• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Notch fatigue of Cu50Zr50 metallic glasses under cyclic loading:molecular dynamics simulations

    2021-07-06 05:04:08YongYangHairuiLiZailinYangJinLiuEvansKabuteyKateyeandJianweiZhao
    Communications in Theoretical Physics 2021年6期

    Yong Yang,Hairui Li,Zailin Yang,?,Jin Liu,Evans Kabutey Kateye and Jianwei Zhao

    1 College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin 150001,China

    2 Key Laboratory of Advanced Material of Ship and Mechanics,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China

    3 College of Materials and Textile Engineering,Jiaxing University,Jiaxing 314000,China

    Abstract Molecular dynamics simulation is performed to simulate the tension–compression fatigue of notched metallic glasses(MGs),and the notch effect of MGs is explored.The notches will accelerate the accumulation of shear transition zones,leading to faster shear banding around the notches’root causing it to undergo severe plastic deformation.Furthermore,a qualitative investigation of the notched MGs demonstrates that fatigue life gradually becomes shorter with the increase in sharpness until it reaches a critical scale.The fatigue performance of blunt notches is stronger than that of sharp notches.Making the notches blunter can improve the fatigue life of MGs.

    Keywords:metallic glasses,notches,fatigue life,molecular dynamics simulations

    1.Introduction

    In the field of materials science,research in notches is always a hot topic.It is important for the safety and reliability design of precision structural components[1–3].Metallic glasses(MGs)are widely used in microelectronic systems due to their high strength,high hardness,and good forming ability[4,5].However,in the manufacture and application of engineering materials,mechanical damage,corrosion,and other factors can cause notches and cracks[6].Therefore,exploring the notch effect of MGs has become a top priority[7–9].Numerous experiments and simulations have been performed to analyze the ductility and notch insensitivity of MGs.For example,Jang et al reported separate and distinct critical sizes for maximum strength and the brittle-to-ductile transition,thereby demonstrating that strength and ability to carry plasticity are decoupled at the nanoscale[10].Qu et al found that the tensile strength of the studied bulk MGs(BMGs)is insensitive to notches and much better than that of conventional brittle materials.Moreover,it might be possible to toughen BMGs by introducing artificial defects[11].Sha et al considered that failure mode and strength in notched MGs critically depend on the notch depth and notch sharpness[12].Pan et al reported that the anomalous inverse notch effect is caused by a transition in the failure mechanism from shear banding at the notch tip to the cavitation and the void coalescence[13,14].

    At present,fruitful research results have been achieved in improving ductility.However,over 90 percent of failures are due to fatigue in practical applications[15].It is particularly important to study the fatigue properties of MGs.The failure of notched MGs is accompanied by the initiation,propagation,and arrest of the shear band(SB).The time scale and length involved in fatigue failure are small,and it is difficult to observe the deformation process in the experiment.For instance,the critical scale of the SB is about 10nm[16].Conversely,the research scope of molecular dynamics(MD)simulations can completely solve the scale problem,and can also characterize the microstructure and deformation mechanism of materials[17].

    In this work,the MD method is used to investigate the fatigue response of notchedCu50Zr50MGs under tensile–compression fatigue experiments.The fatigue failure mechanism of MGs at the atomic level is analyzed and the factors affecting fatigue life are summarized.The fatigue life of MGs has a quantitative relationship with the notch sharpness.According to the fatigue response and deformation process analysis of the notched MGs under cyclic loading,the aggregation rate of the shear transition zones(STZs)is the key to determining the fatigue performance.The sample of sharp notches has a large stress concentration,which increases the growth rate of STZs,accelerates the amplitude of atomic energy changes,and shortens the fatigue life.

    2.Atomistic simulations

    The Large-Scale Atomic/Molecular Massive Parallel Simulator(LAMMPS)is a commonly used method for MD simulation and is often used to describe multi-scale,largescale atomic structures and mechanical properties[18,19].A small cube containing 10,000 Cu atoms is established,and the corresponding number of Cu atoms is replaced with Zr atoms in combination with the random atomic replacement,forming the initial configuration ofCu50Zr50.The interaction between atoms is described by the embedded atom method potential function[20]:

    where F is called the embedding energy,which is a function of the electron density ρ,φ is a pair-potential interaction,α and β are the element types of atoms i and j.

    Periodic boundary conditions are applied in all directions of the initial configuration,reducing it from 2000 K to 50 K at a cooling rate of 1011K/s[21,22].A preliminary thin film sample with a size of28 ×56 ×5.6 nm3and containing 548,000 atoms is obtained by periodic replication in the X-,Y-,and Z-directions at the corresponding proportion.After annealing the sample at 800 K for 0.5 ns[23,24],the temperature is broughtback to 50 K at the same cooling rate,and then a second relaxation is performed to eliminate the effects of multiple replications and temperature fluctuations.After the sample is constructed,a strain rate of109s-1is applied to the Y-direction for loading.The boundary conditions are reset to free boundary conditions in the X-direction and periodic boundary conditions in the Y-and Z-directions.To quantify the plastic deformation of MGs and observe the change in the notches,the color of the atom is specified according to the atomic local shear strainηMises.

    whereηij(i,j=x,y,z)are the components of the Lagrangian strain matrix for the specific atoms[25,26].

    3.Results and discussion

    To explore the effect of notches on the fatigue performance of MGs,fatigue tests are performed on samples with different notch sharpness,and the relationship between notch sharpness,stress concentration,and fatigue life is analyzed.The constructed notched MGs sample is shown in figure 1(a).The notch radian θ is calculated as

    and the main features of the notched sample are the symmetrical notch radius R and notch depth D.To eliminate the impact of notch depth on the simulation results,a constant valueD=2 nm is set.Uniaxial tensile loading is carried out on the samples with different sharpness,and an applied strain of 5.4%is employed in the fatigue tests,where the maximum stress is 96% of the ultimate tensile strength(UTS).

    Tensile–compression cyclic loading is performed on samples with different sharpness.Figure 2 shows the stress versus cycle numbers curve of each sample(0 degrees,20 degrees,40 degrees,80 degrees).From each curve,it is found that after certain fatigue cycles the stress decreased obviously.After a few more cycles,the stress dropped to a stable value,i.e.at the blue arrow.The comparison results of the curves show that the stress drop position of the sample with small sharpness lags significantly.To elaborate on the curve changes,a series of snapshots of the deformation process of each sample is obtained by monitoring the atomic local shear strain during cyclic loading.The atomic local shear strain is characterized using the corresponding color[17,27].Figure 3 shows the process of the atomic structure of the unnotched sample.Shear banding is divided into four stages.A region with a large local atomic shear strain indicates a high density of STZs.In the SB initiation,the STZ density is relatively low.As the cycle numbers increase,the STZs gradually aggregate and reach a critical size.The STZs reaching the critical size inspire the SB,which propagates along the Y-direction at 45 degrees.After the SB crosses through the entire sample,it gradually thickens.The SB initiation stage of the notched sample gradually becomes shorter as the sharpness increases.Combining the stress curve change and deformation process,the stress drop corresponds to the rapid localization of plastic strain,while the SB formation corresponds to the failure of the sample.As in Sha’s simulation,the fatigue life of MGs is mostly concentrated in the SB initiation[28].

    Figure 1.(a)Structuralrepresentation of the Cu50Zr50 notched MGs sample,with notch depth D=2 nm,notch radius R,and notch radian θ.(b)The fatigue test with a 5.4% maximum strain corresponding to the 96% UTS.

    Figure 2.The stress versus cycle number plots for the fatigue tests with an applied strain of 5.4%,where the blue arrow corresponds to the cycle numbers of SB formation:(a)unnotched;(b)θ=20°;(c)θ=40°;(d)θ=80°.

    Figure 3.A series of snapshots are captured by monitoring the deformation process withηMises:(a)unnotched;(b)θ=20°;(c)θ=40°;(d)θ=8°0.

    Figure 4.The notch radian versus fatigue cycle number;the red dotted line is a fitting curve.

    A series of notched samples with different radians are simulated,the failure cycles are statistically analyzed,and the curve fitting is performed for the obtained data.Figure 4 shows the fatigue life versus notch radian curve;the fatigue life of the unnotched sample is 20 cycles,while the fatigue life is correspondingly shorter with the increase in radians.When the radian exceeds 40 degrees,the fatigue life is maintained at six cycles.By combining with the atomic structure snapshot of each notched sample during deformation,the phenomenon of fatigue life reduction can be clarified.The notches accelerate the aggregation rate of STZs and,as the notch sharpness increases,the faster the aggregation rate.According to Nakai’s experimental results[29,30],notches in the material will cause stress concentration,and the notch sharpness affects the degree of stress concentration.In the simulation process,the stress concentration at the root of the sharp notch is large,resulting in a faster STZ aggregation rate,and faster formation and propagation of the SB.The fatigue life gradually becomes shorter with the increase in sharpness until it reaches a critical scale.

    Figure 5.Atomic energy versus fatigue cycle number during fatigue tests:(a)unnotched;(b)θ=20°;(c)θ=40°;(d)θ=80°.

    Figure 6.(a)The proportion of STZs versus fatigue cycle numbers;(b)the STZ’s growth rate versus fatigue cycle numbers.

    Figure 5 is the atomic energy change in each notched MG sample.As the sharpness increases,the linear elastic phase gradually becomes shorter.When the radian exceeds 40 degrees,the linear elastic phase disappears.The large stress gradient causes STZs to accumulate faster,the SB forms faster to withstand plastic deformation and,at the same time,the energy storage capacity of the notched sample drops faster.There is also significant STZ activity in the thickening stage of the SB,which is mainly because the stress required to form the SB is much larger than that continuing to propagate the SB.It is manifested as the thickening of the SB and the energy circulation within a certain amplitude at this stage.

    From the analysis and summary of the fatigue mechanism of the notched MGs,it is believed that the fatigue life is related to the aggregation rate of STZs.The STZs are formed by the aggregation of atoms with the large local atomic shear strain(ηMises>0.2).Statistics and analysis of the changes in the proportion of these atoms will help one to understand the intrinsic mechanism of the MGs’failure behavior.The proportion of the large shear strain atoms under each cycle is recorded,and the STZs of each sample are shown in figure 6(a).The STZ’s growth rate is obtained by taking the first-order derivative of each curve,as shown in figure 6(b).

    From figure 6,it is believed that the change in the content of STZs is related to the stress concentration at the notch root.The STZs show an S-shaped growth trend,andthe differences among the samples are mainly concentrated in the SB initiation stage.From the growth rate curves of the STZs,the overall trend is growth first and then it declines.Before the peak,it is the SB initiation stage,and the sample with greater sharpness has a more obvious stress concentration,resulting in a faster STZ aggregation rate.After the peak,the SB is completely formed,the stress concentration at the notch root disappears,and the growth rate of STZs is almost the same and gradually decreases.The position of each peak point corresponds to the SB propagation stage,and the growth rate of STZs is the highest at this moment.Obvious stratification can be observed from the curve.The STZ fraction of the unnotched sample has the slowest growth rate.When the notch radian exceeds 40 degrees,this indicates that fatigue life has reached the critical value at this moment.The fatigue life of notched MGs can be predicted by the STZs’growth rate curves.

    4.Conclusions

    Using MD simulation,cyclic responses of notched MGs under tension–compression fatigue have been investigated,and the fatigue failure mechanism of the notched MGs has been explained.Considering the impact of the notch radian on fatigue performance,several important conclusions are as follows:

    (i)According to the fatigue response of the notch radian,as the notch radian gradually increases,the fatigue life becomes shorter.When the radian exceeds 40 degrees,the fatigue life of the notched sample is maintained at six cycles.From the comparison of multiple samples,the fatigue life of notched MGs can be predicted.

    (ii)The fatigue life of the blunt notched MGs is longer than that of the sharp notched MGs.The stress concentration at the root of the sharp notch is strong,which induces the faster aggregation of STZs,leads to the SB initiation,SB formation,and SB propagation,and reduces the fatigue life of MGs.Conversely,the SB formed by the blunt notch root is stable,the plastic zone of the sample is large,and the blunt notch enhances the fatigue resistance.

    (iii)With the effect of cyclic stress on the notch root,the SB is formed around it to undergo plastic deformation.The formation and propagation of the SB reduce the energy storage capacity of structures,and the energy storage capacity of sharp notch samples decreases faster.The SB propagation is inhibited at the later stage,which results in the thickening of the SB.

    Acknowledgments

    The work is supported by the Key Laboratory of Yarn Materials Forming and Composite Processing Technology,Zhejiang Province(No.MTC2019-01),the Fundamental Research Funds for the Central Universities(No.3072020CF0202)and the Program for Innovative Research Team in China Earthquake Administration.

    9色porny在线观看| 久久久久久免费高清国产稀缺| 伊人久久大香线蕉亚洲五| a级片在线免费高清观看视频| 狠狠狠狠99中文字幕| 国产熟女午夜一区二区三区| 我的亚洲天堂| 精品一区二区三区视频在线观看免费 | 男人舔女人的私密视频| 1024香蕉在线观看| 日韩高清综合在线| 黑人猛操日本美女一级片| 热99国产精品久久久久久7| 每晚都被弄得嗷嗷叫到高潮| 午夜a级毛片| 黑丝袜美女国产一区| 这个男人来自地球电影免费观看| 久久国产精品人妻蜜桃| 日本黄色视频三级网站网址| 黄色女人牲交| 免费看十八禁软件| 久久久国产一区二区| 91九色精品人成在线观看| 18禁观看日本| 亚洲成av片中文字幕在线观看| 一级,二级,三级黄色视频| 精品久久蜜臀av无| 搡老熟女国产l中国老女人| www.自偷自拍.com| 成人免费观看视频高清| aaaaa片日本免费| 亚洲精品av麻豆狂野| 精品国产亚洲在线| 国产精品一区二区三区四区久久 | 在线永久观看黄色视频| 亚洲一区二区三区欧美精品| xxx96com| 激情视频va一区二区三区| 他把我摸到了高潮在线观看| 青草久久国产| 精品久久久久久久久久免费视频 | 国产成人精品久久二区二区91| 国产单亲对白刺激| 亚洲国产精品合色在线| 啦啦啦免费观看视频1| 露出奶头的视频| 国产精品久久视频播放| 三级毛片av免费| 人人妻人人澡人人看| 欧洲精品卡2卡3卡4卡5卡区| 免费观看精品视频网站| 9热在线视频观看99| 黑人巨大精品欧美一区二区mp4| 99国产精品一区二区三区| xxxhd国产人妻xxx| 亚洲一区二区三区不卡视频| 日韩国内少妇激情av| 麻豆成人av在线观看| 在线观看免费视频日本深夜| 国产精品一区二区精品视频观看| 亚洲精品在线美女| 波多野结衣高清无吗| 亚洲国产精品sss在线观看 | 亚洲国产精品一区二区三区在线| a级毛片在线看网站| 国产精华一区二区三区| tocl精华| 精品久久蜜臀av无| 国产成人欧美在线观看| 亚洲国产中文字幕在线视频| 亚洲成av片中文字幕在线观看| 免费高清在线观看日韩| 欧美日韩乱码在线| 麻豆国产av国片精品| 老司机午夜福利在线观看视频| 亚洲色图综合在线观看| 亚洲va日本ⅴa欧美va伊人久久| 99国产精品一区二区三区| 欧美一区二区精品小视频在线| 嫩草影视91久久| 丝袜在线中文字幕| 国产三级在线视频| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区综合在线观看| 91精品三级在线观看| 十八禁网站免费在线| 一夜夜www| 午夜精品在线福利| 欧美日韩亚洲国产一区二区在线观看| 丁香六月欧美| 欧美日韩亚洲高清精品| 免费女性裸体啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 国产精品乱码一区二三区的特点 | 国产精品久久久人人做人人爽| 日韩人妻精品一区2区三区| 黄色丝袜av网址大全| 水蜜桃什么品种好| 日本精品一区二区三区蜜桃| 久久久精品国产亚洲av高清涩受| 免费日韩欧美在线观看| 亚洲精品久久成人aⅴ小说| 亚洲aⅴ乱码一区二区在线播放 | 好男人电影高清在线观看| 一级a爱片免费观看的视频| 久久中文看片网| 欧美激情高清一区二区三区| 国产av精品麻豆| av超薄肉色丝袜交足视频| 国内毛片毛片毛片毛片毛片| 99热只有精品国产| 精品人妻在线不人妻| 久热这里只有精品99| www.999成人在线观看| 露出奶头的视频| 国产精品 国内视频| 精品无人区乱码1区二区| 久久影院123| 欧美日韩瑟瑟在线播放| 免费一级毛片在线播放高清视频 | 一本综合久久免费| 黄网站色视频无遮挡免费观看| av在线播放免费不卡| 久久99一区二区三区| 十分钟在线观看高清视频www| 午夜91福利影院| 纯流量卡能插随身wifi吗| 国产精品国产av在线观看| 成在线人永久免费视频| 很黄的视频免费| 淫妇啪啪啪对白视频| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看影片大全网站| 1024香蕉在线观看| 国产精品日韩av在线免费观看 | 精品一区二区三区四区五区乱码| 午夜91福利影院| 亚洲专区中文字幕在线| 亚洲精品粉嫩美女一区| 操出白浆在线播放| 亚洲 欧美一区二区三区| 妹子高潮喷水视频| 国产欧美日韩一区二区三| 这个男人来自地球电影免费观看| 中文字幕最新亚洲高清| 日韩精品中文字幕看吧| 女人高潮潮喷娇喘18禁视频| 两个人免费观看高清视频| 黄色视频,在线免费观看| 亚洲国产欧美一区二区综合| 欧美乱妇无乱码| 性欧美人与动物交配| 最近最新中文字幕大全电影3 | 欧美黑人欧美精品刺激| 国产一区二区三区在线臀色熟女 | 国产精品99久久99久久久不卡| 999久久久国产精品视频| 亚洲视频免费观看视频| 精品久久久久久久毛片微露脸| 国产精品偷伦视频观看了| 精品久久久久久成人av| 国产精品一区二区精品视频观看| 日韩欧美一区二区三区在线观看| 高清黄色对白视频在线免费看| 天堂影院成人在线观看| 欧美日韩亚洲高清精品| av网站免费在线观看视频| xxx96com| 亚洲国产精品sss在线观看 | 午夜两性在线视频| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 亚洲全国av大片| 久久99一区二区三区| 人人澡人人妻人| 亚洲伊人色综图| 人成视频在线观看免费观看| 久久国产亚洲av麻豆专区| 国产又爽黄色视频| a在线观看视频网站| 免费一级毛片在线播放高清视频 | 夜夜爽天天搞| av国产精品久久久久影院| 村上凉子中文字幕在线| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美网| 曰老女人黄片| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品成人在线| 欧美性长视频在线观看| 天堂动漫精品| 精品欧美一区二区三区在线| ponron亚洲| 90打野战视频偷拍视频| 人人妻人人澡人人看| 国产在线精品亚洲第一网站| 日本黄色视频三级网站网址| 巨乳人妻的诱惑在线观看| 亚洲熟妇熟女久久| 桃红色精品国产亚洲av| 久久伊人香网站| www日本在线高清视频| www.自偷自拍.com| 99在线人妻在线中文字幕| 久久久久国内视频| 精品欧美一区二区三区在线| 在线观看舔阴道视频| 精品电影一区二区在线| 日韩欧美三级三区| 久久精品91无色码中文字幕| 成熟少妇高潮喷水视频| www日本在线高清视频| 国产91精品成人一区二区三区| 老司机午夜十八禁免费视频| 在线观看66精品国产| 亚洲中文av在线| www.精华液| 嫩草影视91久久| 亚洲一区二区三区欧美精品| 国产精品乱码一区二三区的特点 | 久久香蕉激情| 国产视频一区二区在线看| 91成年电影在线观看| av网站在线播放免费| 国产精品综合久久久久久久免费 | 欧美日韩视频精品一区| 搡老熟女国产l中国老女人| 欧美日韩黄片免| 欧美另类亚洲清纯唯美| 欧美精品啪啪一区二区三区| 亚洲精品久久成人aⅴ小说| 波多野结衣一区麻豆| 国产精品电影一区二区三区| 国产伦一二天堂av在线观看| 村上凉子中文字幕在线| 久久亚洲真实| 十分钟在线观看高清视频www| 亚洲av片天天在线观看| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美一区二区三区在线观看| 人成视频在线观看免费观看| 日本vs欧美在线观看视频| 日日摸夜夜添夜夜添小说| 精品一区二区三区视频在线观看免费 | 日本黄色视频三级网站网址| 国产av一区二区精品久久| 亚洲国产精品一区二区三区在线| 可以免费在线观看a视频的电影网站| 国产激情欧美一区二区| 妹子高潮喷水视频| 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 精品一区二区三区av网在线观看| www.自偷自拍.com| 亚洲国产精品一区二区三区在线| 精品久久久久久电影网| 日韩欧美三级三区| 国产成人av教育| 欧美精品亚洲一区二区| 国产亚洲欧美在线一区二区| 精品欧美一区二区三区在线| 天堂俺去俺来也www色官网| 国产欧美日韩精品亚洲av| x7x7x7水蜜桃| 手机成人av网站| 国产欧美日韩一区二区三| 国产黄色免费在线视频| 中文字幕最新亚洲高清| 激情在线观看视频在线高清| 在线观看免费视频网站a站| 亚洲七黄色美女视频| 欧美一级毛片孕妇| 欧美激情久久久久久爽电影 | 嫩草影视91久久| 国产免费现黄频在线看| 成年人黄色毛片网站| 精品第一国产精品| 九色亚洲精品在线播放| 日韩欧美一区二区三区在线观看| 十八禁人妻一区二区| 午夜久久久在线观看| 一级a爱视频在线免费观看| 视频区欧美日本亚洲| 国产高清videossex| 精品人妻1区二区| 国产成人影院久久av| 亚洲欧美一区二区三区久久| 久久久水蜜桃国产精品网| 91麻豆av在线| 国产深夜福利视频在线观看| 久9热在线精品视频| 老熟妇乱子伦视频在线观看| 天堂中文最新版在线下载| 国产精品野战在线观看 | 天堂影院成人在线观看| 在线观看免费视频网站a站| 日本撒尿小便嘘嘘汇集6| 久久久久久免费高清国产稀缺| 最近最新中文字幕大全免费视频| 国产亚洲精品一区二区www| 日本精品一区二区三区蜜桃| 亚洲精品国产一区二区精华液| 99国产极品粉嫩在线观看| 欧美精品一区二区免费开放| 午夜两性在线视频| 亚洲一区二区三区欧美精品| 亚洲色图av天堂| 久久久久久大精品| 日日爽夜夜爽网站| 亚洲第一青青草原| 亚洲欧洲精品一区二区精品久久久| 亚洲自拍偷在线| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 日韩av在线大香蕉| 日韩免费高清中文字幕av| 久久精品人人爽人人爽视色| 可以在线观看毛片的网站| 国产主播在线观看一区二区| 精品午夜福利视频在线观看一区| 亚洲精品在线观看二区| 人人妻人人澡人人看| 久久久久久免费高清国产稀缺| 久久久久久久久久久久大奶| 不卡av一区二区三区| a级片在线免费高清观看视频| 两人在一起打扑克的视频| 999精品在线视频| 18美女黄网站色大片免费观看| 在线十欧美十亚洲十日本专区| 国产精品爽爽va在线观看网站 | 午夜福利免费观看在线| 国产精品野战在线观看 | av国产精品久久久久影院| 天天躁狠狠躁夜夜躁狠狠躁| 美女高潮到喷水免费观看| 99精国产麻豆久久婷婷| 国产精品久久电影中文字幕| 天堂俺去俺来也www色官网| 99国产综合亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产99白浆流出| 黑丝袜美女国产一区| 高清av免费在线| 大型黄色视频在线免费观看| 久久久久久久久久久久大奶| 免费一级毛片在线播放高清视频 | 无遮挡黄片免费观看| 久久精品亚洲av国产电影网| 久久久久精品国产欧美久久久| 免费在线观看影片大全网站| 日本a在线网址| 99精品在免费线老司机午夜| 精品一区二区三卡| 精品熟女少妇八av免费久了| 变态另类成人亚洲欧美熟女 | 电影成人av| 亚洲av成人一区二区三| 国产精品国产av在线观看| 国产97色在线日韩免费| 女人被躁到高潮嗷嗷叫费观| 中亚洲国语对白在线视频| 国产成人啪精品午夜网站| 美女福利国产在线| 丝袜美足系列| 侵犯人妻中文字幕一二三四区| 久久精品影院6| 可以免费在线观看a视频的电影网站| 欧美日韩精品网址| 国产精品九九99| 熟女少妇亚洲综合色aaa.| 91字幕亚洲| 满18在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 国产三级在线视频| 国产精华一区二区三区| 成人精品一区二区免费| 久热这里只有精品99| av福利片在线| 欧美成人午夜精品| 人成视频在线观看免费观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲久久久国产精品| 久久香蕉激情| 欧美日韩视频精品一区| 亚洲国产欧美网| 婷婷六月久久综合丁香| 中文欧美无线码| 在线国产一区二区在线| 每晚都被弄得嗷嗷叫到高潮| 男女之事视频高清在线观看| 一级毛片女人18水好多| 另类亚洲欧美激情| 无人区码免费观看不卡| 亚洲专区国产一区二区| 国产精品爽爽va在线观看网站 | 国产熟女xx| 亚洲第一青青草原| 欧美中文日本在线观看视频| 亚洲精品中文字幕在线视频| 亚洲一码二码三码区别大吗| 一级毛片高清免费大全| 精品国产美女av久久久久小说| 免费不卡黄色视频| 在线观看66精品国产| 中文字幕另类日韩欧美亚洲嫩草| 淫妇啪啪啪对白视频| 久久精品aⅴ一区二区三区四区| 亚洲男人的天堂狠狠| 国产精品久久久人人做人人爽| 制服人妻中文乱码| 亚洲av成人av| 欧美日韩国产mv在线观看视频| 免费女性裸体啪啪无遮挡网站| 色老头精品视频在线观看| av超薄肉色丝袜交足视频| 国产亚洲精品久久久久久毛片| 香蕉国产在线看| 亚洲国产欧美日韩在线播放| 三级毛片av免费| 91成人精品电影| 老司机福利观看| 在线永久观看黄色视频| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品在线电影| 757午夜福利合集在线观看| 电影成人av| 久久精品91蜜桃| 久99久视频精品免费| 人人妻,人人澡人人爽秒播| 欧美中文日本在线观看视频| 另类亚洲欧美激情| 在线观看舔阴道视频| 香蕉丝袜av| 欧美精品啪啪一区二区三区| 高清毛片免费观看视频网站 | 在线观看午夜福利视频| 99久久久亚洲精品蜜臀av| 欧美日韩一级在线毛片| 91成人精品电影| 国产精品久久电影中文字幕| 国产成年人精品一区二区 | 18禁美女被吸乳视频| av免费在线观看网站| 两性夫妻黄色片| 久久人人97超碰香蕉20202| 久久久久久亚洲精品国产蜜桃av| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕大全电影3 | 日韩精品青青久久久久久| 欧美丝袜亚洲另类 | 男女下面插进去视频免费观看| 成年版毛片免费区| 国产av又大| 久久人人97超碰香蕉20202| 国产单亲对白刺激| 国产精品久久久人人做人人爽| 50天的宝宝边吃奶边哭怎么回事| 大陆偷拍与自拍| 一边摸一边抽搐一进一出视频| 国产黄色免费在线视频| 男人舔女人的私密视频| 99久久综合精品五月天人人| 一进一出好大好爽视频| 99国产精品99久久久久| 亚洲一码二码三码区别大吗| 激情视频va一区二区三区| 国产欧美日韩综合在线一区二区| 国产三级在线视频| 久久久国产成人精品二区 | 久久国产亚洲av麻豆专区| 91av网站免费观看| 国产视频一区二区在线看| 99热国产这里只有精品6| 欧美日本亚洲视频在线播放| 午夜成年电影在线免费观看| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美软件| 久久精品成人免费网站| 久久人人97超碰香蕉20202| 国产单亲对白刺激| 日韩欧美三级三区| 咕卡用的链子| 午夜福利在线观看吧| 老汉色∧v一级毛片| 久久久久久亚洲精品国产蜜桃av| 欧美午夜高清在线| 精品高清国产在线一区| 啪啪无遮挡十八禁网站| 老熟妇仑乱视频hdxx| 久久草成人影院| 精品国产美女av久久久久小说| 国产精品野战在线观看 | 欧美日韩黄片免| 免费不卡黄色视频| 久久天堂一区二区三区四区| 亚洲国产欧美网| 老鸭窝网址在线观看| 国产高清视频在线播放一区| 久久精品国产99精品国产亚洲性色 | ponron亚洲| 婷婷丁香在线五月| 美女高潮喷水抽搐中文字幕| 亚洲专区字幕在线| 日韩大码丰满熟妇| 最好的美女福利视频网| 在线播放国产精品三级| 国产成人精品在线电影| 在线观看66精品国产| bbb黄色大片| av欧美777| av国产精品久久久久影院| 亚洲七黄色美女视频| 热re99久久精品国产66热6| e午夜精品久久久久久久| 日韩欧美一区视频在线观看| 可以在线观看毛片的网站| 最近最新中文字幕大全免费视频| 丝袜在线中文字幕| 成熟少妇高潮喷水视频| 国产一区二区在线av高清观看| 亚洲国产精品合色在线| av福利片在线| 国产主播在线观看一区二区| 美女福利国产在线| 1024视频免费在线观看| av天堂在线播放| 中文字幕最新亚洲高清| 精品久久久久久久毛片微露脸| 在线观看66精品国产| 国产精品秋霞免费鲁丝片| 少妇被粗大的猛进出69影院| 99国产精品99久久久久| 18美女黄网站色大片免费观看| 日韩欧美国产一区二区入口| 亚洲欧洲精品一区二区精品久久久| 一个人免费在线观看的高清视频| 国产精品一区二区精品视频观看| 日本wwww免费看| 亚洲精品久久成人aⅴ小说| 久久国产亚洲av麻豆专区| 电影成人av| 乱人伦中国视频| 国产av一区在线观看免费| 久久久精品欧美日韩精品| 黄色成人免费大全| 国产精品秋霞免费鲁丝片| 他把我摸到了高潮在线观看| 91九色精品人成在线观看| 黄片大片在线免费观看| 男女午夜视频在线观看| 精品久久久久久久久久免费视频 | 中文字幕高清在线视频| 视频在线观看一区二区三区| 国产av在哪里看| www.熟女人妻精品国产| 极品教师在线免费播放| 999久久久精品免费观看国产| 国产成人欧美在线观看| 国产欧美日韩精品亚洲av| 亚洲午夜精品一区,二区,三区| 国产欧美日韩综合在线一区二区| 午夜福利一区二区在线看| 亚洲欧美一区二区三区久久| 国产精品成人在线| 精品一区二区三卡| 男男h啪啪无遮挡| www.www免费av| 午夜影院日韩av| 我的亚洲天堂| 一个人观看的视频www高清免费观看 | 午夜两性在线视频| 狂野欧美激情性xxxx| 在线天堂中文资源库| 国产精品一区二区精品视频观看| 日本撒尿小便嘘嘘汇集6| 欧美黄色片欧美黄色片| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区精品| 午夜a级毛片| 真人做人爱边吃奶动态| 高清毛片免费观看视频网站 | 精品久久久久久电影网| 亚洲av美国av| 色老头精品视频在线观看| 国产精品秋霞免费鲁丝片| 亚洲,欧美精品.| 欧美性长视频在线观看| 国产国语露脸激情在线看| 国产蜜桃级精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 真人一进一出gif抽搐免费| 国产精品香港三级国产av潘金莲| 看片在线看免费视频| 18美女黄网站色大片免费观看| 久久国产乱子伦精品免费另类| 国产激情欧美一区二区| 日韩高清综合在线| 天天影视国产精品| 日日摸夜夜添夜夜添小说| 日韩大码丰满熟妇| 国产真人三级小视频在线观看| 中文字幕高清在线视频| 嫁个100分男人电影在线观看| 亚洲国产毛片av蜜桃av| 91精品国产国语对白视频| a级毛片在线看网站| 日韩成人在线观看一区二区三区| 一级毛片女人18水好多| 免费看十八禁软件| 巨乳人妻的诱惑在线观看| 色播在线永久视频| 后天国语完整版免费观看| 亚洲片人在线观看| 午夜91福利影院|