青草视频在线视频观看| 嫩草影视91久久| 日韩精品免费视频一区二区三区| 亚洲欧美一区二区三区黑人| 日本猛色少妇xxxxx猛交久久| 一级a爱视频在线免费观看| 91麻豆精品激情在线观看国产 | 每晚都被弄得嗷嗷叫到高潮| 美女脱内裤让男人舔精品视频| 无限看片的www在线观看| 国产精品九九99| 色播在线永久视频| 美女高潮到喷水免费观看| 色播在线永久视频| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 国产高清不卡午夜福利| 啦啦啦在线免费观看视频4| 色94色欧美一区二区| 久久精品久久精品一区二区三区| 在线天堂中文资源库| av天堂久久9| av在线老鸭窝| 美女扒开内裤让男人捅视频| 男女午夜视频在线观看| 亚洲欧美成人综合另类久久久| 极品少妇高潮喷水抽搐| 免费不卡黄色视频| 青春草视频在线免费观看| av又黄又爽大尺度在线免费看| 丝瓜视频免费看黄片| 一本色道久久久久久精品综合| 亚洲精品一区蜜桃| 一本—道久久a久久精品蜜桃钙片| 亚洲 国产 在线| 99精品久久久久人妻精品| 国产在线一区二区三区精| 久久精品久久久久久噜噜老黄| 亚洲伊人色综图| 国产精品秋霞免费鲁丝片| 中文字幕亚洲精品专区| 午夜老司机福利片| 狠狠精品人妻久久久久久综合| 国产色视频综合| 悠悠久久av| 亚洲熟女精品中文字幕| 国产一级毛片在线| 国产成人影院久久av| 久久久久国产精品人妻一区二区| 免费看十八禁软件| 日韩免费高清中文字幕av| 成人亚洲欧美一区二区av| 午夜福利乱码中文字幕| av网站在线播放免费| 巨乳人妻的诱惑在线观看| 欧美少妇被猛烈插入视频| h视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 国产免费又黄又爽又色| 国产高清国产精品国产三级| 啦啦啦 在线观看视频| 一区二区三区乱码不卡18| 人成视频在线观看免费观看| 亚洲中文字幕日韩| 国产麻豆69| 亚洲国产毛片av蜜桃av| 男女高潮啪啪啪动态图| 岛国毛片在线播放| 日本欧美国产在线视频| 91国产中文字幕| 日韩制服丝袜自拍偷拍| 日韩av免费高清视频| 国产又色又爽无遮挡免| 少妇猛男粗大的猛烈进出视频| 国产伦人伦偷精品视频| 国产视频一区二区在线看| 欧美日韩福利视频一区二区| 亚洲第一av免费看| 久久午夜综合久久蜜桃| 午夜91福利影院| 亚洲国产精品一区二区三区在线| 韩国高清视频一区二区三区| 亚洲伊人久久精品综合| 国产淫语在线视频| 看免费av毛片| 国产熟女欧美一区二区| 精品少妇一区二区三区视频日本电影| 女警被强在线播放| 巨乳人妻的诱惑在线观看| 亚洲国产精品一区三区| 成人亚洲欧美一区二区av| 老司机在亚洲福利影院| 中文字幕人妻熟女乱码| 搡老岳熟女国产| 婷婷丁香在线五月| 深夜精品福利| 精品一区二区三区av网在线观看 | 久久 成人 亚洲| 日韩熟女老妇一区二区性免费视频| 咕卡用的链子| 久久久亚洲精品成人影院| 另类精品久久| 一本色道久久久久久精品综合| 午夜免费男女啪啪视频观看| 啦啦啦中文免费视频观看日本| 国产亚洲精品久久久久5区| 秋霞在线观看毛片| 日本wwww免费看| 国产真人三级小视频在线观看| 欧美精品av麻豆av| 在线精品无人区一区二区三| 亚洲精品国产av成人精品| 亚洲欧美精品自产自拍| 性色av一级| 国产熟女午夜一区二区三区| 免费黄频网站在线观看国产| 午夜激情久久久久久久| 深夜精品福利| 国产成人a∨麻豆精品| 亚洲精品美女久久久久99蜜臀 | 在线观看免费视频网站a站| www.熟女人妻精品国产| 高清视频免费观看一区二区| 夜夜骑夜夜射夜夜干| 男女下面插进去视频免费观看| 国产无遮挡羞羞视频在线观看| 亚洲天堂av无毛| 狂野欧美激情性bbbbbb| 国产精品秋霞免费鲁丝片| 亚洲成人免费av在线播放| 久久ye,这里只有精品| 精品少妇黑人巨大在线播放| 一区二区三区四区激情视频| 黄频高清免费视频| 9热在线视频观看99| 99精品久久久久人妻精品| 日本五十路高清| 国产一区亚洲一区在线观看| 一二三四社区在线视频社区8| 亚洲色图综合在线观看| 欧美在线一区亚洲| 一区二区三区激情视频| 爱豆传媒免费全集在线观看| 国产精品香港三级国产av潘金莲 | 80岁老熟妇乱子伦牲交| 91精品国产国语对白视频| 夫妻性生交免费视频一级片| 久久国产亚洲av麻豆专区| 伊人亚洲综合成人网| 秋霞在线观看毛片| 久久久久久亚洲精品国产蜜桃av| 美女午夜性视频免费| 一区二区三区四区激情视频| 国产精品av久久久久免费| 一区二区三区激情视频| bbb黄色大片| av视频免费观看在线观看| 久久热在线av| 男女之事视频高清在线观看 | 国产一区二区激情短视频 | 婷婷成人精品国产| 99热网站在线观看| 伊人亚洲综合成人网| 成年av动漫网址| 91麻豆av在线| 国产一区二区激情短视频 | 9热在线视频观看99| 操出白浆在线播放| 国产亚洲精品第一综合不卡| 99热国产这里只有精品6| 日韩欧美一区视频在线观看| 人人妻人人添人人爽欧美一区卜| 黄频高清免费视频| 日韩 亚洲 欧美在线| 国产麻豆69| videos熟女内射| 国产成人91sexporn| 久久狼人影院| 在线观看国产h片| 18禁国产床啪视频网站| 亚洲精品av麻豆狂野| 黄色一级大片看看| 中文字幕精品免费在线观看视频| 免费观看a级毛片全部| 精品亚洲成a人片在线观看| 日韩大片免费观看网站| 成人午夜精彩视频在线观看| 脱女人内裤的视频| 日韩一本色道免费dvd| 老司机靠b影院| 免费久久久久久久精品成人欧美视频| www.999成人在线观看| 午夜91福利影院| 欧美精品人与动牲交sv欧美| 久久久久久久国产电影| 精品欧美一区二区三区在线| 国产av一区二区精品久久| 一区二区三区乱码不卡18| 色精品久久人妻99蜜桃| 日本91视频免费播放| 久久久久精品国产欧美久久久 | 国产无遮挡羞羞视频在线观看| 精品国产乱码久久久久久小说| 精品国产超薄肉色丝袜足j| 欧美精品一区二区免费开放| 在线观看www视频免费| 亚洲第一青青草原| 纵有疾风起免费观看全集完整版| 午夜福利影视在线免费观看| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品电影小说| 在线看a的网站| 激情视频va一区二区三区| 欧美成狂野欧美在线观看| 啦啦啦啦在线视频资源| 免费高清在线观看视频在线观看| 老熟女久久久| 一本—道久久a久久精品蜜桃钙片| 日本91视频免费播放| 久久久精品94久久精品| 18禁国产床啪视频网站| av天堂久久9|