• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-similar mixed convection analysis for magnetic flow of second-grade nanofluid over a vertically stretching sheet

    2021-07-06 05:04:24AmmarahRaeesUmerFarooqMuzamilHussainWaseemAsgharKhanandFoziaBashirFarooq
    Communications in Theoretical Physics 2021年6期

    Ammarah Raees,Umer Farooq,Muzamil Hussain,5,Waseem Asghar Khanand Fozia Bashir Farooq

    1 Faculty of Computer Science and Software Engineering,Huaiyin Institute of Technology,Huai’an,China

    2 Department of Mathematics,COMSATS University Islamabad,Park Road Chak Shahzad Islamabad 44000,Pakistan

    3 Department of Mathematics,College of Sciences AlZulfi,Majmaah University,Al Majma’ah,11952 Saudi Arabia

    4 Department of Mathematics,Imam Muhammad ibn Saud Islamic University,Riyadh 11432,Saudi Arabia

    5 Department of Mathematics,University of the Poonch Rawalakot,Rawalakot 12350,Pakistan

    Abstract The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow.The flow is initiated by the stretching of a sheet at an exponential rate in the upward vertical direction.The buoyancy effects in terms of temperature and concentration differences are inserted in the x-momentum equation.The aspects of heat and mass transfer are studied using dimensionless thermophoresis,Schmidt and Brownian motion parameters.The governing coupled partial differential system(PDEs)is remodeled into coupled non-similar nonlinear PDEs by introducing non-similar transformations.The numerical analysis for the dimensionless non-similar partial differential system is performed using a local non-similarity method via bvp4c.Finally,the quantitative effects of emerging dimensionless quantities on the nondimensional velocity,temperature and mass concentration in the boundary layer are conferred graphically,and inferences are drawn that important quantities of interest are substantially affected by these parameters.It is concluded that non-similar modeling,in contrast to similar models,is more general and more accurate in convection studies in the presence of buoyancy effects for second-grade non-Newtonian fluids.

    Keywords:non-similar modeling,second-grade fluid,exponentially stretching surface,local non-similarity,bvp4c

    1.Introduction

    Study of the flows induced by the stretching of the surfaces is of significant importance in view of its use in technical manufacturing,such as aerodynamics,the cooling process of metal sheets,extrusion of plastic sheets,the condensation process of fluid films,chemical processing equipment,glass and polymer industries,crystal growth and several heat exchanger projects.In such situations,the outputs with the required attributes depend on the rate of cooling and stretching in the process.Sakiadis[1]was the pioneer in this field who theoretically explored the moving solid structures.He addressed the problem by applying similarity transformation via a numerical technique.Moreover,Erickson et al[2]continued the exploration by assuming a moving surface with nonzero transverse velocity.The 2D steady flow was investigated by Crane[3]over a stretching surface.He attempted to concentrate on a stretching sheet as he realized that this case was a pivotal subject in the polymer industry.Gupta and Gupta[4]utilized that that was introduced by Crane[3]and extended those examinations.They explored heat and mass transfer by incorporating suction effects over an expanding surface.Rajagopal et al[5]inspected the flow of viscoelastic fluid in the absence of heat transfer and discussed its applications in the polymer industry.Using the momentum integral method,Bujurke et al[6]performed convection studies for second-grade fluid flow.Magyari and Keller[7]examined steady flow using both analytical and numerical solutions.They also compared heat and mass transfer features of the considered problem with already proven results of earlier authors.Elbashbeshy[8]introduced a new dimension in the analysis of an exponentially stretching surface.He examined the effects of suction in a surface which is expanding at exponential rate.Partha et al[9]studied mixed convection flow with viscous dissipation consequences over a vertical surface expanding at exponential rate.Khan et al[10]studied viscoelastic fluid over an exponentially expanding surface.Xu et al[11]analytically examined the unsteady electrically conductive incompressible viscous fluid in which flow is initiated by the expansion of the surface in two lateral directions.Latterly Khan[12]and Bataller[13]analytically reviewed convection equations for viscoelastic fluid flow persuaded by a stretchable sheet.Tan and Liao[14]analytically examined the 3D unsteady incompressible viscous rotating fluid flow over an impulsive surface.Sajid and Hayat[15]surveyed thermal radiation effects in an exponentially expanding sheet.Sekhar and Chethan[16]examined heat transfer using Boussinesq–Stokes suspension numerically in the fluid flow,which is started by the exponentially expanding surface.Siddheshwar et al[17]expanded this research by considering the magnetic field in a transversal direction.Ramzan et al[18],with the help of surface heat flux,examined the effects of thermal radiation and mixed convection on 3D second-grade nanofluid.Rasheed and Anwar[19]studied magnetohydrodynamic(MHD)viscoelastic fluid flow with homogeneous–heterogeneous reactions in the flow domain.By utilizing the time-dependent magnetic field,Muhammad[20]analyzed the impact of heat absorption/generation effects over a curved surface.Ahmad et al[21]inspected 3D unsteady flow with thermophoresis and Brownian motion effects.Jamil et al[22]examined heat transfer of viscoelastic incompressible unsteady flow generated by a stretching surface with heat radiation and chemical reaction effects.Irfan et al[23]examined 3D MHD nonlinear radiated flow of mixed convection Carreau nanofluid over a stretching surface.

    In accordance with industrial and technical applications,flow models based on non-Newtonian fluids are more acceptable than Newtonian fluids.Non-Newtonian fluids show a nonlinear stress and strain rate relationship at any point of flow.Mathematically,compared to the Newtonian the constitutive equations of non-Newtonian fluids are much more complex because of the nonlinear relation of the stress and strain rate.Constitutive equations are more complex,containing a number of parameters,and the solutions of the resulting equations are more complicated to find in general.Numerous variable viscous fluid models have been suggested which demonstrate the complexity of their governing equations.Now,several researchers are engaged in the study of analytical or numerical solutions to fluid flow problems that generate from the use of various non-Newtonian fluid models.Viscoelastic fluids are common types of non-Newtonian fluids.However,the most widely used basic type of viscoelastic fluid is the second-order fluid,which may address problems that are far from trivial.The fluid property viscoelasticity refers to the rise in the order of differential equations that describe the flow.Nevertheless,flow equations are typically more nonlinear compared to Newtonian fluid equations.Among these reasons,the field of research on non-Newtonian fluids poses some fascinating and impressive tasks for computer scientists,physicists and mathematicians alike.

    Mathematical simulations of physical processes in fields such as fluid dynamics,diffusion,wave dynamics,chemical kinetics and general transport problems are governed by nonlinear partial differential equations whose solutions are difficult to find analytically.Consequently,the conversion technique for analyzing nonlinear partial differential system(PDEs)into ordinary differential equations(ODEs)has been very influential in the study of various convection equations.Ames[24]presented many types of these reduction approaches and thought about the developments in fluid dynamics,wave propagation and nonlinear diffusion from the use of PDEs to the reduction approach to ODEs.Although a similar approach has frequently been used in the literature[25–29],the approach cannot be used to a significant extent because of a limitation clarified underneath.Success of this approach depends vigorously on the achievement of a reduced ODEs solution.For a few cases,the reduced ODEs may be integrated in the form of elementary functions,but it is not an easy matter in most cases,so it was proposed that numerical methods be used to solve the converted ODEs.Generally,the given system is not fully converted to ODEs using a local similar method;to overcome this drawback Sparrow and Yu[30]introduced a method of local non-similarity.Hayat et al[31]numerically examined magnetic viscous fluid in nonlinear curved expansion.Zhang et al[32]investigated 3D pressure drop through a spherically coordinated helically coiled tube.Ray et al[33]utilized local non-similarity via a homotopy analysis scheme for mixed convection in the vertical flow of Eyring–Powell fluid with variable velocity.Farooq et al[34]employed local non-similarity via bvp4c for Darcy–Forchheimer–Brinkman flow in non-Darcy porous media.

    The purpose of this work is to provide a realistic means of dealing with these circumstances in which governing equations cannot be reduced into ordinary differential systems.The laminar incompressible flow of magnetic secondgrade fluid over an exponentially expanding surface in the presence of buoyancy forces in terms of temperature and concentration with surface heat flux is considered.Under these premises,the governing convection differential equations are formulated.The appropriate non-similarity transformations are proposed.The governing equations are reduced into a dimensionless nonlinear partial differential system.The transformed system is solved numerically using local non-similarity via bvp4c,which is valid for a system of PDEs.Finally,tabular representations regarding the impact of concerning parameters on the friction coefficientCf,Nusselt numberNu,and Sherwood numberShare disclosed,and demonstrated graphically the effects of involved dimensionless parameters on the non-dimensional velocity,temperature and mass concentration profiles.

    2.Formulation of convection equations

    Consider mixed convection in a second-grade laminar,incompressible,steady,2D,magnetized second-grade fluid flow over a sheet positioned along thex-axis in the vertical direction,although fluid in the domainy>0 is constrained.It is also presumed that the sheet is stretched at an exponential ratewhereU0is the reference velocity.Figure 1 demonstrates the geometrical configuration of the present flow.

    Figure 1.Flow over a hot vertical plate at temperature Tw immersed in a fluid at temperature∞T.

    Figure 2.f′(η)for several values of“M”.

    Figure 3.f′(η)for several values of‘α’.

    Figure 4.f′(η)for several values of‘λ’.

    Figure 5.f′(η)for several values of‘N’.

    The governing equations for

    are as follows:

    continuity equation

    equation of motion

    energy equation

    nanoparticle volume fraction equation

    In the governing systemuandvare the velocity components along thex-andy-directions,whileTandCrepresent temperature and concentration variables,respectively,ρfis the fluid density,σrepresents the electrical conductivity,?is the kinematic viscosity,B0indicates the applied magnetic field,α1is the second-grade fluid material parameter,gis the gravitational acceleration,βTandβcare the thermal and concentration enlargement coefficients,respectively,τdescribes the ratio between the nanoparticle’s heat capacity and the original fluid heat capacity,DBrepresents the coefficient of Brownian diffusion,DTindicates the thermophoresis diffusion coefficient,∞Cand∞Tare upstream concentration and temperature,respectively,andαis thermal diffusivity.

    The suitable boundary conditions for the considered flow problems are

    3.Non-similar analysis

    We propose the following non-similarity transformations

    These transformations identically satisfy the continuity equation(2).Substituting(8)into(3)–(7),we get the following system of dimensionless PDEs

    In the above equations,the magnetic parameter(M),secondgrade fluid parameter(α),Richardson number(λ),ratio of mass and heat transfer Grashof numbers(N),Brownian motion(Nb),Prandtl number(Pr),thermophoresis(Nt),and Schmidt number(Sc),respectively,are defined as

    4.First truncation system

    By using a local similarity technique the terms containing a partial derivative with respect toξare treated as approximately small and considered equal to zero.Therefore,equations(9)–(11)become

    The boundary conditions are

    5.Second truncation system

    For the second truncation system we considered

    Equations(9)–(11)take the following form

    The boundary conditions are

    The parameters of physical interest,such as the friction coefficientCf,the local Nusselt numberNuand the Sherwood numberShare defined as,

    where the wall skin frictionτwx,heat fluxqwand mass fluxjware expressed as

    Using(27)in(26)we get,

    6.Results and discussion

    The interpretation of solutions regarding the impacts of the different dimensionless quantities onf′(η),θ(η)andφ(η)arepresented in this section.The variation in the numerical data of the friction coefficient(Cf),Nusselt number(Nu)and Sherwood number(Sh)for numerous values of involved quantities are depicted in this tabular form.The Nusselt number is the ratio of convective to conductive heat transfer,and the Sherwood number is defined as the ratio of the convective mass transfer to the mass diffusivity at a boundary in a fluid.Large values of the Nusselt number show pre-eminence of convection of heat transfer over conduction and small values of the Nusselt number indicate that poor convection occurs.So the Nusselt number indicates the dominant heat transfer phenomenon of the system.Graphical analysis of the velocity,temperature and concentration fields are conferred to explain the current non-similar model.

    Table 1 shows the range of governing parameters in which graphical solutions of velocity,temperature and concentration profiles reveal stable behavior.Table 2 depicts the impacts of the magnetic parameter(M),Richardson number(λ),second-grade fluid parameter(α)and ratio of mass and heat transfer Grashof numbers(N)on the local skin friction.We perceive that the friction coefficient decreases marginally asMincreases,while the coefficient of skin friction increases due to increases in the values ofα,λandN.

    Table 1.The range of defined parameters for a stable solution.

    Table 2.Numerical data for the skin friction coefficientfor various parameters.

    Table 2.Numerical data for the skin friction coefficientfor various parameters.

    ?

    Table 3 displays the local Nusselt number values for the various governing parameter values.It is established that the rate of heat transfer on the wall increases due to the increase inNb.It is also shown that uplifting the values of the parametersPrandNtresulted in a decline in the numeric values of the local Nusselt number.

    Table 3.The local Nusselt numberfor various parameters.

    Table 3.The local Nusselt numberfor various parameters.

    ?

    Table 4 describes the impact of governing parameters on the local Sherwood number.The table shows that for increasingNtandScvalues,the local Sherwood coefficient decreases.

    Table 4.Numerical data for the local Sherwood numberSh for various parameters.

    Table 4.Numerical data for the local Sherwood numberSh for various parameters.

    M αξλ N NbNtScPr --Re Sh x 12 22 0.01 51 0.4 0.4 0.270.127 830 7934 22 0.01 51 0.4 0.4 0.470.141 073 9103 22 0.01 51 0.4 0.4 0.670.294 137 7066 22 0.01 51 0.4 0.4 0.870.307 232 1177 22 0.01 51 0.2 0.4 0.170.102 663 3317 22 0.01 51 0.3 0.4 0.170.101 851 7903 22 0.01 51 0.4 0.4 0.170.093 584 0243 22 0.01 51 0.5 0.4 0.170.095 747 2218 22 0.01 51 0.4 0.1 0.170.075 010 4120 22 0.01 51 0.4 0.2 0.170.084 432 5427 22 0.01 51 0.4 0.3 0.170.087 396 3154 22 0.01 51 0.4 0.4 0.170.093 584 0243

    Whereas the local Sherwood number increases with the increasing values ofNb.

    Figures 2–5 demonstrate the velocity profiles for different parameters likeM,α,λ andN.The consequence of an applied magnetic fieldMin the transverse direction on flow over a stretching sheet is shown in figure 2.It is observed that the increase in magnetic field reduces the fluid velocity.In general,an increase in the applied magnetic field in the transverse direction produces the Lorentz force which opposes the flow.We observed that the Lorentz force effect reduces the flow of the velocity profile.Figure 3 indicates that the fluid flow increases with increasing α,thus thickening the boundary velocity layer.Figures 4 and 5 give an insight into the effect of λ andNon velocity.From figure 4 it is conspicuous that the velocity profile increases with increasing values of λ.Figure 5 indicates that the velocity profile increases with the increasing values ofN(ratio of mass and heat transfer Grashof numbers)due to the buoyancy effect.

    Figure 6.θ(η)for several values of‘Pr’.

    Figure 6 reveals that the effect of increasing thePris a decrease in the temperature profile.The ratio of momentum diffusivity and thermal diffusivity is specified by the Prandtl number.So,it is clear that the rise inPrdecreases the thickness of the thermal boundary layer.Figure 7 expresses the dimensionless temperature for several values ofNb.It shows that due to a rise in the values ofNb,the temperature profile decreases.From figure 8 it is seen that the temperature profile rises with the increasing values of the thermophoresis parameterNt.

    Figure 9 shows the influence of the Schmidt numberScon the mass concentration profile.It is seen that a rise inScleads to a reduction in the concentration boundary layer thickness.Figure 10 explains the impact of the Brownian motion parameterNbon the mass concentration profile.It is evident from the figure that the concentration profile rises with the upsurge in the values ofNb.The influence of the thermophoresis parameterNton the concentration profile is illustrated in figure 11.It is perceived that the concentration profile decreases with the increase inNt.

    Figure 7.θ(η)for several values of‘Nb’.

    Figure 8.θ(η)for several values of‘Nt’.

    Figure 9.φ(η)for several values of‘Sc’.

    Figure 10.φ(η)for several values of‘Nb’.

    Figure 11.φ(η)for several values of‘Nt’.

    7.Conclusions

    In this research non-similar modeling is performed for second-grade magnetic nanofluid flow over a vertical surface which is stretching at an exponential rate.Non-similar solutions are obtained through local non-similarity via bvp4c.The important results are mentioned below.

    ?The velocity profile is increased by the increase inN,λ and α,while the velocity profile decreases as a result of the increase inM.

    ?The temperature profile is increased due to the increase inNt,although the temperature profile decreases due to the increase inNbandPr.

    ?The increase in the valueNbleads to the rise in the volumetric concentration profile,while the opposite is true forScandNt.

    ?Local skin friction increases due to the increase in the values ofα,λandNand slightly decreases as the values of theMincrease.

    ?It is observed that the local Nusselt number upsurges against theNb,whereas it declines by uplifting thePr andNtparameters.

    ?The local Sherwood number decreases with the increase inNtandSc,but the effect is the reverse forNb.

    ORCID iDs

    亚洲va在线va天堂va国产| 午夜福利,免费看| 日韩在线高清观看一区二区三区| 国产乱人偷精品视频| 欧美一级a爱片免费观看看| 在线精品无人区一区二区三| 美女大奶头黄色视频| 少妇人妻久久综合中文| 一二三四中文在线观看免费高清| 妹子高潮喷水视频| 伦精品一区二区三区| 欧美精品一区二区大全| 一本色道久久久久久精品综合| 精品久久久久久久久av| 激情五月婷婷亚洲| 老司机亚洲免费影院| 男人和女人高潮做爰伦理| 狠狠精品人妻久久久久久综合| 亚洲无线观看免费| 少妇人妻一区二区三区视频| 国产高清有码在线观看视频| 中文字幕制服av| 欧美+日韩+精品| 午夜日本视频在线| 日韩强制内射视频| 国产视频内射| 十八禁网站网址无遮挡 | 久久精品国产亚洲网站| 在线播放无遮挡| 久久热精品热| 亚洲欧洲精品一区二区精品久久久 | 国产黄频视频在线观看| 国产精品一区二区在线不卡| 建设人人有责人人尽责人人享有的| 国产伦精品一区二区三区四那| av天堂中文字幕网| 在线观看av片永久免费下载| 日韩av免费高清视频| 日韩亚洲欧美综合| 国产色婷婷99| 边亲边吃奶的免费视频| 成人影院久久| 国产精品伦人一区二区| 精品人妻熟女毛片av久久网站| 亚洲真实伦在线观看| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 亚洲人成网站在线观看播放| 免费人妻精品一区二区三区视频| 校园人妻丝袜中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 久热这里只有精品99| 成人毛片60女人毛片免费| 亚洲精品色激情综合| 亚洲va在线va天堂va国产| 乱码一卡2卡4卡精品| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄| 久久青草综合色| 国产一级毛片在线| 国产精品一区二区三区四区免费观看| 极品人妻少妇av视频| 好男人视频免费观看在线| 内地一区二区视频在线| 国产av码专区亚洲av| 99热网站在线观看| 春色校园在线视频观看| 精品视频人人做人人爽| 日产精品乱码卡一卡2卡三| 99九九线精品视频在线观看视频| 三上悠亚av全集在线观看 | av不卡在线播放| 久久久久久久亚洲中文字幕| 两个人的视频大全免费| 成人18禁高潮啪啪吃奶动态图 | 亚洲人成网站在线播| 亚洲中文av在线| 国内揄拍国产精品人妻在线| 夜夜骑夜夜射夜夜干| 国产深夜福利视频在线观看| 国产女主播在线喷水免费视频网站| 各种免费的搞黄视频| 一本一本综合久久| 免费看不卡的av| 国产精品成人在线| 视频中文字幕在线观看| 亚洲人成网站在线播| 夫妻性生交免费视频一级片| 久久久国产一区二区| 国产成人aa在线观看| 黄色欧美视频在线观看| 国产永久视频网站| 9色porny在线观看| 黑人巨大精品欧美一区二区蜜桃 | 少妇高潮的动态图| 亚洲国产av新网站| 春色校园在线视频观看| 蜜桃在线观看..| 免费人妻精品一区二区三区视频| 亚洲欧美日韩卡通动漫| 又爽又黄a免费视频| 天堂中文最新版在线下载| 久久久国产一区二区| 欧美xxxx性猛交bbbb| 国产在线男女| 国产精品成人在线| 亚洲高清免费不卡视频| 卡戴珊不雅视频在线播放| 三上悠亚av全集在线观看 | 最近2019中文字幕mv第一页| 免费看光身美女| 久久久久精品久久久久真实原创| 一本久久精品| 久久婷婷青草| 国产真实伦视频高清在线观看| 色视频在线一区二区三区| 国产精品久久久久久精品古装| 国产精品99久久久久久久久| 色婷婷av一区二区三区视频| 最近2019中文字幕mv第一页| 精品人妻熟女毛片av久久网站| 国产精品秋霞免费鲁丝片| 久久韩国三级中文字幕| 午夜影院在线不卡| 国产午夜精品久久久久久一区二区三区| 免费观看无遮挡的男女| 夜夜爽夜夜爽视频| 91aial.com中文字幕在线观看| 国产av国产精品国产| 久久精品国产亚洲av天美| 美女脱内裤让男人舔精品视频| 大码成人一级视频| 国产69精品久久久久777片| 亚洲国产日韩一区二区| 免费久久久久久久精品成人欧美视频 | 中文欧美无线码| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美 | 女人精品久久久久毛片| 少妇熟女欧美另类| www.av在线官网国产| 精品一区二区免费观看| 麻豆乱淫一区二区| 熟女电影av网| 久久影院123| 国产精品一二三区在线看| 国产成人精品一,二区| 日韩熟女老妇一区二区性免费视频| 如日韩欧美国产精品一区二区三区 | 国产精品免费大片| 建设人人有责人人尽责人人享有的| 日韩视频在线欧美| 国产免费福利视频在线观看| 色哟哟·www| 国内精品宾馆在线| 午夜福利,免费看| 九九久久精品国产亚洲av麻豆| 日本欧美国产在线视频| 国产成人午夜福利电影在线观看| 七月丁香在线播放| 99热这里只有是精品在线观看| 少妇高潮的动态图| 亚洲国产欧美在线一区| 亚洲国产欧美日韩在线播放 | 韩国av在线不卡| www.av在线官网国产| 久久久久视频综合| 国产中年淑女户外野战色| 80岁老熟妇乱子伦牲交| 我的女老师完整版在线观看| 建设人人有责人人尽责人人享有的| 国产精品一区二区在线观看99| 高清av免费在线| 亚洲精品第二区| 日韩熟女老妇一区二区性免费视频| 中文精品一卡2卡3卡4更新| 久久久久精品性色| www.av在线官网国产| 亚洲自偷自拍三级| 亚洲人成网站在线播| 成人毛片60女人毛片免费| 午夜免费鲁丝| 日韩电影二区| 日韩制服骚丝袜av| 在线观看www视频免费| 美女脱内裤让男人舔精品视频| 亚洲精品国产色婷婷电影| 久久久久久久大尺度免费视频| 欧美日韩综合久久久久久| 免费久久久久久久精品成人欧美视频 | 精品一区二区免费观看| 久久精品夜色国产| av.在线天堂| 久久午夜综合久久蜜桃| av在线老鸭窝| 99热国产这里只有精品6| 免费观看无遮挡的男女| 久久亚洲国产成人精品v| 精品一区二区免费观看| 国产中年淑女户外野战色| 亚洲经典国产精华液单| 国产精品欧美亚洲77777| 天堂俺去俺来也www色官网| 波野结衣二区三区在线| 日韩成人av中文字幕在线观看| 蜜桃久久精品国产亚洲av| 我的老师免费观看完整版| av在线播放精品| 午夜影院在线不卡| 五月伊人婷婷丁香| 国产 精品1| 国产精品一区二区三区四区免费观看| 国产精品一区二区在线不卡| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩av片在线观看| 水蜜桃什么品种好| 欧美三级亚洲精品| 黄色怎么调成土黄色| 国产色婷婷99| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产专区5o| 大陆偷拍与自拍| 亚洲国产精品一区三区| 男女无遮挡免费网站观看| 国产午夜精品久久久久久一区二区三区| 美女cb高潮喷水在线观看| 亚洲精品一二三| 国产成人91sexporn| 免费在线观看成人毛片| 肉色欧美久久久久久久蜜桃| 久久影院123| 一个人免费看片子| 免费播放大片免费观看视频在线观看| 欧美3d第一页| 久久久亚洲精品成人影院| 精品国产国语对白av| 中文资源天堂在线| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩一区二区三区在线 | √禁漫天堂资源中文www| 18禁动态无遮挡网站| 久久99一区二区三区| 91精品国产国语对白视频| 丝袜喷水一区| www.色视频.com| 国产老妇伦熟女老妇高清| 久久久久久久久久久免费av| 视频中文字幕在线观看| 人人妻人人看人人澡| 一级毛片 在线播放| 久久精品久久久久久久性| 久久热精品热| 卡戴珊不雅视频在线播放| 亚洲三级黄色毛片| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 日韩一本色道免费dvd| videossex国产| 欧美激情国产日韩精品一区| 精品一区在线观看国产| 99热这里只有是精品50| 亚洲国产精品专区欧美| 春色校园在线视频观看| 国产欧美亚洲国产| 黄色怎么调成土黄色| 久久久精品免费免费高清| 婷婷色麻豆天堂久久| 性色avwww在线观看| 久久久欧美国产精品| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放 | 建设人人有责人人尽责人人享有的| 日本黄大片高清| 国产免费视频播放在线视频| 成年人免费黄色播放视频 | 欧美 日韩 精品 国产| 高清午夜精品一区二区三区| 黄色毛片三级朝国网站 | 色视频在线一区二区三区| 精品一品国产午夜福利视频| 又粗又硬又长又爽又黄的视频| 99热这里只有精品一区| 久久久久久久久大av| 成人影院久久| 成人午夜精彩视频在线观看| 亚洲精品乱久久久久久| 十八禁高潮呻吟视频 | 香蕉精品网在线| 在线观看av片永久免费下载| 久久久久精品性色| 我的老师免费观看完整版| 久久午夜福利片| 亚洲,欧美,日韩| 国产精品三级大全| 国产乱人偷精品视频| 精品久久久久久久久亚洲| 久久精品国产亚洲网站| 日日啪夜夜撸| 午夜激情福利司机影院| 交换朋友夫妻互换小说| av女优亚洲男人天堂| 国产av码专区亚洲av| 在线观看免费高清a一片| 日韩成人伦理影院| 国产高清国产精品国产三级| 国产伦精品一区二区三区四那| 国产一区亚洲一区在线观看| 国产欧美日韩一区二区三区在线 | 午夜免费鲁丝| 亚洲在久久综合| av又黄又爽大尺度在线免费看| 三上悠亚av全集在线观看 | 91成人精品电影| 99热国产这里只有精品6| 日韩一区二区三区影片| 亚洲经典国产精华液单| 91久久精品国产一区二区三区| 亚洲av综合色区一区| 大陆偷拍与自拍| 久久午夜综合久久蜜桃| 91成人精品电影| 欧美日韩一区二区视频在线观看视频在线| 国产精品女同一区二区软件| 男女无遮挡免费网站观看| 黑人高潮一二区| 老熟女久久久| 精品久久久久久电影网| 又爽又黄a免费视频| 少妇人妻 视频| 建设人人有责人人尽责人人享有的| 久久免费观看电影| 亚洲人与动物交配视频| 全区人妻精品视频| 91在线精品国自产拍蜜月| 欧美+日韩+精品| 噜噜噜噜噜久久久久久91| 亚洲第一av免费看| 97超视频在线观看视频| 欧美一级a爱片免费观看看| 亚洲一级一片aⅴ在线观看| 高清毛片免费看| 免费观看a级毛片全部| 国产乱来视频区| freevideosex欧美| 国产日韩欧美视频二区| 伊人亚洲综合成人网| 国产精品熟女久久久久浪| 九九在线视频观看精品| 亚洲国产最新在线播放| 插逼视频在线观看| 好男人视频免费观看在线| 久久久国产精品麻豆| 久久6这里有精品| 在线精品无人区一区二区三| 亚洲欧美日韩卡通动漫| 色94色欧美一区二区| 在线观看免费高清a一片| 国产成人精品福利久久| 大片免费播放器 马上看| 久久久国产精品麻豆| 91精品伊人久久大香线蕉| 黄色一级大片看看| 日日摸夜夜添夜夜爱| 精品人妻熟女毛片av久久网站| 视频中文字幕在线观看| www.av在线官网国产| 亚洲,一卡二卡三卡| 伦精品一区二区三区| 天堂8中文在线网| 久久av网站| 偷拍熟女少妇极品色| 国产毛片在线视频| 亚洲av电影在线观看一区二区三区| 国产精品不卡视频一区二区| 亚洲情色 制服丝袜| 18+在线观看网站| 伦理电影免费视频| 蜜桃在线观看..| 丰满迷人的少妇在线观看| 国产成人一区二区在线| 综合色丁香网| 国产精品.久久久| 国产成人免费无遮挡视频| 成人免费观看视频高清| 99九九在线精品视频 | 水蜜桃什么品种好| av在线观看视频网站免费| 麻豆乱淫一区二区| 国产熟女午夜一区二区三区 | 国产成人精品福利久久| 久久午夜福利片| 国产av码专区亚洲av| 国产亚洲精品久久久com| 免费看光身美女| 亚洲欧美日韩卡通动漫| 最近中文字幕2019免费版| 亚洲欧美清纯卡通| 男的添女的下面高潮视频| 久久精品夜色国产| 国产一区二区三区av在线| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 亚洲不卡免费看| 亚洲精品,欧美精品| 亚洲精品456在线播放app| 国产亚洲5aaaaa淫片| 亚洲av免费高清在线观看| 国产精品一区二区性色av| 成年人午夜在线观看视频| 永久网站在线| 水蜜桃什么品种好| 欧美日韩在线观看h| 国产欧美日韩一区二区三区在线 | 一级毛片我不卡| 只有这里有精品99| 秋霞在线观看毛片| 日韩中字成人| av在线app专区| 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 中文字幕精品免费在线观看视频 | av福利片在线观看| 能在线免费看毛片的网站| 欧美xxⅹ黑人| 亚洲精品第二区| 久久国产乱子免费精品| 熟妇人妻不卡中文字幕| 亚洲自偷自拍三级| 国产av一区二区精品久久| 国产精品女同一区二区软件| 成人亚洲精品一区在线观看| 免费观看的影片在线观看| 三级国产精品欧美在线观看| 在线 av 中文字幕| 日日啪夜夜撸| 成年av动漫网址| 国产精品国产三级国产av玫瑰| 国产免费又黄又爽又色| 我要看日韩黄色一级片| 看十八女毛片水多多多| av不卡在线播放| 亚洲激情五月婷婷啪啪| 国产精品蜜桃在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲三级黄色毛片| 美女xxoo啪啪120秒动态图| 大香蕉久久网| 午夜老司机福利剧场| 亚洲av日韩在线播放| 秋霞在线观看毛片| 久久久久精品久久久久真实原创| 少妇精品久久久久久久| 免费av中文字幕在线| 高清视频免费观看一区二区| 免费观看无遮挡的男女| 寂寞人妻少妇视频99o| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 天堂俺去俺来也www色官网| 99热国产这里只有精品6| av在线老鸭窝| 我要看日韩黄色一级片| 亚洲成色77777| 成年人午夜在线观看视频| 只有这里有精品99| 久久久久久久久久久丰满| 青青草视频在线视频观看| h视频一区二区三区| 美女xxoo啪啪120秒动态图| 久久久久久久久久久免费av| 老司机影院成人| 国产黄频视频在线观看| 伊人久久国产一区二区| 国产亚洲欧美精品永久| 国产伦在线观看视频一区| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添av毛片| 成人18禁高潮啪啪吃奶动态图 | 久久鲁丝午夜福利片| 大片免费播放器 马上看| 永久免费av网站大全| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 欧美97在线视频| 99九九线精品视频在线观看视频| 国产男女超爽视频在线观看| av不卡在线播放| 免费高清在线观看视频在线观看| 99久久人妻综合| 免费久久久久久久精品成人欧美视频 | 99久久综合免费| 天天操日日干夜夜撸| 免费看日本二区| 日韩大片免费观看网站| 国产精品不卡视频一区二区| av国产久精品久网站免费入址| 美女大奶头黄色视频| 如何舔出高潮| 国产亚洲91精品色在线| 高清视频免费观看一区二区| 一本大道久久a久久精品| 免费高清在线观看视频在线观看| 高清在线视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | kizo精华| 王馨瑶露胸无遮挡在线观看| 亚洲精品自拍成人| 久久精品国产a三级三级三级| 97超视频在线观看视频| 国产成人一区二区在线| 春色校园在线视频观看| 中文欧美无线码| 精品亚洲成国产av| 夫妻午夜视频| 人人妻人人澡人人爽人人夜夜| 女性被躁到高潮视频| 久久国产乱子免费精品| 久久国产精品男人的天堂亚洲 | 91久久精品国产一区二区三区| 精品酒店卫生间| 国产亚洲精品久久久com| 国产黄频视频在线观看| tube8黄色片| 精品久久久久久久久av| 看十八女毛片水多多多| 51国产日韩欧美| 亚洲精品日韩av片在线观看| 成人综合一区亚洲| 啦啦啦中文免费视频观看日本| 中文字幕人妻丝袜制服| 另类精品久久| 中文精品一卡2卡3卡4更新| 精品人妻熟女毛片av久久网站| 一本一本综合久久| 婷婷色综合大香蕉| 国产淫语在线视频| 91久久精品国产一区二区成人| 大话2 男鬼变身卡| 18禁动态无遮挡网站| 日韩av免费高清视频| 国产成人精品福利久久| 亚洲国产精品成人久久小说| 最新中文字幕久久久久| 国产色婷婷99| 91精品国产国语对白视频| 22中文网久久字幕| 国产爽快片一区二区三区| 夫妻午夜视频| 久久国产精品大桥未久av | av在线观看视频网站免费| 国产亚洲av片在线观看秒播厂| 狂野欧美激情性xxxx在线观看| 最近中文字幕2019免费版| 韩国高清视频一区二区三区| 最近最新中文字幕免费大全7| 久久亚洲国产成人精品v| 婷婷色综合www| 久久国产乱子免费精品| 日韩精品免费视频一区二区三区 | 九九久久精品国产亚洲av麻豆| 国产伦精品一区二区三区四那| 亚洲高清免费不卡视频| 日韩一本色道免费dvd| 国产欧美日韩一区二区三区在线 | 久久久久网色| 国产一区二区在线观看日韩| 夜夜爽夜夜爽视频| 卡戴珊不雅视频在线播放| 日韩人妻高清精品专区| 亚洲av在线观看美女高潮| a级毛片免费高清观看在线播放| 一个人看视频在线观看www免费| 亚洲av免费高清在线观看| 26uuu在线亚洲综合色| 80岁老熟妇乱子伦牲交| 一区二区三区乱码不卡18| av播播在线观看一区| 欧美97在线视频| 热re99久久国产66热| 日产精品乱码卡一卡2卡三| 国产一区有黄有色的免费视频| 国产av国产精品国产| 亚洲精品乱码久久久久久按摩| 91成人精品电影| 啦啦啦中文免费视频观看日本| 精品人妻偷拍中文字幕| 亚洲av在线观看美女高潮| 免费大片18禁| 91久久精品电影网| 高清在线视频一区二区三区| 色视频在线一区二区三区| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜爽| 免费av中文字幕在线| 在线天堂最新版资源| 欧美日韩亚洲高清精品| 伦理电影免费视频| 国产精品一区二区三区四区免费观看| 国内精品宾馆在线| 亚洲美女视频黄频| 亚洲,欧美,日韩| 精品人妻熟女av久视频| 亚洲国产av新网站| 国产精品99久久久久久久久| 乱系列少妇在线播放| 菩萨蛮人人尽说江南好唐韦庄| 国产精品99久久久久久久久| 黄色视频在线播放观看不卡| 美女国产视频在线观看| 免费看光身美女| 亚洲精品第二区| 中文精品一卡2卡3卡4更新| .国产精品久久|