• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding the synergistic effect of mixed solvent annealing on perovskite film formation?

    2021-06-26 03:30:46KunQian錢昆YuLi李渝JingnanSong宋靜楠JazibAliMingZhang張明LeiZhu朱磊HongDing丁虹JunzheZhan詹俊哲andWeiFeng馮威
    Chinese Physics B 2021年6期
    關鍵詞:張明

    Kun Qian(錢昆) Yu Li(李渝) Jingnan Song(宋靜楠) Jazib Ali Ming Zhang(張明) Lei Zhu(朱磊)Hong Ding(丁虹) Junzhe Zhan(詹俊哲) and Wei Feng(馮威)

    1School of Physics and Astronomy and Collaborative Innovation Center of IFSA(CICIFSA),Shanghai Jiao Tong University,Shanghai 200240,China

    2Department of Polymer Science and Engineering,School of Chemistry and Chemical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    3State Key Laboratory of Fluorinated Materials,Zibo 256401,China

    Keywords: perovskite solar cell,solvent vapor annealing,dissolution,recrystallization

    1. Introduction

    Organic-inorganic halide perovskite materials refer to oxides of the chemical formulaABX3(A=CH3NH3,(NH2)2CH,Cs,B=Ge,Sn,Pb,andX=I,Br,Cl),which have been given numerous attentions in recent years due to their unique properties such as magnetism,ferroelectricity,etc.[1,2]Being the absorber layers in solar cells,the perovskite materials are particularly remarkable because of their optically high absorption,[3]superior charge transport properties,[4]and low exciton binding energy.[5,6]The power conversion efficiency(PCE)of perovskite solar cells (PSCs) was only 3.8% at the beginning of 2009,[3]whereas a PCE of 25.5% was achieved in the latest research.[7]

    Nevertheless, perovskite-based devices are still confronted with critical challenges, such as detrimental grain boundaries and high densities of defect states caused by rapid and disordered crystallization of perovskite films.[8–10]These issues lead to radiationless recombination of carriers in perovskites, degrading the device performance.[11,12]A number of post-treatment methods have been proposed to control the crystallization rate of perovskite films to improve the crystal quality, eliminate the lattice defects, and eventually improve the device efficiency. For example,using solvent engineering to add DMSO into DMF solvent can slow down the crystallization rate by taking advantage of the strong force between Lewis acid-base adducts.[13,14]The antisolvent method,dropping a solvent with strong compatibility to the original one during the spin coating process and quickly removing the excess solvent by centrifugal force, is commonly used for controlling the crystallization rate.[15,16]Solvent vapor annealing(SVA),first proposed by Yanget al.in polymer solar cells,[17]has been proven to effectively improve device performance with excellent controllability in annealing temperature, annealing time,vapor pressure,etc.[18]

    As a common post-treatment method, SVA introduces solvent molecules into the atmosphere of traditional thermal annealing. The solvent molecules preferentially reach the areas with higher surface energies,such as grain boundaries. At grain boundaries, solvent molecules enter the cubic octahedral structure of perovskite, seize organic molecules, and reform the intermediate phase in the perovskite crystallization process. At a certain temperature,the entry and volatilization of the solvent molecules reach a thermal equilibrium, where the intermediate phase is formed,leading to fusion of adjacent grains, expansion of the size of grains, and reduction of the density of defect states.[19–21]

    The typical solvents used in SVA are the ones commonly used in the perovskite precursor solution.[19]However, in the past,most researches have focused on single-component SVA while solvent annealing adopting different solvents showed huge differences. For instance, DMSO has obvious advantages in expanding the grain size in SVA.However,due to its high boiling point[22]and the strong interaction between solvent molecules and perovskite components,the thermal equilibrium mentioned above can be easily broken,and perovskite films can be dissolved overly.It is also possible to form an irreversible poly-plumbate structure over a long period of time.[23]In contrast, the boiling point of DMF is lower, and the interaction force between DMF and perovskite is smaller. In this case, the thermal equilibrium is established rapidly, and the DMF molecules quickly volatilize, leaving a very short time for their interaction, so the grain fusion becomes very limited.[13]

    Fig.1. Top-view SEM image and the corresponding grain size distribution of perovskite film processed without and with solvent annealing treatment.

    In this manuscript, DMF/DMSO mixed solvent (MS) in SVA was proposed while the effect was compared with singlecomponent SVA.The detailed process and mechanism of SVA were also described to prove the effectiveness. The MS SVA combined the advantages of the two solvents, effectively expanding the grain size and reducing the density of defect states without damaging the film. The detailed crystallization dynamics during SVA,which is of critical importance in understanding the perovskite mesophase and the transformation between mesophase and perovskite crystal,was summarized. A champion power-conversion efficiency (PCE) of 19.76% under air mass global (AM 1.5G) spectrum illumination was achieved without any doping and interface optimization compared with 17.13%of the SVA-free control device.

    2. Results and discussion

    Figure 1 shows the top-view SEM images of the perovskite films and their corresponding grain size distribution.The images indicate that SVA treatment increased the grain size of perovskite films regardless of the type of solvent vapor.DMSO vapor treated perovskite film exhibited the largest average grain size of~380 nm along with clear voids and breaks between grains,which are detrimental for device performance.In contrast to DMSO treatment, the MS SVA resulted in a more uniform and compact perovskite film with an average grain size of~330 nm.

    Figure S1 shows the UV-vis absorption spectra of perovskite films based on SVA with different solvents.The nearly identical absorption spectra indicate that SVA treatment had no influence on light absorption. Further, to investigate the effect of SVA treatment on carrier recombination, we conducted the steady-state photoluminescence (PL) spectra and time-resolved PL spectra (TRPL) of bare perovskite films,with results shown in Figs.2(a)and 2(b). The highest PL intensity was observed in MS treated perovskite films,indicating non-radiative recombination was significantly suppressed. By fitting the TRPL spectra with a bi-exponential function, the carrier lifetime was extracted(Table S1)with 14.64 ns for the control device and 23.05 ns for the MS treated device. The prolonged carrier lifetime for the MS treated device indicates SVA treatment effectively passivated the defects by reducing the grain boundaries.[24,25]As for pure DMSO treated film,the carrier lifetime was largely shortened with an averageτof only 3.58 ns, meaning that the structure of perovskite film was damaged under the effect of DMSO vapor. In order to quantify the defect density, we performed space charge limited current(SCLC)measurements based on electron-only devices(ITO/SnO2/MAPbI3/PCBM/Al). As shown in Fig.2(c),there are three regions in the SCLC curves. In the first region,the applied voltage is lower than the kink point voltage,and the current increases linearly with applied voltage. When the applied voltage exceeds the kink point voltage,where the second region is, the current increases nonlinearly, indicating that all trap states are filled by the injected carriers. At higher bias, the current shows a quadratic dependence (the third region), and the dark current is well fitted by the Mott–Gurney law.Hence the intersection of the first and second region is the kink point voltage, which is also called trap-filled limit voltageVTFL,and the trap densityNtrapis calculated by using the following formula:[26,27]

    Fig. 2. (a) The PL spectra, and (b) time-resolved PL spectra of bare perovskite films processed with SVA treatment exposed to different solvent vapor.(c) Space charge limited current (SCLC) of electron-only devices with a device structure of ITO/SnO2 (40 nm)/MAPbI3 (~340 nm)/PCBM (80 nm)/A1(100 nm). The volumes of four solvents were optimized, which is 60μL for DMF solvent, 20μL for DMF/DMSO mixted solvent and 20μL for DMSO solvent,respectively.

    whereLis the thickness of the perovskite film which is around 350 nm,ε(~18) is the relative dielectric constant of perovskite.[28]The devices after SVA with DMF and MS had lowerNtrapof 1.04×1016cm?3and 7.91×1015cm?3respectively, compared to that of 1.16×1016cm?3for the control one and 1.65×1016cm?3for the case of DMSO SVA. The reduction in defect states agrees with suppressed carrier recombination,corresponding to the significant improvement ofVOCand FF shown in Table S2.

    To relate the above results with the crystallization process, we conducted the grazing incidence wide-angle x-ray scattering experiments(GIWAXS).The 2D GIWAXS images for the studied films are shown in Fig.S3,and the corresponding 1D GIWAXS profiles are displayed in Fig. 3(a). In comparison with the control device,both DMF and MS SVA processed perovskite films exhibited an improved crystallization,with the latter showing the greatest improvement. While for the DMSO case, the characteristic peak intensity of the perovskite phase was subjected to an obvious decrease. In addition, new peaks occurred atq <1.0 A?1, which could be attributed to the characteristic scattering peak of intermediate phase MAI-PbI2-DMSO.[29,30]The fitting results of the perovskite phase atq= 1.0 A?1, including the peak area and crystal size, are shown in Fig. 3(b). MS treated perovskite film showed enhanced peak area and enlarged crystal size.The results suggest that proper selection of solvent and solvent volume for SVA treatment could simultaneously enhance the crystallinity and crystal size by recrystallizing the perovskite crystals.

    In light of the experimental results above,Scheme 1 was constructed to illustrate the crystallization kinetics of perovskite crystals under SVA treatment,which is made up of two processes: perovskite dissolution and recrystallization. Here we take MS SVA as an example.When the perovskite films are exposed to the MS vapor,the solvent molecules will preferentially dissolve the grain boundaries due to its high instability,and then form an intermediate phase of MAI-PbI2-DMF and MAI-PbI2-DMSO,[23]which refers to the process of dissolution. However, with thermal annealing treatment, the solvent molecules are extracted from the intermediate state, leading to recrystallization of the perovskite phase. In the whole process,there is a competition between dissolution and recrystallization, and the equilibrium state is dependent on the donor number[31]of solvent,boiling point,and heating temperature.Because of the small number of donors, the weak coordination between Pb2+and DMF enables easy transformation from the intermediate phase to the perovskite phase. In contrast,Pb2+and DMSO interact more strongly,demanding more energy to break the bond. By exposing the perovskite films to a proper amount of MS vapor, the balance of perovskite dissolution and recrystallization can be readily achieved,obtaining high-quality perovskite film without byproducts, as shown in the 2D GIWAXS patterns in Fig. S3. If the film exposes to excess DMSO solvent vapor, the equilibrium will be broken,and an excess amount of MAI-PbI2-DMSO will be formed,thus increasing the activation energy for phase transition and finally resulting in a poor film with byproducts, evidenced by the appearance of new scattering peaks atq <1.0 A?1(Fig.S4).

    Fig.3. (a)1D GIWAXS profiles of perovskite films processed under different SVA conditions,which were derived from the 2D GIWAXS patterns by circular integration. (b)The evolution of peak area and crystal size of perovksite phase at q=1.0 ?A?1 as a function of solvent vapor types.

    Scheme 1. Schematic diagrams illustrating the dissolution and recrystallization process of perovskite crystals under SVA treatment.

    To verify the impact of SVA treatment on the resulting photovoltaic performance, we fabricated inverted-planar perovskite solar cells with the device structure shown in Fig.4(a)(ITO/PTAA/MAPbI3/PCBM/Al). Figure 4(b) shows the best photocurrent density–voltage (J–V) curves of perovskite solar cells under each optimized condition without and with SVA treatment, and the corresponding device parameters are summarized in Table S2. The detailed device optimization process is shown in Fig. S2. After SVA treatment, the device efficiency was improved due to the improved film quality and crystallinity as demonstrated. It can be noted that the MS treated perovskite solar cells achieved a champion efficiency of 19.76%,with improved open-circuit current(VOC)of 1.103 V,short-circuit current density(JSC)of 21.93 mA/cm2,and fill factor (FF) of 81.72%. In addition, SVA treatment eliminated theJ–Vhysteresis(Fig.4(c)).[32,33]External quantum efficiency(EQE)measurements were conducted,with results shown in Fig.4(d). It was confirmed that the integrated current density from EQE was consistent with theJSCderived from theJ–Vcurves with a deviation of 0.36 mA/cm2. Further, we checked the stable-state photocurrent and PCE output, measured at a maximum power point (0.88 V for the control device and 0.91 V for MS SVA treated devices), as shown in Fig. 4(e). The steady-state output PCE increased from 17.03% to 19.88% after SVA treatment. The device reproducibility was assessed by fabricating more than 100 cells for devices without and with MS treatment(Fig.4(f)). The average PCE for the control and MS treated devices were 16.53%and 19.37%,respectively.

    Fig. 4. (a) Device structure of perovskite solar cells in this work. (b) The best photocurrent density versus voltage (J–V) curves of perovskite solar cells processed under different solvent vapor environment. (c) J–V curves of champion device scanned from both the reverse and forward directions. (d) External quantum efficiency (EQE) and integrated short current density (JSC) of control and DMF/DMSO mixed solvent treated perovksite solar cells. (e)Stable output of current density and PCE as a function of time,which were held at a maximum power point(0.88 V for the control device,and 0.91 V for mixed DMF/DMSO).(f)The PCE histograms of devices without and with mixed DMF/DMSO treatment.

    Fig. 5. (a) Normalized PCEs of unencapsulated devices exposed to ambient conditions with humidity of 55%–65%. (b) Normalized PCEs of unencapsulated devices under 85 ?C heat treatment in a nitrogen atmosphere.

    Additionally, we carried out a series of stability testing to evaluate the effect of SVA treatment on the device stability, the results of which are displayed in Fig. 5. First, the humidity stability of devices was tested by leaving the nonencapsulated devices in ambient air with a humidity of 55%–65% for 30 days. As shown in Fig. 5(a), the control device degraded to~70% of its initial value after 30 days of tracking. In comparison, the MS SVA treated devices retained~85% efficiency, unambiguously demonstrating improved humidity stability. Then,the thermal stability of unsealed devices was monitored by continuous annealing the devices at 85?C under a nitrogen atmosphere for 200 h(Fig.5(b)). The MS treated device exhibited superior thermal stability, which maintained~76% of its initial PCE after continuous annealing for 200 h. Under the same condition, the control device dropped to~56%of its initial PCE.The above results demonstrate that SVA treatment can not only promote photovoltaic performance but also improve operational stability. Such improvement is attributed to the enlarged grain size and reduced grain boundaries, which are reported to be vulnerable when exposed to a harsh environment.[34]

    3. Conclusion and perspectives

    In summary,SVA was performed with mixed solvents to study its synergistic effect on the intermediate phase and crystallization of perovskite film formation. The solvent vapor acted uniformly on the surface of the film; however, excess solvent led to the dissolution of perovskite films. We proposed a model based on the GIWAXS, revealing that solvent molecules enter the grain boundaries and induce two competing processes, dissolution and crystallization, which reach an equilibrium depending on solvent type and volume. Consequently, from the overall perspective, MS SVA promoted the growth of grains and enlarged the grain size, suppressing radiationless recombination loss. With MS SVA, theVOCand FF of the completed device were improved due to significantly reduced defect states in perovskite material, and the PCE reached 19.76% compared to 17.13% of the control device. Meanwhile,both thermal stability and humidity stability were improved significantly.

    猜你喜歡
    張明
    一本書的風波
    張明:如何系統(tǒng)地構(gòu)建“雙循環(huán)”新發(fā)展格局?
    Destroying a Near-Extremal Kerr-Newman-AdS Black Hole with Test Particles?
    A high-fidelity memory scheme for quantum data buses?
    被女生拒絕后
    三月三(2017年5期)2017-06-05 02:10:50
    被女生拒絕后
    三月三(2017年5期)2017-05-25 00:08:44
    二手貨
    The variations of suspended sediment concentration in Yangtze River Estuary*
    你怎么不向我借錢
    這錢還的
    晚報文萃(2015年6期)2015-08-12 17:50:27
    国产午夜福利久久久久久| 身体一侧抽搐| 99视频精品全部免费 在线| www日本在线高清视频| 一本综合久久免费| 欧美高清成人免费视频www| 国内精品久久久久精免费| 亚洲av成人精品一区久久| 日韩欧美国产在线观看| 精品久久久久久成人av| 精品无人区乱码1区二区| 禁无遮挡网站| 日韩av在线大香蕉| 免费看美女性在线毛片视频| 国产成年人精品一区二区| 老汉色av国产亚洲站长工具| 有码 亚洲区| 五月玫瑰六月丁香| 亚洲av成人av| 丰满人妻一区二区三区视频av | 此物有八面人人有两片| 国产爱豆传媒在线观看| 国内精品美女久久久久久| 欧美三级亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 波野结衣二区三区在线 | 亚洲成人中文字幕在线播放| 村上凉子中文字幕在线| 色在线成人网| 男女做爰动态图高潮gif福利片| 日韩欧美一区二区三区在线观看| 国产私拍福利视频在线观看| 天堂动漫精品| 十八禁网站免费在线| 成人特级av手机在线观看| 中文字幕熟女人妻在线| 亚洲av电影在线进入| 成人特级av手机在线观看| 国产伦人伦偷精品视频| 日日干狠狠操夜夜爽| 99国产精品一区二区蜜桃av| 丝袜美腿在线中文| 亚洲av熟女| 中亚洲国语对白在线视频| 午夜老司机福利剧场| 久久性视频一级片| 国产真实乱freesex| 国产精品美女特级片免费视频播放器| 中文字幕精品亚洲无线码一区| 国产成人欧美在线观看| 99久久综合精品五月天人人| 国产精品 欧美亚洲| 日韩大尺度精品在线看网址| 中文字幕av在线有码专区| 亚洲国产精品合色在线| 久久久久国产精品人妻aⅴ院| av天堂中文字幕网| 三级国产精品欧美在线观看| 国产爱豆传媒在线观看| 午夜影院日韩av| 国产免费av片在线观看野外av| 黄片小视频在线播放| 国产精品三级大全| 国产精品女同一区二区软件 | 国产精品99久久久久久久久| 国产成+人综合+亚洲专区| 欧美激情久久久久久爽电影| 欧美不卡视频在线免费观看| 国产黄片美女视频| 亚洲成人久久性| 精品久久久久久,| 亚洲,欧美精品.| 欧美日韩中文字幕国产精品一区二区三区| 国产精品女同一区二区软件 | 日韩中文字幕欧美一区二区| 成人av一区二区三区在线看| 欧美日本亚洲视频在线播放| 香蕉av资源在线| 亚洲无线在线观看| 亚洲av一区综合| 一个人观看的视频www高清免费观看| 长腿黑丝高跟| 久久久久久大精品| 99国产精品一区二区蜜桃av| 别揉我奶头~嗯~啊~动态视频| 日本撒尿小便嘘嘘汇集6| 成年女人毛片免费观看观看9| 日本一本二区三区精品| 91九色精品人成在线观看| 国产精品98久久久久久宅男小说| 国产极品精品免费视频能看的| 精品人妻1区二区| 国产免费av片在线观看野外av| 亚洲不卡免费看| 男女床上黄色一级片免费看| 国产精品三级大全| 久久6这里有精品| 亚洲av免费高清在线观看| 亚洲成a人片在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 两个人看的免费小视频| 一个人看视频在线观看www免费 | 亚洲av第一区精品v没综合| 美女cb高潮喷水在线观看| 欧美3d第一页| 日本一本二区三区精品| 99国产精品一区二区三区| 亚洲 欧美 日韩 在线 免费| 又粗又爽又猛毛片免费看| 最新中文字幕久久久久| 国产一区二区在线av高清观看| 丝袜美腿在线中文| 国产真实乱freesex| 老司机福利观看| 国产欧美日韩精品一区二区| 成人国产综合亚洲| 国产乱人视频| 亚洲成人中文字幕在线播放| 久久久久久国产a免费观看| 亚洲欧美日韩卡通动漫| 久99久视频精品免费| 成熟少妇高潮喷水视频| 天堂av国产一区二区熟女人妻| 在线a可以看的网站| 国产三级中文精品| 久久久久久久久久黄片| 欧美性感艳星| 99riav亚洲国产免费| 热99re8久久精品国产| 精品久久久久久成人av| 中文字幕av在线有码专区| 日韩中文字幕欧美一区二区| 亚洲国产精品sss在线观看| 亚洲精品美女久久久久99蜜臀| 18禁美女被吸乳视频| 亚洲人成电影免费在线| 欧美日韩亚洲国产一区二区在线观看| 黑人欧美特级aaaaaa片| 免费看光身美女| 欧美+亚洲+日韩+国产| 国产精品,欧美在线| 制服丝袜大香蕉在线| 1024手机看黄色片| 欧美成人免费av一区二区三区| 久久久久久久久中文| 午夜两性在线视频| 精品久久久久久,| 亚洲精品粉嫩美女一区| 亚洲精华国产精华精| 夜夜夜夜夜久久久久| av专区在线播放| 国产黄片美女视频| 亚洲成人精品中文字幕电影| 亚洲精品美女久久久久99蜜臀| 久久6这里有精品| 免费在线观看成人毛片| 免费观看精品视频网站| 国产精品1区2区在线观看.| 精品人妻1区二区| 亚洲av成人av| 免费观看的影片在线观看| 91麻豆av在线| 99精品在免费线老司机午夜| 99国产精品一区二区三区| 午夜免费成人在线视频| 99精品欧美一区二区三区四区| 免费搜索国产男女视频| 在线免费观看不下载黄p国产 | 一个人免费在线观看的高清视频| 男人的好看免费观看在线视频| 成年女人毛片免费观看观看9| 国产激情偷乱视频一区二区| 夜夜看夜夜爽夜夜摸| 色噜噜av男人的天堂激情| 在线观看免费视频日本深夜| 在线视频色国产色| 欧美一区二区国产精品久久精品| 国产成人影院久久av| 91麻豆av在线| 国产午夜精品论理片| 男人舔奶头视频| 国产精品香港三级国产av潘金莲| 精品人妻偷拍中文字幕| 国产97色在线日韩免费| 免费无遮挡裸体视频| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 99热只有精品国产| а√天堂www在线а√下载| 亚洲人成伊人成综合网2020| 欧美最黄视频在线播放免费| 九九在线视频观看精品| avwww免费| 欧美性猛交╳xxx乱大交人| 可以在线观看的亚洲视频| 脱女人内裤的视频| 精品一区二区三区视频在线观看免费| 一a级毛片在线观看| 叶爱在线成人免费视频播放| 熟女人妻精品中文字幕| 99热这里只有精品一区| 亚洲国产日韩欧美精品在线观看 | 国产亚洲av嫩草精品影院| 人妻久久中文字幕网| 成人欧美大片| av在线蜜桃| 在线免费观看的www视频| 亚洲七黄色美女视频| 中文字幕精品亚洲无线码一区| 精品久久久久久久久久久久久| 国产探花极品一区二区| 国产av在哪里看| 久久久久久国产a免费观看| 国产亚洲av嫩草精品影院| 国产精品永久免费网站| 成人永久免费在线观看视频| 又粗又爽又猛毛片免费看| 亚洲熟妇中文字幕五十中出| 一边摸一边抽搐一进一小说| 国产精品久久久久久久久免 | 少妇的丰满在线观看| 亚洲成av人片在线播放无| 久久久久久九九精品二区国产| 亚洲激情在线av| 亚洲av一区综合| 国产成人欧美在线观看| 国产午夜精品论理片| 午夜福利在线在线| 麻豆国产97在线/欧美| 欧美乱妇无乱码| 最新美女视频免费是黄的| 久久香蕉精品热| 婷婷六月久久综合丁香| 免费人成视频x8x8入口观看| 国产单亲对白刺激| 香蕉久久夜色| 国产三级在线视频| 亚洲国产欧美人成| 午夜精品久久久久久毛片777| 亚洲在线观看片| 亚洲成人免费电影在线观看| 免费av毛片视频| 成人无遮挡网站| 国产av一区在线观看免费| 欧美日韩精品网址| 啦啦啦免费观看视频1| 欧美成人性av电影在线观看| 亚洲欧美精品综合久久99| 内射极品少妇av片p| 亚洲精品在线观看二区| 成人特级av手机在线观看| aaaaa片日本免费| 国产熟女xx| 午夜免费成人在线视频| 90打野战视频偷拍视频| 国产美女午夜福利| 一区二区三区国产精品乱码| 亚洲成人久久性| 久久精品影院6| 精品欧美国产一区二区三| 日日摸夜夜添夜夜添小说| 三级国产精品欧美在线观看| 五月玫瑰六月丁香| 国产精华一区二区三区| 久久国产精品人妻蜜桃| 欧美三级亚洲精品| 国产国拍精品亚洲av在线观看 | 成人一区二区视频在线观看| 又粗又爽又猛毛片免费看| 舔av片在线| e午夜精品久久久久久久| 欧美日韩国产亚洲二区| 国产午夜精品久久久久久一区二区三区 | 国产在视频线在精品| 国产精品亚洲一级av第二区| 久久精品国产清高在天天线| 俺也久久电影网| 两个人看的免费小视频| 不卡一级毛片| 国产一区二区激情短视频| 黄色片一级片一级黄色片| 丁香六月欧美| 成人国产一区最新在线观看| 淫秽高清视频在线观看| 亚洲成a人片在线一区二区| 日本熟妇午夜| 久久这里只有精品中国| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 一级毛片黄色毛片免费观看视频| 国产 亚洲一区二区三区 | 免费观看的影片在线观看| 亚洲国产色片| 亚洲人成网站在线观看播放| 久久久亚洲精品成人影院| av一本久久久久| 又爽又黄无遮挡网站| 国产探花极品一区二区| 亚洲综合色惰| 久久久色成人| 国产亚洲精品av在线| 亚洲熟女精品中文字幕| 两个人视频免费观看高清| 高清在线视频一区二区三区| 麻豆久久精品国产亚洲av| 国产亚洲午夜精品一区二区久久 | 国产精品一二三区在线看| 国内精品一区二区在线观看| 久久99热这里只有精品18| 国产精品嫩草影院av在线观看| 99久久精品一区二区三区| 国产三级在线视频| 欧美zozozo另类| 乱码一卡2卡4卡精品| 在线观看av片永久免费下载| 国产高清国产精品国产三级 | 国产一区亚洲一区在线观看| 能在线免费观看的黄片| 免费看不卡的av| 免费观看a级毛片全部| 亚洲高清免费不卡视频| 真实男女啪啪啪动态图| 日韩av在线免费看完整版不卡| 日本免费a在线| 国产乱人偷精品视频| 日韩欧美 国产精品| 嫩草影院精品99| 99久久人妻综合| 1000部很黄的大片| 我要看日韩黄色一级片| 女的被弄到高潮叫床怎么办| 女人久久www免费人成看片| 97超视频在线观看视频| 久99久视频精品免费| 亚洲无线观看免费| 搡女人真爽免费视频火全软件| 成年人午夜在线观看视频 | av播播在线观看一区| 日韩av在线大香蕉| 免费观看精品视频网站| 日韩欧美精品v在线| 午夜福利视频1000在线观看| 日韩欧美一区视频在线观看 | 我要看日韩黄色一级片| 蜜桃久久精品国产亚洲av| 国产一级毛片七仙女欲春2| 搡老乐熟女国产| 中文字幕人妻熟人妻熟丝袜美| ponron亚洲| 一区二区三区四区激情视频| 欧美一级a爱片免费观看看| 日本色播在线视频| 免费观看的影片在线观看| 日韩在线高清观看一区二区三区| 男人舔女人下体高潮全视频| av女优亚洲男人天堂| 欧美+日韩+精品| 亚洲精品乱久久久久久| 成人二区视频| 你懂的网址亚洲精品在线观看| 欧美性猛交╳xxx乱大交人| 最近最新中文字幕大全电影3| 国产极品天堂在线| 在线观看免费高清a一片| 小蜜桃在线观看免费完整版高清| 亚洲精品成人久久久久久| 国产亚洲精品久久久com| 内射极品少妇av片p| 国产一区亚洲一区在线观看| 亚洲精品456在线播放app| 欧美三级亚洲精品| 乱人视频在线观看| 伊人久久国产一区二区| 亚洲精品日韩在线中文字幕| 丰满少妇做爰视频| 国产又色又爽无遮挡免| 99久久精品热视频| 三级毛片av免费| 女人久久www免费人成看片| 国产国拍精品亚洲av在线观看| 成人亚洲精品av一区二区| 成人毛片a级毛片在线播放| 欧美zozozo另类| 波多野结衣巨乳人妻| 久久99热这里只有精品18| 日韩一区二区三区影片| 肉色欧美久久久久久久蜜桃 | 在线观看免费高清a一片| 日韩一区二区视频免费看| 日韩伦理黄色片| 精品一区二区三区视频在线| 国产一区二区三区综合在线观看 | 国产精品久久久久久精品电影小说 | 美女黄网站色视频| 超碰97精品在线观看| 国产精品一区二区性色av| 69av精品久久久久久| 亚洲人成网站在线观看播放| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 全区人妻精品视频| 乱人视频在线观看| av在线老鸭窝| 国产真实伦视频高清在线观看| 2021少妇久久久久久久久久久| 天天一区二区日本电影三级| 日韩av免费高清视频| 嘟嘟电影网在线观看| 天堂中文最新版在线下载 | 国产精品一及| 亚洲欧美中文字幕日韩二区| 欧美不卡视频在线免费观看| 午夜激情久久久久久久| 内地一区二区视频在线| 国产黄色免费在线视频| 一区二区三区乱码不卡18| 91狼人影院| 日本猛色少妇xxxxx猛交久久| 国产久久久一区二区三区| 国产黄色免费在线视频| 日本一二三区视频观看| 亚洲最大成人中文| 国国产精品蜜臀av免费| 久久精品国产鲁丝片午夜精品| 中文欧美无线码| 在线免费十八禁| av天堂中文字幕网| 成人漫画全彩无遮挡| 成年女人在线观看亚洲视频 | 亚洲av福利一区| 亚洲av不卡在线观看| freevideosex欧美| 欧美成人一区二区免费高清观看| 国产精品不卡视频一区二区| 国产成年人精品一区二区| 欧美成人午夜免费资源| 久久99精品国语久久久| 在现免费观看毛片| 精品少妇黑人巨大在线播放| 久久久久久国产a免费观看| av黄色大香蕉| 97人妻精品一区二区三区麻豆| 国产免费视频播放在线视频 | 久久久久久久久大av| 免费看av在线观看网站| 国产免费一级a男人的天堂| 毛片一级片免费看久久久久| 亚洲精品一二三| 又粗又硬又长又爽又黄的视频| 国产乱人偷精品视频| 亚洲成人精品中文字幕电影| 国产人妻一区二区三区在| 国产男女超爽视频在线观看| 国产黄片视频在线免费观看| 久久这里有精品视频免费| 国产精品一区二区三区四区久久| 亚洲精品第二区| 永久网站在线| 日日摸夜夜添夜夜爱| 人妻一区二区av| 精品一区在线观看国产| 联通29元200g的流量卡| 国产精品一及| 成年av动漫网址| 亚洲自拍偷在线| 三级国产精品片| 亚洲精品aⅴ在线观看| 欧美日韩国产mv在线观看视频 | 亚洲最大成人手机在线| 一个人看的www免费观看视频| 亚洲精品久久午夜乱码| 亚洲精品一二三| 国产亚洲午夜精品一区二区久久 | 人人妻人人看人人澡| 亚洲18禁久久av| 在线观看人妻少妇| 亚洲国产av新网站| 亚洲av电影不卡..在线观看| 日本午夜av视频| 欧美成人精品欧美一级黄| 日韩中字成人| 亚洲av电影不卡..在线观看| 国产不卡一卡二| 欧美高清性xxxxhd video| 男女下面进入的视频免费午夜| 蜜桃久久精品国产亚洲av| 草草在线视频免费看| av黄色大香蕉| 久久久久久久久久黄片| 成人美女网站在线观看视频| 亚洲内射少妇av| 久久久久久久久中文| 久久久精品欧美日韩精品| 午夜免费观看性视频| 男女边吃奶边做爰视频| 国产美女午夜福利| 神马国产精品三级电影在线观看| 精品人妻熟女av久视频| 日韩人妻高清精品专区| 97精品久久久久久久久久精品| 91久久精品电影网| 日本一二三区视频观看| 国产老妇女一区| 色播亚洲综合网| 日韩,欧美,国产一区二区三区| 午夜亚洲福利在线播放| 久久久久久久久久成人| 久久综合国产亚洲精品| 亚洲无线观看免费| 综合色av麻豆| 中文字幕av在线有码专区| 激情五月婷婷亚洲| 午夜免费观看性视频| 精品久久久久久久久av| 精品久久久噜噜| 又粗又硬又长又爽又黄的视频| 成人美女网站在线观看视频| 亚洲精品乱久久久久久| 国产色爽女视频免费观看| 国产成人免费观看mmmm| 日本三级黄在线观看| 又大又黄又爽视频免费| 国产精品蜜桃在线观看| 亚洲欧美日韩无卡精品| 久久精品久久久久久久性| 国产午夜精品久久久久久一区二区三区| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 国产麻豆成人av免费视频| 亚洲精品自拍成人| 亚洲欧美一区二区三区国产| 日韩av不卡免费在线播放| 精品人妻熟女av久视频| 在线观看av片永久免费下载| 最近的中文字幕免费完整| 日韩av不卡免费在线播放| 久久人人爽人人片av| 日本与韩国留学比较| 亚洲精品中文字幕在线视频 | 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 1000部很黄的大片| 午夜爱爱视频在线播放| 中文字幕av成人在线电影| 亚洲精品成人av观看孕妇| 国产av在哪里看| 又爽又黄无遮挡网站| 亚洲精品成人久久久久久| 亚洲久久久久久中文字幕| 精品国产三级普通话版| 欧美成人午夜免费资源| 菩萨蛮人人尽说江南好唐韦庄| 亚洲天堂国产精品一区在线| www.色视频.com| 国产一区有黄有色的免费视频 | 亚洲国产精品成人久久小说| av网站免费在线观看视频 | 国产伦一二天堂av在线观看| 天美传媒精品一区二区| www.av在线官网国产| 亚洲婷婷狠狠爱综合网| 欧美三级亚洲精品| 精品一区二区三区视频在线| 91午夜精品亚洲一区二区三区| 亚洲精品第二区| 国产午夜精品久久久久久一区二区三区| 一级av片app| 日韩精品有码人妻一区| 在线观看人妻少妇| 亚洲内射少妇av| 欧美高清成人免费视频www| 午夜亚洲福利在线播放| 久久久久久久久久久免费av| 丰满少妇做爰视频| 成人毛片60女人毛片免费| 久久人人爽人人片av| 哪个播放器可以免费观看大片| 国产91av在线免费观看| 亚洲国产精品专区欧美| 夜夜爽夜夜爽视频| 国产高清国产精品国产三级 | 水蜜桃什么品种好| 亚洲精品,欧美精品| 久久久久久久国产电影| 国产成人91sexporn| 联通29元200g的流量卡| 听说在线观看完整版免费高清| 精品一区二区三区视频在线| 日韩精品青青久久久久久| 嘟嘟电影网在线观看| 免费av毛片视频| 国产淫语在线视频| 狂野欧美激情性xxxx在线观看| 内射极品少妇av片p| 少妇猛男粗大的猛烈进出视频 | 午夜福利网站1000一区二区三区| 欧美xxxx性猛交bbbb| 97人妻精品一区二区三区麻豆| 亚洲精品乱码久久久v下载方式| 免费电影在线观看免费观看| 亚洲av成人精品一区久久| 夫妻午夜视频| 99re6热这里在线精品视频| 国产成人a∨麻豆精品| 国产一级毛片七仙女欲春2| 人妻少妇偷人精品九色| 免费看a级黄色片| 99久久人妻综合| 久久人人爽人人爽人人片va| 欧美高清成人免费视频www| 久久精品久久精品一区二区三区| av天堂中文字幕网| 午夜精品在线福利| 中文字幕av成人在线电影| 99久国产av精品|