• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于CFD的植物工廠圓形鋸齒狀水冷LED燈管降溫效果模擬

      2021-06-30 06:11:24程瑞鋒仝宇欣
      關(guān)鍵詞:燈珠燈管水冷

      方 慧,程瑞鋒,仝宇欣,李 琨

      基于CFD的植物工廠圓形鋸齒狀水冷LED燈管降溫效果模擬

      方 慧,程瑞鋒,仝宇欣,李 琨※

      (1. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;2. 農(nóng)業(yè)農(nóng)村部設(shè)施農(nóng)業(yè)節(jié)能與廢棄物處理重點(diǎn)實(shí)驗(yàn)室,北京 100081)

      為及時(shí)將LED燈管芯片產(chǎn)生的熱量傳導(dǎo)出去,提升LED燈的性能,延長其使用壽命,設(shè)計(jì)了一種圓形鋸齒狀水冷LED燈管,并通過計(jì)算流體力學(xué)(Computational Fluid Dynamics, CFD)軟件構(gòu)建水冷LED燈管模型,對其降溫效果進(jìn)行研究。在模型中將LED燈珠芯片設(shè)置為內(nèi)熱源,熱流密度根據(jù)燈珠的數(shù)量和電光轉(zhuǎn)化效率計(jì)算,其值為1.7×107W/m3。驗(yàn)證試驗(yàn)表明,模擬值與實(shí)測值吻合較好,最大誤差為16.4%,構(gòu)建的CFD模型能準(zhǔn)確模擬燈管各結(jié)構(gòu)的溫度分布。利用驗(yàn)證的模型模擬不同水流速度對水冷LED燈管溫度分布及水流壓降的影響。結(jié)果表明:不同流速下水冷LED燈管的金屬散熱燈罩、燈珠芯片和水流的溫度分布比較均勻,表明該燈管的結(jié)構(gòu)設(shè)計(jì)合理,燈珠芯片釋放的熱量能很快傳導(dǎo)到水流中并被帶走;當(dāng)燈管入口水流速度從0.10 m/s增加到0.25 m/s時(shí),進(jìn)出水溫差從1.4 ℃下降到0.5 ℃。因此,在對水冷LED燈管進(jìn)行串聯(lián)時(shí),可根據(jù)進(jìn)水溫度和環(huán)境溫度的差來計(jì)算可串接燈管數(shù)量;入口水流速度的增加亦會(huì)增加水流阻力,根據(jù)模擬得到燈管進(jìn)出水壓差計(jì)算出燈管對水流的阻力系數(shù)為2.2,為水泵選型提供了依據(jù)。

      溫度;計(jì)算流體力學(xué);植物工廠;人工光源;模擬;水流速度

      0 引 言

      人工光植物工廠是一種通過對設(shè)施內(nèi)溫度、濕度、光照、CO2濃度以及營養(yǎng)液等環(huán)境要素進(jìn)行高精度自動(dòng)控制,實(shí)現(xiàn)作物周年連續(xù)生產(chǎn)的高效農(nóng)業(yè)系統(tǒng)[1]。隨著世界人口、資源、環(huán)境問題的日益突出,植物工廠以傳統(tǒng)農(nóng)業(yè)無法比擬的優(yōu)勢,受到世界各國的廣泛重視,相關(guān)技術(shù)迅速發(fā)展成熟,在不同領(lǐng)域得到了廣泛應(yīng)用[2-4]。中國累計(jì)推廣面積達(dá)700多萬平方米[1]。

      植物工廠一般采用空調(diào)進(jìn)行光/暗期變溫控制[5-9],空調(diào)熱負(fù)荷的85%以上來自于人工光源在植物光期散發(fā)的熱量。盡管光源采用具有冷光源之稱的LED,仍有70%以上的電能轉(zhuǎn)化成熱量[10],導(dǎo)致空調(diào)能耗占植物工廠總能耗的15%~25%[11]。如果未及時(shí)將這部分熱量帶走,熱量的急劇積累會(huì)導(dǎo)致LED芯片溫度的迅速上升,引起發(fā)光效率下降、波長漂移、器件失效及壽命急劇減短等一系列問題[12-13]。Nadarajah等研究表明,當(dāng)光源溫度從38 ℃上升至55 ℃時(shí),其壽命由約50 000 h驟降至10 000 h[14]。LED芯片產(chǎn)生的高溫除損害元器件外,也不利于蔬菜生產(chǎn)。在熱輻射和熱對流作用下,這些熱量使光源下方植物栽培區(qū)溫度上升,降低植物水分和養(yǎng)分利用效率[15-16]、降低光合速率、增強(qiáng)暗呼吸[17]、減少礦物質(zhì)吸收[18-20]、增加抽薹率、葉片燒心[21]、葉柄變色[22]、葉片變苦[23]、口感下降[24]及葉球松散[25]等癥狀,對植物工廠生產(chǎn)和經(jīng)營造成明顯的負(fù)面影響。

      植物工廠中通常采用強(qiáng)制空氣冷卻方式將光源熱量帶走。以目前主流的LED植物工廠為例,LED芯片工作中產(chǎn)生的熱量先以熱傳導(dǎo)的方式轉(zhuǎn)移至散熱片上,而后以對流與輻射形式將熱量傳導(dǎo)至空氣中,再經(jīng)植物工廠內(nèi)氣流運(yùn)動(dòng)輸送至空調(diào)進(jìn)行調(diào)溫處理。但該過程熱量轉(zhuǎn)移較為緩慢,尤其是在密集的栽培系統(tǒng)及蔬菜植株遮擋情況下,正常的空氣流動(dòng)受阻,無風(fēng)區(qū)域極易發(fā)生熱量積聚。為解決上述問題,有學(xué)者研究將通氣管置于栽培區(qū)植物上方[26-27]和下方[28],實(shí)現(xiàn)栽培區(qū)內(nèi)垂直方向上的氣流擾動(dòng),以減少無風(fēng)區(qū)域;Moon等采用降溫-加熱-通風(fēng)系統(tǒng)聯(lián)合調(diào)控的混合控制策略減少植物工廠栽培架層間及不同區(qū)域的環(huán)境差異,提高其均勻性[29];李琨等提出了根際通風(fēng)方法,使植物工廠環(huán)境空氣流經(jīng)水培系統(tǒng)中營養(yǎng)液面與栽培板之間的空氣層后經(jīng)植物冠層下部吹至栽培區(qū),實(shí)現(xiàn)高效的通風(fēng)[30]。上述研究成果雖然能夠加強(qiáng)通風(fēng)效能,緩解局部溫度上升對蔬菜的負(fù)面影響,在一定程度上提高光源強(qiáng)制空氣冷卻效果,但隨著植物工廠規(guī)模的不斷擴(kuò)大,植物工廠內(nèi)氣流分布不均的狀況愈發(fā)明顯,局部環(huán)境均勻性和降溫效率亟待進(jìn)一步提高。

      液冷直接對光源進(jìn)行冷卻是一種效率更高的降溫方式。液體具有更高的導(dǎo)熱系數(shù)與定壓比熱容,能大幅度降低換熱環(huán)節(jié)熱阻,提高冷卻效率,其散熱效果比風(fēng)冷方式要強(qiáng)20倍以上[31]。目前大功率LED光源水冷系統(tǒng)研究主要集中在新型流道、換熱器結(jié)構(gòu)與翅片設(shè)計(jì)方面[32],較少研究其在實(shí)際應(yīng)用環(huán)境下的性能表現(xiàn)。劉曉英等設(shè)計(jì)了水冷式植物工廠LED面光源及散熱系統(tǒng),并對其運(yùn)行性能進(jìn)行了測試,發(fā)現(xiàn)較無水冷散熱裝置的散熱器溫度低5.3~19.3 ℃[33],該研究僅測定了溫度變化情況,并未對其散熱器設(shè)計(jì)與運(yùn)行關(guān)鍵參數(shù)進(jìn)行探索。盡管目前針對水冷散熱系統(tǒng)結(jié)構(gòu)及模擬研究較為深入,也有部分研究測試了水冷系統(tǒng)的實(shí)際降溫性能,但仍然缺乏以植物工廠實(shí)際生產(chǎn)應(yīng)用為目標(biāo)的光源水冷散熱系統(tǒng)解決方案及其關(guān)鍵參數(shù)對散熱性能的影響研究。

      本研究針對植物工廠大規(guī)模應(yīng)用設(shè)計(jì)了一種圓形鋸齒狀水冷LED燈管,基于Fluent軟件對燈管裝置熱傳導(dǎo)、水流壓降進(jìn)行模擬分析,探究了同一進(jìn)水溫度不同流速下燈管裝置降溫性能及水流的阻力系數(shù),以期為LED補(bǔ)光燈在大型植物工廠中的研究及應(yīng)用提供理論依據(jù)。

      1 數(shù)值模擬

      1.1 模型參數(shù)及運(yùn)行原理

      基于市售常規(guī)LED植物燈管外形規(guī)格參數(shù),設(shè)計(jì)開發(fā)了一種通用型圓形鋸齒狀水冷LED燈管,其結(jié)構(gòu)如圖1所示,由水流管路、電源接口、密封蓋、密封圈、固定絲扣、金屬散熱管道、燈罩、LED芯片、散熱鋁板等構(gòu)成。LED發(fā)光芯片固定于散熱鋁板上,鋁板嵌入到管道一側(cè)的凹槽中,與水管側(cè)面緊密貼合。為增大水流與管路的接觸面積,管路內(nèi)部設(shè)計(jì)為圓形鋸齒狀凹凸面。

      1.水流管路 2.電源接口 3.密封蓋 4.密封圈 5.固定絲扣 6.金屬散熱管道 7.燈罩 8.LED芯片 9.散熱鋁板

      1.Water pipe 2.Power connection 3.Sealing cover 4.Sealing ring 5.Fixing screw thread 6.Metal heat dissipation pipe 7.Lamp shade 8.LED chip 9.Heat dissipation plate

      圖1 圓形鋸齒狀水冷LED燈管試驗(yàn)裝置模型

      Fig.1 Test device model of circular serrated water-cooled LED

      1.2 模擬方程

      水冷LED燈管中LED芯片為散熱源,其釋放出的熱量以下述3種途徑被帶走:1)對流換熱:一部分熱量以對流的形式傳遞到燈罩的空腔中,燈罩通過與空腔和環(huán)境中的氣體進(jìn)行對流換熱,將熱量釋放到室外環(huán)境中;2)熱輻射:芯片為高溫固體,芯片和燈罩之間存在溫差,導(dǎo)致芯片一部分熱量以熱輻射的形式傳遞到燈罩,最終釋放到環(huán)境中;3)熱傳導(dǎo):芯片的大部分熱量直接傳導(dǎo)到散熱板,再通過流動(dòng)的水將熱量帶走。在本模擬中啟動(dòng)能量項(xiàng),選擇-湍流模型[34],相關(guān)控制方程為

      1)動(dòng)量守恒方程

      方向上:

      方向上:

      方向上:

      式中為水流的密度,kg/m3;為水的動(dòng)力黏性系數(shù);為時(shí)間,s;為速度矢量;、、分別為流體質(zhì)點(diǎn)速度在,,方向上的分量,m/s;SS、S為源項(xiàng),kg·m/s;為壓力,Pa。

      2)能量守恒方程

      式中為溫度,℃;為各材料的導(dǎo)熱系數(shù),W/(m·℃);p為各材料的比熱容,J/(kg·K);S為芯片散熱源項(xiàng),W/m3。

      1.3 網(wǎng)格劃分與邊界條件

      為簡化結(jié)構(gòu)網(wǎng)格劃分,管路與散熱板間的縫隙忽略不計(jì),考慮為一個(gè)整體。將構(gòu)建的水冷LED燈管模型輸入到ANSYS Meshing模塊中,利用Proximity and Curvature方法對幾何體進(jìn)行網(wǎng)格劃分,并對LED燈株芯片和管道近壁面網(wǎng)格進(jìn)行加密處理,共生成1 162 800個(gè)網(wǎng)格,220 881個(gè)節(jié)點(diǎn),網(wǎng)格最小尺寸為2 mm,利用skewness計(jì)算出網(wǎng)格最大偏斜度為0.84,最小偏斜度為1.3×10-10,平均值為0.25,網(wǎng)格質(zhì)量可用于案例模擬分析。

      在邊界條件設(shè)置中將管路的一端設(shè)置為進(jìn)水口(Velocity-inlet),另一端為設(shè)置壓力出口(Pressure-outlet),水流管道設(shè)計(jì)的最大承載流量為6 kg/h,進(jìn)水管道直徑為4 mm,則進(jìn)水口的最大流速為0.5 m/s。在建筑供暖中為滿足暖氣管中的氣泡能被水流帶走,因此設(shè)計(jì)流速一般為0.25 m/s[35]。在本試驗(yàn)中為得到最優(yōu)水流速度,設(shè)置4個(gè)速度梯度,分別為0.1、0.15、0.2和0.25 m/s。管路外殼與散熱板均為導(dǎo)熱固體材料,LED燈珠芯片設(shè)置為熱源。環(huán)境操作溫度為植物工廠光期控制溫度,設(shè)置為24 ℃。

      1.3.1 進(jìn)水溫度計(jì)算

      植物工廠光期環(huán)境溫度和相對濕度分別按24 ℃和70%考慮,為保證水冷LED燈管無冷凝,則水流溫度應(yīng)高于露點(diǎn)溫度,其計(jì)算式為[36]

      (5)

      式中=0.198 0,=0.001 7,=0.840 0,均為系數(shù);t為露點(diǎn)溫度,℃;t為干球溫度,℃;RH為相對濕度,%。通過式(5)計(jì)算得到植物工廠露點(diǎn)溫度為17 ℃,為保證燈管無結(jié)露,進(jìn)水口水流溫度應(yīng)不低于露點(diǎn)溫度,因此,在模型中將水流入口溫度設(shè)置為17 ℃。

      1.3.2 芯片熱流密度計(jì)算

      圓形鋸齒狀水冷LED燈管由300顆燈珠組成,燈珠均勻排布于散熱板上,總電功率為60 W。根據(jù)Nelson的研究表明紅色LED燈珠和藍(lán)色LED燈珠的電光轉(zhuǎn)化效率分別為32%和49%[37]。據(jù)此,燈珠芯片的熱流密度計(jì)算式為

      =(1?) (6)

      式中為燈珠的電功率,W;為燈珠電光轉(zhuǎn)化效率;為燈珠的熱功率,W;為單個(gè)芯片的體積,m3;為單個(gè)芯片熱流密度,W/m3。結(jié)合式(6)和(7),水冷LED燈管芯片的熱流密度為1.7×107W/m3。

      本試驗(yàn)?zāi)M計(jì)算中所涉及的材料包括氣體(空氣)、液體(水)和固體(玻璃、鋁),所有材料熱物理屬性如表1所示。

      表1 材料熱物理屬性

      1.4 計(jì)算方法

      在Fluent中湍流模型選擇標(biāo)準(zhǔn)-模型,近壁面采用“Enhanced wall treatment”壁面函數(shù),考慮壁面作用和浮升力的作用,選擇“Full buoyancy effects”,同時(shí)打開能量方程和重力項(xiàng)。動(dòng)量、能量和黏性項(xiàng)都選用一階迎風(fēng)格式,以達(dá)到更快收斂。將能量項(xiàng)的松弛因子設(shè)置為10-6,其余項(xiàng)均設(shè)置為10-3以判斷結(jié)果是否收斂。

      1.5 模型驗(yàn)證

      模型驗(yàn)證是檢驗(yàn)數(shù)值模擬準(zhǔn)確性的重要方式之一,相應(yīng)的模型驗(yàn)證試驗(yàn)裝置如圖2所示,包括水箱、水泵、三通閥、節(jié)流閥、流量計(jì)和水冷LED燈管。試驗(yàn)用供水水泵(型號(hào):WS123;工作電壓12V;流量:8 L/min;揚(yáng)程:3 m)與三通閥連接,三通閥的一端與流量計(jì)(型號(hào):LZM-15ZT;測量范圍:0.04~0.4 m3/h)連接,另一端與節(jié)流閥連接,通過流量計(jì)和節(jié)流閥控制流入水冷LED燈管的水流速度。測點(diǎn)布置:分別在水冷LED燈管的金屬散熱管側(cè)面和玻璃燈罩側(cè)面的中間位置及兩端各布置1個(gè)溫度測點(diǎn),合計(jì)6個(gè)溫度測點(diǎn);在水流出、入口分別布置1個(gè)溫度測點(diǎn),合計(jì)2個(gè)測點(diǎn)。溫度測量選用銅-康銅熱電偶線,其測量精度為±0.2 ℃,所有數(shù)據(jù)通過HOBO數(shù)據(jù)采集儀(型號(hào):UX120-014M)采集,采集時(shí)間間隔為1 min。

      1.流量計(jì) 2.燈管 3.三通閥 4.節(jié)流閥 5.水泵 6.溫度傳感器

      1.Flowmeter 2.Lamp 3.Three-way valve 4.Throttle valve 5.Water pump 6.Temperature sensor

      圖2 水冷LED燈管驗(yàn)證裝置整體結(jié)構(gòu)

      Fig.2 Overall structure of water cooled LED validation device

      2 結(jié)果與分析

      2.1 試驗(yàn)驗(yàn)證

      為驗(yàn)證數(shù)值模型,測試了進(jìn)水溫度24 ℃,流速0.2 m/s時(shí)的水冷LED燈管各結(jié)構(gòu)的溫度穩(wěn)定實(shí)測值,并將實(shí)測值與模擬值進(jìn)行對比,結(jié)果如表2所示。從表2可以看出燈管各結(jié)構(gòu)溫度的模擬值與實(shí)測值的整體變化趨勢一致,誤差范圍為?0.8%~16.4%。其中,金屬散熱管外殼表面溫度的模擬值分別為25.0、25.4和25.8 ℃,對應(yīng)的實(shí)測溫度值分別為24.8、26.0和26.2 ℃,模擬值與實(shí)測值平均誤差僅為1.2%。燈管玻璃罩外表面溫度模擬值分別為25.5、25.3和25.0 ℃,對應(yīng)的實(shí)測值分別為27.4、29.8和29.9 ℃,模擬值均低于實(shí)測值,平均誤差為12.8%,高于燈管金屬殼的誤差,其主要原因是在進(jìn)行CFD模擬時(shí),忽略了LED芯片熱輻射對玻璃燈罩溫度的影響。水流出口溫度的實(shí)測值為26.0 ℃、模擬值為25.7 ℃,二者誤差較小,僅為1.2%。誤差范圍均在20%以內(nèi),說明模擬值與實(shí)測值吻合度較好[38]。

      表2 水冷LED燈管溫度模擬結(jié)果與實(shí)測結(jié)果對比

      2.2 模擬結(jié)果與分析

      為對比不同參數(shù)下的流場分布特性,設(shè)置水冷LED燈管的對稱面(面)=0、進(jìn)水口截面(面)=?575 mm、出水口截面(面)=575 mm和燈管末端截面(面)=565 mm作為流暢監(jiān)測面。

      2.2.1入口流速對管路壓力影響

      圖3為進(jìn)水溫度為17 ℃,水流速度分別為0.10、0.15、0.20和0.25 m/s時(shí),水冷LED燈管進(jìn)、出水口截面壓力云圖。此時(shí)水冷LED燈管道內(nèi)平均水流速度分別為0.017、0.020、0.024和0.028 m/s,其水流速度非常小,速度差異不顯著。隨著入口流速增加,入口截面管道下部高壓區(qū)域面積增大,上部低壓區(qū)域面積減少,而在出口截面處正好相反,說明流速升高,流場的壓力強(qiáng)度增大,阻力也隨之增大。

      注:進(jìn)水溫度為17 ℃。

      Note: The inlet water temperature is 17 ℃.

      圖3 不同入口流速水冷LED燈管進(jìn)、出水口壓力云圖

      Fig.3 Pressure magnitude contour of water-cooled LED with different inlet water velocity

      表3給出了不同進(jìn)口水流速度下進(jìn)出水口的壓差值。當(dāng)水冷LED燈裝置的入口處水流速度分別為0.10、0.15、0.20和0.25 m/s時(shí),管道對水流的阻力損失分別為13.2、25.7、41.9和62.5 Pa,根據(jù)伯努利方程,流體阻力損失與流速存在如下關(guān)系式:

      式中Δ為進(jìn)、出口水流壓差,Pa;ζ為燈管流道的阻力系數(shù),無量綱;為水流速度,m/s。對管道壓差與進(jìn)口流速進(jìn)行非線性二次擬合得到水冷LED燈管阻力系數(shù)ζ為2.2。

      表3 不同進(jìn)口水流速度下進(jìn)出水口的壓差與溫差

      植物工廠中多以種植葉菜為主,光期環(huán)境溫度設(shè)置為26 ℃[39]。為保證LED光源釋放的熱量能被水流帶走,則燈管金屬外殼溫度應(yīng)不高于環(huán)境溫度。因此,在入口流速分別為0.10、0.15、0.20和0.25 m/s時(shí),燈管能串聯(lián)的最大數(shù)量分別為6、10、12和18根,串聯(lián)燈管進(jìn)出口水流壓差分別達(dá)到79.2、257、502.8和1 116 Pa。

      2.2.2 入口流速對燈管降溫效果影響

      圖4顯示了入口流速分別為0.10、0.15、0.20和0.25 m/s條件下,水冷LED燈裝置內(nèi)的溫度云圖。溫度云圖從上至下分為2組,分別表示燈管對稱面=0,出口處燈管橫截面=?570 mm 2個(gè)特征面的溫度分布。從圖4可以看出,沿著水流方向燈管溫度逐漸升高。對比不同流速下的燈管溫度分布發(fā)現(xiàn),隨著入口流速的增加,燈管裝置整體區(qū)域的溫度下降,降溫效果變好。其原因在于增加水流速度加快了水流與燈管接觸面間的對流換熱,促進(jìn)燈管熱量的轉(zhuǎn)移。表2給出了不同進(jìn)口水流速度下進(jìn)出水口的溫差值。當(dāng)入口水流溫度為17 ℃,水流速度分別為0.10、0.15、0.20和0.25 m/s時(shí),進(jìn)出水溫差分別為1.4、0.9、0.7和0.5 ℃。圖4顯示在近水流出口的橫截面上,燈管金屬散熱罩,燈珠芯片和水流溫度分布比較均勻,燈罩溫度相對較高。

      注:燈管對稱面(=0);出水口處燈管截面(=?570 mm)。

      Note: Symmetry plane of lamp (=0); Lamp cross section near water outet (=?570 mm).

      圖4 不同入口速度水冷LED燈管裝置溫度云圖

      Fig.4 Temperature magnitude contour of water-cooled LED with different inlet water velocity

      入口流速0.10、0.15、0.20和0.25 m/s條件下燈管各部分的溫度體積加權(quán)平均值如圖5所示。當(dāng)進(jìn)口水流速從0.10 m/s增加到0.25 m/s時(shí),燈管內(nèi)空氣、燈珠芯片、金屬散熱管和水流區(qū)域的平均溫度分別下降了0.3、0.3、0.3和0.4 ℃。燈管的高溫區(qū)域主要集中在燈管內(nèi)空氣區(qū)域,其主要原因是外環(huán)境溫度設(shè)置為24 ℃,燈罩吸收的外部熱量不能迅速被管道中的水流帶走。不同入口水流速度下燈管金屬散熱罩,燈珠芯片和水流區(qū)域溫度差異不顯著,進(jìn)一步說明了水冷LED燈管裝置的散熱效果較好,LED芯片產(chǎn)生的熱量能迅速被水流帶走。

      3 結(jié) 論

      本研究針對植物工廠人工光源散熱量大、環(huán)控系統(tǒng)能耗高的問題,設(shè)計(jì)了一種以液體為熱傳導(dǎo)介質(zhì)的通用型水冷LED燈管,并通過CFD數(shù)字模型的構(gòu)建對不同水流情況下水冷LED燈管溫度分布及水流壓降的影響進(jìn)行了模擬,為實(shí)際使用中需要明確的冷卻水溫度、水流速度、串接數(shù)量等關(guān)鍵參數(shù)提供了理論依據(jù),有效指導(dǎo)了水冷燈管在植物工廠中的安裝與使用。研究主要結(jié)論如下:

      1)通過模擬和實(shí)測進(jìn)水溫度為24 ℃,流速為0.2 m/s條件下LED燈管金屬散熱管、燈罩和出口水流溫度,得到模擬結(jié)果與試驗(yàn)結(jié)果百分比誤差在16.4%以內(nèi),構(gòu)建的水冷LED燈管CFD模型能準(zhǔn)確描述水流溫度與速度對水冷LED燈管的降溫效果影響,為水冷LED燈管的研究及應(yīng)用提供了理論基礎(chǔ)。

      2)利用驗(yàn)證的模型模擬不同入口速度對燈管熱耗散的影響,結(jié)果表明:入口流速的增加,加速了燈珠芯片熱量被水流帶走,在入口水溫為17 ℃,入口速度分別為0.10、0.15、0.20和0.25 m/s時(shí),進(jìn)出水溫差分別為1.4、0.9、0.7和0.5 ℃。植物工廠中對水冷LED燈管進(jìn)行串聯(lián)時(shí),應(yīng)根據(jù)進(jìn)水溫度和環(huán)境溫度的差來計(jì)算可串接燈管數(shù)量。

      3)入口流速的增加亦會(huì)增加水流阻力,本試驗(yàn)設(shè)計(jì)的圓形鋸齒水冷LED燈管對水流的阻力系數(shù)為2.2。在實(shí)際植物工廠生產(chǎn)中,應(yīng)根據(jù)水流速度和串聯(lián)燈管數(shù)量計(jì)算總水流壓力損失,該計(jì)算結(jié)果可為水泵選型提供依據(jù)。

      [1] 楊其長. 植物工廠[M]. 北京:清華大學(xué)出版社,2019.

      [2] Ioslovich I, Gutman P O. Optimal control of crop spacing in a plant factory[J]. Automatica, 2000, 36(11): 1665-1668.

      [3] Kato K, Yoshida R, Kikuzaki A, et al. Molecular breeding of tomato lines for mass production of miraculin in a plant factory[J]. Journal of Agricultural and Food Chemmistry. 2010, 58(17): 9505-9510.

      [4] Miyagi A, Uchimiya H, Kawaiyamada M. Synergistic effects of light quality, carbon dioxide and nutrients on metabolite compositions of head lettuce under artificial growth conditions mimicking a plant factory[J]. Food Chemistry, 2017, 218: 561-568.

      [5] Doo H S, Bae H J, Kim S J. Production of Korean ginseng plants (Panax ginseng C. A. Meyer) in fully closed plant factories[J]. Acta Horticulturae, 2014, 1037: 777-782.

      [6] Johkan M, Shoji K, Goto F, et al. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa[J]. Environmental and Experimental Botany, 2012, 75: 128-133.

      [7] Okamura K, Matsuda Y, Igari K, et al. The optimal harvesting time of vaccine-producing transgenic lettuce cultivated in a closed plant factory[J]. Environmental Control in Biology, 2014, 52(1): 57-61.

      [8] Park J, Nakamura K, Nishiura Y, et al. Cultivation of lettuce and considerations of suitable item in plant factory adopted automatic transportation system[J]. IFAC Proceedings Volumes, 2013, 46(4): 328-331.

      [9] Wang J, Lu W, Tong Y, et al. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (L.) exposed to different ratios of red light to blue light[J]. Front Plant Sci, 2016, 7: 250.

      [10] Lin M, Chang C, Horng R, et al. Heat dissipation performance for the application of light emitting diode[J] Symposium on Design, Test, Integration & Packaging of Mems/moems, IEEE, 2009.

      [11] Kozai T. Sustainable plant factory closed plant production systems with artificial light for high resource use efficiencies and quality produce[J]. Acta Horticulturae, 2013, 1004: 27-40.

      [12] Muthu S, Schuurmans F, Pashley M. Red, green and blue LEDs for white light illumination[J]. Selected Topics in Quantum Electronics, IEEE, 2002, 8(2): 333-338.

      [13] Barton D, Osinski M, Perlin P, et al. Single-quantum well InGaN green light emitting diode degradation under high electrical stress[J]. Microelectronics Reliability, 1999, 39(8): 1219-1227.

      [14] Nadarajah N, Yimin G. Life of LED-based white light sources[J]. Osa Journal of Display Technology, IEEE, 2005, 1(1): 167-171.

      [15] Ruter J, Ingram D. 13Carbon-labeled photosynthate partitioning in Ilex crenata ‘Rotundifolia’ at supraoptimal root-zone temperatures[J]. Journal of the American Society for Horticultural Science, 1990, 115(6): 1008-1013.

      [16] Walker J. One–degree increments in soil temperature affect maize seedling behavior[J]. Soil Science Society of America Journal, 1969, 33(5): 729-736.

      [17] Nakamoto H, Hiyama T. Heat-shock proteins and temperature stress. Handbook of Plant and Crop Stress[M]. New York: Marcel Dekker, 1999.

      [18] Raju P, Clark R, Ellis J, et al. Effects of species of VA-mycorrbizal fungi on growth and mineral uptake of sorghum at different temperatures[J]. Plant and Soil, 1990, 121(2): 165-170.

      [19] Tindall J, Millss H, Radcliffe D. The effect of root zone temperature on nutrient uptake of tomato[J]. Journal of Plant Nutrition, 1990, 13(8): 939-956.

      [20] Cumbus I, Nye P. Root zone temperature effects on growth and phosphate absorption in rape Brassica napus cv. Emerald[J]. Journal of Experimental Botany, 1984, 36(2): 219-227.

      [21] Simonne A, Simonne E, Eitenmiller R, et al. Bitterness and composition of lettuce varieties grown in the southeastern United States[J]. Hort Technology, 2002, 12(4): 721-726.

      [22] Jenni S, Yan W. Genotype by environment interactions of heat stress disorder resistance in crisphead lettuce[J]. Plant Breed, 2009, 128(4): 374-380.

      [23] Zhao X, Carey E. Summer production of lettuce, and microclimate in high tunnel and open field plots in Kansas[J]. Hort Technology, 2009, 19(1): 113-119.

      [24] Bunning M, Kendall P, Stone M, et al. Effects of seasonal variation on sensory properties and total phenolic content of 5 lettuce cultivars[J]. Journal of Food Science, 2010, 75(3): 156-161.

      [25] Fukuda M, Matsuo S, Kikuchi K, et al. Isolation and functional characterization of the flowering locus T homolog, the LsFT gene, in lettuce[J]. Journal of Plant Physiology, 2011, 168(13): 1602-1607.

      [26] Goto E, Takakura T. Prevention of lettuce tipburn by supplying air to inner leaves[J]. Transactions of the ASAE, 1992, 35(2): 641-645.

      [27] Shibata T, Iwao K, Takano T. Effect of vertical air flowing on lettuce growing in a plant factory[J]. Acta Horticulturae, 1995, 399: 175-183.

      [28] Shibuya T, Tsuruyama J, Kitaya Y, et al. Enhancement of photosynthesis and growth of tomato seedlings by forced ventilation within the canopy[J]. Scientia Horticulturae, 2006, 109: 218-222.

      [29] Moon S, Kwon S, Lim J. Minimization of temperature ranges between the top and bottom of an air flow controlling device through hybrid control in a plant factory[J]. The Scientific World Journal, 2014: 1-7.

      [30] 李琨,鄒志榮. 植物工廠生菜根際通風(fēng)對冠層及根際環(huán)境影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(7):178-187.

      Li Kun, Zou Zhirong. Environmental effects of root zone ventilation on canopy and rhizosphere of lettuce in plant factory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(7): 178-187. (in Chinese with English abstract)

      [31] 侯亭波. 凹穴型復(fù)雜微通道換熱器結(jié)構(gòu)設(shè)計(jì)及流動(dòng)與傳熱性能研究[D]. 合肥:合肥工業(yè)大學(xué),2019.

      Hou Tingbo. Structural Design and Study on Performance of Flow and Heat Transfer of Complex Microchannel Heat Exchanger with Reentrant Cavitives[D]. Hefei: Hefei University of Technology, 2019. (in Chinese with English abstract)

      [32] 王杰,李健,范冰豐,等. 大功率紫外LED水冷設(shè)計(jì)及模擬優(yōu)化[J]. 機(jī)械設(shè)計(jì)與制造,2018(1):212-214.

      Wang Jie, Li Jian, Fan Bingfeng, et al. Design and optimization of an UV-LED water-cooled panel model[J]. Machinery Design and Manufacture, 2018(1): 212-214. (in Chinese with English abstract)

      [33] 劉曉英,焦學(xué)磊,要旭陽,等. 水冷式植物工廠LED面光源及散熱系統(tǒng)的研制與測試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(17):244-247.

      Liu Xiaoying, Jiao Xuelei, Yao Xuyang, et al. Design and test of LED surface light source used in plant factory with water-cooling system[J]. Transactions of the Chinese Society

      of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 244-247. (in Chinese with English abstract)

      [34] Patankar S V. Numerical heat transfer and fluid flow[M]. Washington, WA: Hemisphere Publishing Corporation, 1980.

      [35] British Standards Institution. Heating systems in buildings-Design for water-based heating systems: BS EN12828-2012[S]. Britain: BSI standards Limited, 2003.

      [36] 許馨尹,于軍琪,李紅蓮,等. 露點(diǎn)溫度計(jì)算方法對比研究[J]. 氣象與環(huán)境學(xué)報(bào),2016,32(3):107-111.

      Xu Xinyin, Yu Junqi, Li Honglian, et al. Comparative study on calculation methods of dew point temperature[J]. Journal of Meteorology and Environment. 2016, 32(3): 107-111. (in Chinese with English abstract)

      [37] Nelson J A, Bugbee B. Supplemental greenhouse lighting: Return on investment for LED and HPS fixtures[J]. Controlled Environments, 2013, 7: 1-9.

      [38] Tamimi E, Kacira M, Choi C Y, et al. Analysis of microclimate uniformity in a naturally vented greenhouse with a high-pressure fogging system[J]. Transactions of the ASABE, 2013, 56(3): 1241-1254.

      [39] Zha L Y, Liu W K, Yang Q C, et al. Regulation of ascorbate accumulation and metabolism in lettuce by the Red: Blue ratio of continuous light using LEDs[J]. Frontiers in Plant Science, 2020, 5(11): 1-13.

      Numerical simulation of the cooling efficiency of circular serrated water-cooled LEDs using CFD in plant factory

      Fang Hui, Cheng Ruifeng, Tong Yuxin, Li Kun※

      (1.,,100081,; 2.,,100081,)

      LEDs are more commonly used than fluorescent lamps in plant factories with artificial light for energy savings. But the LEDs cannot convert the input power to light at 100 % efficiency. Part of energy can be converted into heat, and then be transferred to the ambient environment, in terms of heat conduction, radiation, and convection. However, heat dissipation of LEDs has become a great challenge, as the power increased while the volume of LEDs reduced. In this study, a circular serrated water-cooled LED was designed to transmit the heat generated by LEDs in time for a longer service life. A three-dimensional Computational Fluid Dynamic (CFD) model was developed to assess the design, where the LED bubbles were set as the internal heat source. The electrical efficiency was assumed to be 32% and 49% in the red and blue LEDs, respectively. The heat flux of 1.7×107W/m3was calculated, according to the number of lamp beads and the electrical to light conversion efficiency. The constructed grids were approximately 1 162 800 for each case, including 220 881 nodes with a minimum element size of 2 mm. Much finer meshes were automatically imposed near the bubbles with proximity and curvature size functions in meshing. The SIMPLE was selected for the pressure-velocity coupling. A least-square cell-based scheme was used for the gradient term in spatial discretization. The second-order scheme was applied for the pressure term. The second-order upwind discretization schemes were used for momentum and energy equations, whereas, the first-order upwind discretization schemes were used for turbulence equations, mainly for higher accuracy. The convergence criterion was set as 10-6on energy and 10-3on continuity, momentum and viscous terms. Inlet and outlet boundary conditions were set for the numerical solution using the velocity-inlet and pressure-outlet. The inlet water velocity and water temperature were set as 0.2 m/s and 24 ℃, respectively. The simulated value of the LED water-cooled lamp was close to the measured value, with the maximum error of 16.4%, indicating that the CFD model could accurately simulate the temperature distribution of each structure of the lamp. The validated model was used to simulate the influence of different water flow velocities on the temperature distribution and water flow pressure drop in a water-cooled LED lamp. The results showed that the temperature distribution of bubbles and water flow was relatively uniform, and the structure of the lamp was reasonable. The heat released by the bead chip was quickly transferred into the water flow; when the inlet velocity of the lamp increased from 0.10 to 0.25 m/s, and the difference of water temperature between the inlet and outlet dropped from 1.4 ℃ to 0.5 ℃. Therefore, a series of connected lamps were calculated, according to the temperature difference between the inlet water and the ambient air, when the water-cooled LED lamps were connected in series. The inlet flow velocity also improved the flow resistance, where the resistance coefficient of lamps to the water flow was 2.2.

      temperature;computational fluid dynamics; plant factory; supplementary light; simulation; water flow velocity

      2020-10-10

      2021-01-12

      中央級公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(Y2020GH02)

      方慧,碩士,副研究員,研究方向?yàn)樵O(shè)施環(huán)境模擬。Email:fanghui@caas.cn

      李琨,博士,副研究員,研究方向?yàn)樵O(shè)施園藝。Email:likun@caas.cn

      10.11975/j.issn.1002-6819.2021.07.026

      S625.4

      A

      1002-6819(2021)-07-0212-06

      方慧,程瑞鋒,仝宇欣,等. 基于CFD的植物工廠圓形鋸齒狀水冷LED燈管降溫效果數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):212-217. doi:10.11975/j.issn.1002-6819.2021.07.026 http://www.tcsae.org

      Fang Hui, Cheng Ruifeng, Tong Yuxin, et al. Numerical simulationof the cooling efficiency of circular serrated water-cooled LEDs using CFD in plant factory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 212-217. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.026 http://www.tcsae.org

      猜你喜歡
      燈珠燈管水冷
      生活中的周期問題
      圖形化編程與炫彩多變的燈珠矩陣
      空調(diào)冷凍水冷回收技術(shù)可行性研究
      LED 成品燈具中鋁基板通用不同品牌3030-LED燈珠焊盤的設(shè)計(jì)
      增壓汽油機(jī)集成水冷進(jìn)氣歧管三維流場分析
      計(jì)算機(jī)機(jī)箱智能水冷系統(tǒng)
      電子制作(2018年23期)2018-12-26 01:01:28
      秦淮河水冷,戰(zhàn)事幾回傷
      中國三峽(2016年11期)2017-01-15 14:00:08
      簡單道理
      高功率脈沖氙燈燈管的性能
      ACME LED—ST1000/LED—ST2000燈具
      演藝科技(2014年9期)2015-04-02 16:21:40
      蓬溪县| 常宁市| 梁平县| 仪陇县| 通化市| 安溪县| 高陵县| 庆元县| 紫金县| 岱山县| 泾源县| 安龙县| 九龙县| 温泉县| 瓦房店市| 宜昌市| 南江县| 济阳县| 石首市| 喀什市| 石泉县| 师宗县| 新化县| 阳春市| 庆元县| 拉萨市| 永顺县| 尉犁县| 集贤县| 萝北县| 安多县| 宜城市| 雅江县| 怀仁县| 色达县| 安西县| 视频| 云梦县| 弥勒县| 沈阳市| 惠东县|