• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-similar mixed convection analysis for magnetic flow of second-grade nanofluid over a vertically stretching sheet

    2021-07-06 05:04:24AmmarahRaeesUmerFarooqMuzamilHussainWaseemAsgharKhanandFoziaBashirFarooq
    Communications in Theoretical Physics 2021年6期

    Ammarah Raees,Umer Farooq,Muzamil Hussain,5,Waseem Asghar Khanand Fozia Bashir Farooq

    1 Faculty of Computer Science and Software Engineering,Huaiyin Institute of Technology,Huai’an,China

    2 Department of Mathematics,COMSATS University Islamabad,Park Road Chak Shahzad Islamabad 44000,Pakistan

    3 Department of Mathematics,College of Sciences AlZulfi,Majmaah University,Al Majma’ah,11952 Saudi Arabia

    4 Department of Mathematics,Imam Muhammad ibn Saud Islamic University,Riyadh 11432,Saudi Arabia

    5 Department of Mathematics,University of the Poonch Rawalakot,Rawalakot 12350,Pakistan

    Abstract The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow.The flow is initiated by the stretching of a sheet at an exponential rate in the upward vertical direction.The buoyancy effects in terms of temperature and concentration differences are inserted in the x-momentum equation.The aspects of heat and mass transfer are studied using dimensionless thermophoresis,Schmidt and Brownian motion parameters.The governing coupled partial differential system(PDEs)is remodeled into coupled non-similar nonlinear PDEs by introducing non-similar transformations.The numerical analysis for the dimensionless non-similar partial differential system is performed using a local non-similarity method via bvp4c.Finally,the quantitative effects of emerging dimensionless quantities on the nondimensional velocity,temperature and mass concentration in the boundary layer are conferred graphically,and inferences are drawn that important quantities of interest are substantially affected by these parameters.It is concluded that non-similar modeling,in contrast to similar models,is more general and more accurate in convection studies in the presence of buoyancy effects for second-grade non-Newtonian fluids.

    Keywords:non-similar modeling,second-grade fluid,exponentially stretching surface,local non-similarity,bvp4c

    1.Introduction

    Study of the flows induced by the stretching of the surfaces is of significant importance in view of its use in technical manufacturing,such as aerodynamics,the cooling process of metal sheets,extrusion of plastic sheets,the condensation process of fluid films,chemical processing equipment,glass and polymer industries,crystal growth and several heat exchanger projects.In such situations,the outputs with the required attributes depend on the rate of cooling and stretching in the process.Sakiadis[1]was the pioneer in this field who theoretically explored the moving solid structures.He addressed the problem by applying similarity transformation via a numerical technique.Moreover,Erickson et al[2]continued the exploration by assuming a moving surface with nonzero transverse velocity.The 2D steady flow was investigated by Crane[3]over a stretching surface.He attempted to concentrate on a stretching sheet as he realized that this case was a pivotal subject in the polymer industry.Gupta and Gupta[4]utilized that that was introduced by Crane[3]and extended those examinations.They explored heat and mass transfer by incorporating suction effects over an expanding surface.Rajagopal et al[5]inspected the flow of viscoelastic fluid in the absence of heat transfer and discussed its applications in the polymer industry.Using the momentum integral method,Bujurke et al[6]performed convection studies for second-grade fluid flow.Magyari and Keller[7]examined steady flow using both analytical and numerical solutions.They also compared heat and mass transfer features of the considered problem with already proven results of earlier authors.Elbashbeshy[8]introduced a new dimension in the analysis of an exponentially stretching surface.He examined the effects of suction in a surface which is expanding at exponential rate.Partha et al[9]studied mixed convection flow with viscous dissipation consequences over a vertical surface expanding at exponential rate.Khan et al[10]studied viscoelastic fluid over an exponentially expanding surface.Xu et al[11]analytically examined the unsteady electrically conductive incompressible viscous fluid in which flow is initiated by the expansion of the surface in two lateral directions.Latterly Khan[12]and Bataller[13]analytically reviewed convection equations for viscoelastic fluid flow persuaded by a stretchable sheet.Tan and Liao[14]analytically examined the 3D unsteady incompressible viscous rotating fluid flow over an impulsive surface.Sajid and Hayat[15]surveyed thermal radiation effects in an exponentially expanding sheet.Sekhar and Chethan[16]examined heat transfer using Boussinesq–Stokes suspension numerically in the fluid flow,which is started by the exponentially expanding surface.Siddheshwar et al[17]expanded this research by considering the magnetic field in a transversal direction.Ramzan et al[18],with the help of surface heat flux,examined the effects of thermal radiation and mixed convection on 3D second-grade nanofluid.Rasheed and Anwar[19]studied magnetohydrodynamic(MHD)viscoelastic fluid flow with homogeneous–heterogeneous reactions in the flow domain.By utilizing the time-dependent magnetic field,Muhammad[20]analyzed the impact of heat absorption/generation effects over a curved surface.Ahmad et al[21]inspected 3D unsteady flow with thermophoresis and Brownian motion effects.Jamil et al[22]examined heat transfer of viscoelastic incompressible unsteady flow generated by a stretching surface with heat radiation and chemical reaction effects.Irfan et al[23]examined 3D MHD nonlinear radiated flow of mixed convection Carreau nanofluid over a stretching surface.

    In accordance with industrial and technical applications,flow models based on non-Newtonian fluids are more acceptable than Newtonian fluids.Non-Newtonian fluids show a nonlinear stress and strain rate relationship at any point of flow.Mathematically,compared to the Newtonian the constitutive equations of non-Newtonian fluids are much more complex because of the nonlinear relation of the stress and strain rate.Constitutive equations are more complex,containing a number of parameters,and the solutions of the resulting equations are more complicated to find in general.Numerous variable viscous fluid models have been suggested which demonstrate the complexity of their governing equations.Now,several researchers are engaged in the study of analytical or numerical solutions to fluid flow problems that generate from the use of various non-Newtonian fluid models.Viscoelastic fluids are common types of non-Newtonian fluids.However,the most widely used basic type of viscoelastic fluid is the second-order fluid,which may address problems that are far from trivial.The fluid property viscoelasticity refers to the rise in the order of differential equations that describe the flow.Nevertheless,flow equations are typically more nonlinear compared to Newtonian fluid equations.Among these reasons,the field of research on non-Newtonian fluids poses some fascinating and impressive tasks for computer scientists,physicists and mathematicians alike.

    Mathematical simulations of physical processes in fields such as fluid dynamics,diffusion,wave dynamics,chemical kinetics and general transport problems are governed by nonlinear partial differential equations whose solutions are difficult to find analytically.Consequently,the conversion technique for analyzing nonlinear partial differential system(PDEs)into ordinary differential equations(ODEs)has been very influential in the study of various convection equations.Ames[24]presented many types of these reduction approaches and thought about the developments in fluid dynamics,wave propagation and nonlinear diffusion from the use of PDEs to the reduction approach to ODEs.Although a similar approach has frequently been used in the literature[25–29],the approach cannot be used to a significant extent because of a limitation clarified underneath.Success of this approach depends vigorously on the achievement of a reduced ODEs solution.For a few cases,the reduced ODEs may be integrated in the form of elementary functions,but it is not an easy matter in most cases,so it was proposed that numerical methods be used to solve the converted ODEs.Generally,the given system is not fully converted to ODEs using a local similar method;to overcome this drawback Sparrow and Yu[30]introduced a method of local non-similarity.Hayat et al[31]numerically examined magnetic viscous fluid in nonlinear curved expansion.Zhang et al[32]investigated 3D pressure drop through a spherically coordinated helically coiled tube.Ray et al[33]utilized local non-similarity via a homotopy analysis scheme for mixed convection in the vertical flow of Eyring–Powell fluid with variable velocity.Farooq et al[34]employed local non-similarity via bvp4c for Darcy–Forchheimer–Brinkman flow in non-Darcy porous media.

    The purpose of this work is to provide a realistic means of dealing with these circumstances in which governing equations cannot be reduced into ordinary differential systems.The laminar incompressible flow of magnetic secondgrade fluid over an exponentially expanding surface in the presence of buoyancy forces in terms of temperature and concentration with surface heat flux is considered.Under these premises,the governing convection differential equations are formulated.The appropriate non-similarity transformations are proposed.The governing equations are reduced into a dimensionless nonlinear partial differential system.The transformed system is solved numerically using local non-similarity via bvp4c,which is valid for a system of PDEs.Finally,tabular representations regarding the impact of concerning parameters on the friction coefficientCf,Nusselt numberNu,and Sherwood numberShare disclosed,and demonstrated graphically the effects of involved dimensionless parameters on the non-dimensional velocity,temperature and mass concentration profiles.

    2.Formulation of convection equations

    Consider mixed convection in a second-grade laminar,incompressible,steady,2D,magnetized second-grade fluid flow over a sheet positioned along thex-axis in the vertical direction,although fluid in the domainy>0 is constrained.It is also presumed that the sheet is stretched at an exponential ratewhereU0is the reference velocity.Figure 1 demonstrates the geometrical configuration of the present flow.

    Figure 1.Flow over a hot vertical plate at temperature Tw immersed in a fluid at temperature∞T.

    Figure 2.f′(η)for several values of“M”.

    Figure 3.f′(η)for several values of‘α’.

    Figure 4.f′(η)for several values of‘λ’.

    Figure 5.f′(η)for several values of‘N’.

    The governing equations for

    are as follows:

    continuity equation

    equation of motion

    energy equation

    nanoparticle volume fraction equation

    In the governing systemuandvare the velocity components along thex-andy-directions,whileTandCrepresent temperature and concentration variables,respectively,ρfis the fluid density,σrepresents the electrical conductivity,?is the kinematic viscosity,B0indicates the applied magnetic field,α1is the second-grade fluid material parameter,gis the gravitational acceleration,βTandβcare the thermal and concentration enlargement coefficients,respectively,τdescribes the ratio between the nanoparticle’s heat capacity and the original fluid heat capacity,DBrepresents the coefficient of Brownian diffusion,DTindicates the thermophoresis diffusion coefficient,∞Cand∞Tare upstream concentration and temperature,respectively,andαis thermal diffusivity.

    The suitable boundary conditions for the considered flow problems are

    3.Non-similar analysis

    We propose the following non-similarity transformations

    These transformations identically satisfy the continuity equation(2).Substituting(8)into(3)–(7),we get the following system of dimensionless PDEs

    In the above equations,the magnetic parameter(M),secondgrade fluid parameter(α),Richardson number(λ),ratio of mass and heat transfer Grashof numbers(N),Brownian motion(Nb),Prandtl number(Pr),thermophoresis(Nt),and Schmidt number(Sc),respectively,are defined as

    4.First truncation system

    By using a local similarity technique the terms containing a partial derivative with respect toξare treated as approximately small and considered equal to zero.Therefore,equations(9)–(11)become

    The boundary conditions are

    5.Second truncation system

    For the second truncation system we considered

    Equations(9)–(11)take the following form

    The boundary conditions are

    The parameters of physical interest,such as the friction coefficientCf,the local Nusselt numberNuand the Sherwood numberShare defined as,

    where the wall skin frictionτwx,heat fluxqwand mass fluxjware expressed as

    Using(27)in(26)we get,

    6.Results and discussion

    The interpretation of solutions regarding the impacts of the different dimensionless quantities onf′(η),θ(η)andφ(η)arepresented in this section.The variation in the numerical data of the friction coefficient(Cf),Nusselt number(Nu)and Sherwood number(Sh)for numerous values of involved quantities are depicted in this tabular form.The Nusselt number is the ratio of convective to conductive heat transfer,and the Sherwood number is defined as the ratio of the convective mass transfer to the mass diffusivity at a boundary in a fluid.Large values of the Nusselt number show pre-eminence of convection of heat transfer over conduction and small values of the Nusselt number indicate that poor convection occurs.So the Nusselt number indicates the dominant heat transfer phenomenon of the system.Graphical analysis of the velocity,temperature and concentration fields are conferred to explain the current non-similar model.

    Table 1 shows the range of governing parameters in which graphical solutions of velocity,temperature and concentration profiles reveal stable behavior.Table 2 depicts the impacts of the magnetic parameter(M),Richardson number(λ),second-grade fluid parameter(α)and ratio of mass and heat transfer Grashof numbers(N)on the local skin friction.We perceive that the friction coefficient decreases marginally asMincreases,while the coefficient of skin friction increases due to increases in the values ofα,λandN.

    Table 1.The range of defined parameters for a stable solution.

    Table 2.Numerical data for the skin friction coefficientfor various parameters.

    Table 2.Numerical data for the skin friction coefficientfor various parameters.

    ?

    Table 3 displays the local Nusselt number values for the various governing parameter values.It is established that the rate of heat transfer on the wall increases due to the increase inNb.It is also shown that uplifting the values of the parametersPrandNtresulted in a decline in the numeric values of the local Nusselt number.

    Table 3.The local Nusselt numberfor various parameters.

    Table 3.The local Nusselt numberfor various parameters.

    ?

    Table 4 describes the impact of governing parameters on the local Sherwood number.The table shows that for increasingNtandScvalues,the local Sherwood coefficient decreases.

    Table 4.Numerical data for the local Sherwood numberSh for various parameters.

    Table 4.Numerical data for the local Sherwood numberSh for various parameters.

    M αξλ N NbNtScPr --Re Sh x 12 22 0.01 51 0.4 0.4 0.270.127 830 7934 22 0.01 51 0.4 0.4 0.470.141 073 9103 22 0.01 51 0.4 0.4 0.670.294 137 7066 22 0.01 51 0.4 0.4 0.870.307 232 1177 22 0.01 51 0.2 0.4 0.170.102 663 3317 22 0.01 51 0.3 0.4 0.170.101 851 7903 22 0.01 51 0.4 0.4 0.170.093 584 0243 22 0.01 51 0.5 0.4 0.170.095 747 2218 22 0.01 51 0.4 0.1 0.170.075 010 4120 22 0.01 51 0.4 0.2 0.170.084 432 5427 22 0.01 51 0.4 0.3 0.170.087 396 3154 22 0.01 51 0.4 0.4 0.170.093 584 0243

    Whereas the local Sherwood number increases with the increasing values ofNb.

    Figures 2–5 demonstrate the velocity profiles for different parameters likeM,α,λ andN.The consequence of an applied magnetic fieldMin the transverse direction on flow over a stretching sheet is shown in figure 2.It is observed that the increase in magnetic field reduces the fluid velocity.In general,an increase in the applied magnetic field in the transverse direction produces the Lorentz force which opposes the flow.We observed that the Lorentz force effect reduces the flow of the velocity profile.Figure 3 indicates that the fluid flow increases with increasing α,thus thickening the boundary velocity layer.Figures 4 and 5 give an insight into the effect of λ andNon velocity.From figure 4 it is conspicuous that the velocity profile increases with increasing values of λ.Figure 5 indicates that the velocity profile increases with the increasing values ofN(ratio of mass and heat transfer Grashof numbers)due to the buoyancy effect.

    Figure 6.θ(η)for several values of‘Pr’.

    Figure 6 reveals that the effect of increasing thePris a decrease in the temperature profile.The ratio of momentum diffusivity and thermal diffusivity is specified by the Prandtl number.So,it is clear that the rise inPrdecreases the thickness of the thermal boundary layer.Figure 7 expresses the dimensionless temperature for several values ofNb.It shows that due to a rise in the values ofNb,the temperature profile decreases.From figure 8 it is seen that the temperature profile rises with the increasing values of the thermophoresis parameterNt.

    Figure 9 shows the influence of the Schmidt numberScon the mass concentration profile.It is seen that a rise inScleads to a reduction in the concentration boundary layer thickness.Figure 10 explains the impact of the Brownian motion parameterNbon the mass concentration profile.It is evident from the figure that the concentration profile rises with the upsurge in the values ofNb.The influence of the thermophoresis parameterNton the concentration profile is illustrated in figure 11.It is perceived that the concentration profile decreases with the increase inNt.

    Figure 7.θ(η)for several values of‘Nb’.

    Figure 8.θ(η)for several values of‘Nt’.

    Figure 9.φ(η)for several values of‘Sc’.

    Figure 10.φ(η)for several values of‘Nb’.

    Figure 11.φ(η)for several values of‘Nt’.

    7.Conclusions

    In this research non-similar modeling is performed for second-grade magnetic nanofluid flow over a vertical surface which is stretching at an exponential rate.Non-similar solutions are obtained through local non-similarity via bvp4c.The important results are mentioned below.

    ?The velocity profile is increased by the increase inN,λ and α,while the velocity profile decreases as a result of the increase inM.

    ?The temperature profile is increased due to the increase inNt,although the temperature profile decreases due to the increase inNbandPr.

    ?The increase in the valueNbleads to the rise in the volumetric concentration profile,while the opposite is true forScandNt.

    ?Local skin friction increases due to the increase in the values ofα,λandNand slightly decreases as the values of theMincrease.

    ?It is observed that the local Nusselt number upsurges against theNb,whereas it declines by uplifting thePr andNtparameters.

    ?The local Sherwood number decreases with the increase inNtandSc,but the effect is the reverse forNb.

    ORCID iDs

    中文乱码字字幕精品一区二区三区| 黄色配什么色好看| 街头女战士在线观看网站| 成人综合一区亚洲| 在线免费十八禁| 精品人妻一区二区三区麻豆| 成人毛片a级毛片在线播放| 国产 精品1| 亚洲欧美成人综合另类久久久| 国产精品熟女久久久久浪| 免费黄色在线免费观看| 高清日韩中文字幕在线| 成人特级av手机在线观看| 成人毛片a级毛片在线播放| 亚洲av不卡在线观看| 高清欧美精品videossex| 免费高清在线观看视频在线观看| 国产在线一区二区三区精| 午夜老司机福利剧场| 日韩不卡一区二区三区视频在线| 人人妻人人澡人人爽人人夜夜| 国产中年淑女户外野战色| 日韩强制内射视频| 99精国产麻豆久久婷婷| 午夜激情福利司机影院| 一级a做视频免费观看| 亚洲欧美一区二区三区黑人 | 欧美日韩一区二区视频在线观看视频在线| 亚洲不卡免费看| 国产黄片视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| 国产免费又黄又爽又色| 最后的刺客免费高清国语| 我的女老师完整版在线观看| 亚洲欧美成人精品一区二区| 久久久久久久大尺度免费视频| 精品久久久精品久久久| 亚洲成人中文字幕在线播放| 久久精品国产亚洲av涩爱| 亚洲欧美一区二区三区国产| 最近最新中文字幕免费大全7| 一本—道久久a久久精品蜜桃钙片| 少妇丰满av| 男人舔奶头视频| 欧美三级亚洲精品| 26uuu在线亚洲综合色| 精品人妻视频免费看| 精品熟女少妇av免费看| 黄色配什么色好看| 男人和女人高潮做爰伦理| a级毛片免费高清观看在线播放| 国产白丝娇喘喷水9色精品| 日本黄色片子视频| 高清不卡的av网站| 99久久精品热视频| 久久热精品热| 国产av精品麻豆| 国内精品宾馆在线| 99久久精品国产国产毛片| 一级二级三级毛片免费看| 午夜激情久久久久久久| 国产一区二区在线观看日韩| 国产精品一区二区在线观看99| 婷婷色综合www| 美女福利国产在线 | 搡老乐熟女国产| 男女边吃奶边做爰视频| 男男h啪啪无遮挡| 久久久久久久精品精品| 亚洲自偷自拍三级| 深夜a级毛片| 边亲边吃奶的免费视频| 国产成人午夜福利电影在线观看| 尤物成人国产欧美一区二区三区| 美女高潮的动态| 超碰av人人做人人爽久久| 国产精品欧美亚洲77777| 国产国拍精品亚洲av在线观看| 日韩中文字幕视频在线看片 | 色吧在线观看| 久热这里只有精品99| 直男gayav资源| 久久久久精品性色| 最近手机中文字幕大全| 水蜜桃什么品种好| 国产精品久久久久久精品电影小说 | 一级二级三级毛片免费看| 亚洲av中文av极速乱| av播播在线观看一区| 免费高清在线观看视频在线观看| 自拍偷自拍亚洲精品老妇| 永久免费av网站大全| 欧美 日韩 精品 国产| 在线免费观看不下载黄p国产| 超碰av人人做人人爽久久| 超碰97精品在线观看| 99久国产av精品国产电影| 国产精品不卡视频一区二区| 最近最新中文字幕大全电影3| 久久久久久久国产电影| 在线天堂最新版资源| 纵有疾风起免费观看全集完整版| 国产av国产精品国产| 国产精品福利在线免费观看| 久热这里只有精品99| 久久毛片免费看一区二区三区| 欧美日本视频| 一个人免费看片子| 成人综合一区亚洲| 日韩视频在线欧美| 中文在线观看免费www的网站| 久久久久网色| 蜜桃亚洲精品一区二区三区| 男女国产视频网站| 香蕉精品网在线| 亚洲精品日本国产第一区| 国产成人a∨麻豆精品| xxx大片免费视频| 又大又黄又爽视频免费| 国产极品天堂在线| 亚洲国产日韩一区二区| 国产色爽女视频免费观看| 免费黄色在线免费观看| 大香蕉97超碰在线| 高清av免费在线| 黄色怎么调成土黄色| 国产精品国产三级专区第一集| 国产免费一级a男人的天堂| 亚洲国产精品999| 九九爱精品视频在线观看| 超碰97精品在线观看| 十分钟在线观看高清视频www | 美女xxoo啪啪120秒动态图| 身体一侧抽搐| 高清视频免费观看一区二区| 精品99又大又爽又粗少妇毛片| 大码成人一级视频| 午夜免费观看性视频| 久久精品熟女亚洲av麻豆精品| 国产一级毛片在线| 久久精品夜色国产| 国产美女午夜福利| 国产精品嫩草影院av在线观看| 超碰av人人做人人爽久久| 狂野欧美激情性xxxx在线观看| 欧美日韩视频高清一区二区三区二| 爱豆传媒免费全集在线观看| 免费观看在线日韩| 身体一侧抽搐| 一区二区三区精品91| 中文天堂在线官网| 久久精品国产自在天天线| 亚洲欧美成人综合另类久久久| 色婷婷av一区二区三区视频| 免费久久久久久久精品成人欧美视频 | 久久婷婷青草| av线在线观看网站| 韩国av在线不卡| 少妇 在线观看| 午夜激情久久久久久久| 嫩草影院新地址| 麻豆精品久久久久久蜜桃| 精品久久国产蜜桃| 国产有黄有色有爽视频| 亚洲美女黄色视频免费看| 97热精品久久久久久| av卡一久久| 一区二区三区乱码不卡18| 大香蕉97超碰在线| 日日摸夜夜添夜夜爱| 插阴视频在线观看视频| 国产精品欧美亚洲77777| 夫妻午夜视频| av国产免费在线观看| 欧美日韩在线观看h| 亚洲精品亚洲一区二区| 亚洲第一区二区三区不卡| 久久女婷五月综合色啪小说| 亚洲精品456在线播放app| 一区二区三区乱码不卡18| 免费观看无遮挡的男女| 亚洲一级一片aⅴ在线观看| 亚洲精品久久久久久婷婷小说| 最黄视频免费看| 亚洲一区二区三区欧美精品| 尤物成人国产欧美一区二区三区| 亚洲av不卡在线观看| 亚洲国产欧美人成| 黑人高潮一二区| 男女免费视频国产| 黄色配什么色好看| 国产精品一区二区在线观看99| 大香蕉久久网| 日韩欧美一区视频在线观看 | 在线观看三级黄色| 国产成人精品久久久久久| 国产av精品麻豆| 欧美激情国产日韩精品一区| 丝瓜视频免费看黄片| 欧美日韩亚洲高清精品| 水蜜桃什么品种好| 热99国产精品久久久久久7| av国产精品久久久久影院| 精品一区二区免费观看| 欧美少妇被猛烈插入视频| 日本猛色少妇xxxxx猛交久久| 久久久久久久久大av| 日本色播在线视频| 国产 一区精品| freevideosex欧美| 一区二区三区精品91| 成人国产麻豆网| 免费不卡的大黄色大毛片视频在线观看| 一级毛片电影观看| 国产精品人妻久久久影院| 国产国拍精品亚洲av在线观看| 黑人高潮一二区| 深爱激情五月婷婷| 色视频在线一区二区三区| 天美传媒精品一区二区| 亚洲精品国产av成人精品| 国产精品爽爽va在线观看网站| 麻豆成人av视频| 国产精品熟女久久久久浪| 简卡轻食公司| 国产精品嫩草影院av在线观看| 日本一二三区视频观看| 欧美3d第一页| 久久久a久久爽久久v久久| 亚洲人成网站在线观看播放| 成人午夜精彩视频在线观看| 伊人久久国产一区二区| 97在线人人人人妻| 久久久久久久久久成人| 一级爰片在线观看| 亚洲av成人精品一区久久| 国产69精品久久久久777片| 一级黄片播放器| 人妻系列 视频| 特大巨黑吊av在线直播| 99热这里只有是精品在线观看| 成人二区视频| 在线亚洲精品国产二区图片欧美 | 久久久久久久久久久丰满| 国产伦精品一区二区三区四那| 亚洲国产精品999| 午夜免费男女啪啪视频观看| 国产伦精品一区二区三区四那| 亚洲图色成人| 国产精品.久久久| 夜夜爽夜夜爽视频| 久久人人爽人人片av| 又粗又硬又长又爽又黄的视频| 国产精品一区二区性色av| 亚洲美女视频黄频| 精品久久久久久电影网| 久久综合国产亚洲精品| 国产视频首页在线观看| 一二三四中文在线观看免费高清| 久久午夜福利片| 国产美女午夜福利| 狠狠精品人妻久久久久久综合| 99热这里只有是精品50| 国产色婷婷99| 日韩一区二区视频免费看| 欧美成人精品欧美一级黄| 亚洲精品一区蜜桃| av黄色大香蕉| 老女人水多毛片| 国产精品麻豆人妻色哟哟久久| 人妻制服诱惑在线中文字幕| 成人午夜精彩视频在线观看| 国产欧美日韩精品一区二区| 久久婷婷青草| 亚洲不卡免费看| 黄色欧美视频在线观看| 亚洲成人av在线免费| 伊人久久精品亚洲午夜| 尾随美女入室| 在线观看人妻少妇| 99久国产av精品国产电影| 香蕉精品网在线| 欧美日本视频| 国产有黄有色有爽视频| 最近中文字幕2019免费版| 欧美精品一区二区免费开放| 哪个播放器可以免费观看大片| 精品久久久久久久久亚洲| 国产一区亚洲一区在线观看| 精品久久国产蜜桃| 久久久久久久久大av| 多毛熟女@视频| 国产免费一区二区三区四区乱码| 亚洲精品日本国产第一区| 女性被躁到高潮视频| 久久精品国产亚洲网站| 亚洲欧美中文字幕日韩二区| 亚洲精品第二区| 18禁动态无遮挡网站| 欧美日韩亚洲高清精品| 国产免费又黄又爽又色| 在线播放无遮挡| 色网站视频免费| 亚洲精品久久久久久婷婷小说| 日韩伦理黄色片| 亚洲av福利一区| av卡一久久| 少妇人妻精品综合一区二区| 在线观看一区二区三区激情| 一级毛片黄色毛片免费观看视频| 亚洲精品久久久久久婷婷小说| 国产亚洲91精品色在线| 91久久精品国产一区二区成人| 在线 av 中文字幕| 免费在线观看成人毛片| 中文字幕久久专区| 亚洲色图av天堂| 久久久午夜欧美精品| www.色视频.com| 精品午夜福利在线看| 久久 成人 亚洲| videossex国产| 日本黄色片子视频| 久久精品国产鲁丝片午夜精品| 一级爰片在线观看| 日韩,欧美,国产一区二区三区| 一级毛片黄色毛片免费观看视频| 成年免费大片在线观看| 国产片特级美女逼逼视频| tube8黄色片| 三级国产精品欧美在线观看| 99久久中文字幕三级久久日本| 视频区图区小说| 亚洲国产欧美在线一区| 美女内射精品一级片tv| 日本一二三区视频观看| 午夜福利视频精品| 国产成人a∨麻豆精品| 内地一区二区视频在线| 国产精品99久久久久久久久| 性高湖久久久久久久久免费观看| 亚洲综合色惰| 精品少妇久久久久久888优播| 男人和女人高潮做爰伦理| 国产精品久久久久久精品电影小说 | 中文天堂在线官网| 免费观看a级毛片全部| 久久影院123| 亚洲欧美清纯卡通| 极品少妇高潮喷水抽搐| 国产伦精品一区二区三区四那| 最近中文字幕2019免费版| 91aial.com中文字幕在线观看| 国产高清国产精品国产三级 | 精品一区二区三区视频在线| 国产色婷婷99| 日韩电影二区| 久久鲁丝午夜福利片| 久久精品人妻少妇| av一本久久久久| av不卡在线播放| 乱码一卡2卡4卡精品| 国产精品不卡视频一区二区| 中文天堂在线官网| 最近最新中文字幕免费大全7| 哪个播放器可以免费观看大片| 亚洲国产成人一精品久久久| 另类亚洲欧美激情| 岛国毛片在线播放| 日本与韩国留学比较| 男女边吃奶边做爰视频| 国产淫片久久久久久久久| 国产v大片淫在线免费观看| 亚洲第一av免费看| 黄色日韩在线| 免费高清在线观看视频在线观看| 爱豆传媒免费全集在线观看| 有码 亚洲区| 久久人人爽人人片av| 亚洲无线观看免费| 婷婷色麻豆天堂久久| 国产成人91sexporn| 久久久久久久精品精品| 日韩 亚洲 欧美在线| av在线老鸭窝| 日韩,欧美,国产一区二区三区| 国产精品成人在线| 日本猛色少妇xxxxx猛交久久| 国产 精品1| 精品一品国产午夜福利视频| 成人亚洲精品一区在线观看 | 少妇裸体淫交视频免费看高清| 干丝袜人妻中文字幕| 国产色爽女视频免费观看| 最近中文字幕2019免费版| 亚洲国产av新网站| 国产精品精品国产色婷婷| 午夜激情福利司机影院| 国产精品麻豆人妻色哟哟久久| 亚洲最大成人中文| 永久网站在线| 一级毛片 在线播放| 91精品国产国语对白视频| 麻豆精品久久久久久蜜桃| 九九爱精品视频在线观看| 日韩成人伦理影院| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品久久久久久久久免| 在线观看免费视频网站a站| 亚洲色图av天堂| 成人国产av品久久久| 国产综合精华液| 最近2019中文字幕mv第一页| 久久久久久久亚洲中文字幕| 男的添女的下面高潮视频| 国产真实伦视频高清在线观看| 色视频在线一区二区三区| 免费观看无遮挡的男女| 妹子高潮喷水视频| 大香蕉久久网| 免费不卡的大黄色大毛片视频在线观看| 人妻少妇偷人精品九色| 不卡视频在线观看欧美| 国产精品国产三级国产av玫瑰| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区| 欧美bdsm另类| 91在线精品国自产拍蜜月| 亚洲精品国产av蜜桃| 欧美高清成人免费视频www| 国产成人精品久久久久久| 亚洲成人中文字幕在线播放| 欧美少妇被猛烈插入视频| 亚洲欧美中文字幕日韩二区| 久久精品久久久久久久性| 午夜免费男女啪啪视频观看| 伦精品一区二区三区| 亚洲精品日韩在线中文字幕| 我的女老师完整版在线观看| 中国三级夫妇交换| 久久久久国产精品人妻一区二区| 免费人成在线观看视频色| 九九在线视频观看精品| 美女国产视频在线观看| 国内精品宾馆在线| 一级爰片在线观看| 国产永久视频网站| 国国产精品蜜臀av免费| 麻豆成人午夜福利视频| 高清毛片免费看| 一个人免费看片子| 九九在线视频观看精品| 久久久国产一区二区| 毛片女人毛片| 精品一区二区三卡| 亚洲最大成人中文| 少妇被粗大猛烈的视频| 亚洲精品久久午夜乱码| 国产黄色视频一区二区在线观看| 久久亚洲国产成人精品v| 精品久久久久久久久亚洲| 国语对白做爰xxxⅹ性视频网站| 美女cb高潮喷水在线观看| 亚洲美女搞黄在线观看| 国产精品不卡视频一区二区| 最新中文字幕久久久久| 男男h啪啪无遮挡| 久久久久久久久久久丰满| 亚洲精品aⅴ在线观看| 激情 狠狠 欧美| 如何舔出高潮| 午夜免费男女啪啪视频观看| 午夜福利在线在线| 亚洲成人手机| 国产成人a区在线观看| av在线观看视频网站免费| 欧美xxxx黑人xx丫x性爽| 日韩欧美一区视频在线观看 | 九九久久精品国产亚洲av麻豆| 久久韩国三级中文字幕| 最近最新中文字幕大全电影3| 成人毛片60女人毛片免费| 国产精品免费大片| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 精品少妇久久久久久888优播| 青春草视频在线免费观看| 看非洲黑人一级黄片| 亚洲人与动物交配视频| 一级毛片黄色毛片免费观看视频| 亚洲av电影在线观看一区二区三区| 国产日韩欧美亚洲二区| av播播在线观看一区| 久久久久国产精品人妻一区二区| 制服丝袜香蕉在线| 一级毛片我不卡| 女性生殖器流出的白浆| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲网站| 中国美白少妇内射xxxbb| 中文欧美无线码| 午夜免费鲁丝| 精品人妻一区二区三区麻豆| 插逼视频在线观看| 国内揄拍国产精品人妻在线| 综合色丁香网| 亚洲不卡免费看| 亚洲欧美一区二区三区黑人 | 国产欧美日韩精品一区二区| 亚洲av中文av极速乱| 亚洲欧美日韩无卡精品| 日本爱情动作片www.在线观看| 高清毛片免费看| 中文字幕av成人在线电影| 91精品伊人久久大香线蕉| 国产色婷婷99| 久久99蜜桃精品久久| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 永久免费av网站大全| av一本久久久久| 天堂俺去俺来也www色官网| 伊人久久精品亚洲午夜| 日韩制服骚丝袜av| av国产久精品久网站免费入址| 中文字幕制服av| 色5月婷婷丁香| 欧美日韩在线观看h| 国产亚洲精品久久久com| 久久久精品免费免费高清| 精品久久久久久久久亚洲| 性色avwww在线观看| 国产成人一区二区在线| 最新中文字幕久久久久| 18禁裸乳无遮挡免费网站照片| 免费少妇av软件| 日韩欧美 国产精品| 日韩强制内射视频| 午夜福利影视在线免费观看| 日韩视频在线欧美| 亚洲精品色激情综合| 热re99久久精品国产66热6| 国产精品99久久久久久久久| 99久久精品热视频| 少妇裸体淫交视频免费看高清| 直男gayav资源| 欧美区成人在线视频| 成人特级av手机在线观看| 亚洲不卡免费看| 成人毛片a级毛片在线播放| 美女xxoo啪啪120秒动态图| 亚洲精品一区蜜桃| 日韩人妻高清精品专区| 免费观看性生交大片5| 老师上课跳d突然被开到最大视频| 亚洲激情五月婷婷啪啪| 午夜免费鲁丝| 又黄又爽又刺激的免费视频.| 寂寞人妻少妇视频99o| 久久精品久久精品一区二区三区| 欧美97在线视频| 精品人妻偷拍中文字幕| 天美传媒精品一区二区| 午夜精品国产一区二区电影| 国产成人精品久久久久久| 国产综合精华液| 成人一区二区视频在线观看| 街头女战士在线观看网站| 97热精品久久久久久| 久久婷婷青草| 一区二区av电影网| 99热这里只有是精品在线观看| 伊人久久国产一区二区| 婷婷色综合www| 天天躁日日操中文字幕| 亚洲国产精品成人久久小说| 国产v大片淫在线免费观看| 亚洲久久久国产精品| 自拍偷自拍亚洲精品老妇| 久久ye,这里只有精品| 男人爽女人下面视频在线观看| 在线观看一区二区三区激情| 国产在线免费精品| 精华霜和精华液先用哪个| 舔av片在线| 另类亚洲欧美激情| 一级a做视频免费观看| 大香蕉久久网| 国产精品无大码| 青青草视频在线视频观看| 91精品一卡2卡3卡4卡| 麻豆国产97在线/欧美| 又黄又爽又刺激的免费视频.| 少妇丰满av| 久久精品国产亚洲网站| 亚洲经典国产精华液单| 亚洲精品国产色婷婷电影| 日韩一区二区视频免费看| 国产精品免费大片| 成人午夜精彩视频在线观看| 一本色道久久久久久精品综合| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 精品亚洲乱码少妇综合久久| 日本vs欧美在线观看视频 | 毛片一级片免费看久久久久| 午夜免费观看性视频| 九色成人免费人妻av| 成人综合一区亚洲| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 亚洲激情五月婷婷啪啪| 国产精品一区www在线观看| 国产熟女欧美一区二区| 在线观看三级黄色|