• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of W6+occupying Sc3+on the structure,vibration,and thermal expansion properties of scandium tungstate?

    2021-06-26 03:04:12DongxiaChen陳冬霞QiangSun孫強ZhanjunYu于占軍MingyuLi李明玉JuanGuo郭娟MingjuChao晁明舉andErjunLiang梁二軍
    Chinese Physics B 2021年6期
    關鍵詞:孫強

    Dongxia Chen(陳冬霞) Qiang Sun(孫強) Zhanjun Yu(于占軍) Mingyu Li(李明玉)Juan Guo(郭娟) Mingju Chao(晁明舉) and Erjun Liang(梁二軍)

    1School of Materials Science&Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China

    2Key Laboratory of Materials Physics of Ministry of Education,School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    Keywords: structure,negative thermal expansion,Raman spectroscopy

    1. Introduction

    Materials with negative thermal expansion (NTE) property have potential applications in many fields such as precision optics, optoelectronic devices, and aerospace materials. Usually, NTE materials can be compounded with positive thermal expansion materials or tailored chemically to attain near zero or controllable thermal expansion materials.Such materials are especially suitable for use in heat cycles due to the low mismatch or less thermal stress. AW2O8[1]and AV2O7(A=Zr, Hf)[2,3]are two types of well-known framework NTE oxides which possess isotropic NTE property and wide temperature ranges of NTE.A number of studies have shown that AW2O8is metastable at high temperature, while AV2O7undergoes a structure phase transition at about 427 K. Materials with general formula of A2M3O12(A=+3 ions; M=Mo, W) also exhibit NTE properties in a wide temperature range but NTE is anisotropic. Except for Sc2W3O12,[4,5]all the members of A2M3O12family show either structure phase transition(e.g.,Fe2Mo3O12,Cr2Mo3O12,Al2Mo3O12,[6]Al2W3O12and In2W3O12)[7]or hydroscopicity (e.g., Yb2Mo3O12,[8]Y2Mo3O12[9]and Y2W3O12).[10]A great deal of research has been carried out to control the phase transition or hydroscopicity of A2M3O12by substituting A4+or M6+with other ions.[11–19]In addition, PbTiO3based ferroelectric transition materials,[20–22]Mn3AN based materials with magnet volume effect[23–25]and TaVO5[26]also exhibit NTE properties.

    Recent years, tetra-molybdates with NTE properties in a narrow region have been reported, e.g., Ln2Mo4O15(Ln=Y,Dy, Ho, Tm),[27]Ce2(MoO4)2(Mo2O7),[28]and R2Mo4O15(R=La, Nd, Sm).[29]It is worth noting that all of these materials adopt monoclinic structure, of which, two Mo(2)O4tetrahedra are connected by a bridge O atom to form a pyromolybdate Mo(2)2O7group that is similar to V2O7group in ZrV2O7. One Mo(2)2O7polyhedron is weakly joined with two Mo(1)O4tetrahedra by sharing O atoms to form an entire Mo4O15group. Each+3 metal atom is coordinated with seven oxygen atoms to constitute a single capped trigonal prism.

    Meanwhile, Cu2P2O7has been found to exhibit the strongest NTE among the oxides (αv~?27.69×10?6K?1,5 K–375 K).[30]The NTE behaviors of Prussian blue analogues, e.g., FeFe(CN)6,[31]MII2MIV(CN)8(MII= Ni, Co,Fe, and Mn; MIV= Mo and W),[32]ScCo(CN)6[33]and YFe(CN)6[34]were also reported in recent years.

    In this paper,a new tungstate(Sc6W2)W12O48±δwith the structure similar to the orthorhombic structure of Sc2W3O12is studied by two W6+occupying two sites of Sc3+in the unit cell of Sc2W3O12. The structure, vibration and thermal expansion properties of the doped sample are investigated experimentally. The results of Rietveld refinement of synchronous x-ray diffraction(SXRD)data indicate that the structure of the doped sample is similar to that of orthorhombic Sc2W3O12.Blue shifts of peak positions and increasement of FWHMs are found in the spectrum of the doped sample by comparing the Raman spectrum with that of Sc2W3O12. The distortion of polyhedra and stress introduced by W6+occupying Sc3+in the unit cell are attributed to those changes. In order to demonstrate this structure of the doped sample, the effects of odd/even W6+occupying the odd/even sites of Sc3+in the unit cell on the stability of crystal are studied by first-principles calculations based on DFT.It is shown that the structure by odd W6+occupying odd Sc3+in the unit cell is unstable because of the severe distortion of the unit cell,while it is stable by even W6+occupying even Sc3+in the unit cell. Simultaneously,according to the changes of cell parameters with temperature,an intrinsic NTE property is discovered in the doped sample.

    2. Experimental procedure and computational details

    The sample of (Sc6W2)W12O48±δwas synthesized by a solid-state reaction method. Commercial chemicals Sc2O3and WO3(99.9% purity) were used as the starting materials.The materials were weight according to the stoichiometric ratios, then mixed and ground in a mortar for 2 h. The obtained uniform powders were transferred to a corundum ark and heated in a tube furnace of 1753 K for 5 min,then rapidly quenched in deionized water and placed in of about 400 K for 0.5 h. Repeat the above procedure, the sample was sintered for a second time at 1753 K for 1 h. To ensure the purity,the sample was sintered for a third time at 1753 K for 30 min and then cooled out. The sintered powders were reground,pressed into pellets then sintered again at 1173 K for 30 min.

    X-ray photoelectron spectrometer (XPS) (Axis Ultra,Kratos,UK)was used to analyze the composition of the doped sample and the valence of the elements.The casaXPS(version 2.3.16) software was used to process the data. Crystal structure and CTEs of the sample were determined by synchrotron x-ray diffraction(SXRD).Temperature-dependent SXRD data were collected by an instrument 11-ID-C at the Advanced Photon Source with a wavelength of 0.11730 ?A.The structure together with lattice constants was refined using an orthorhombic structural model (space group:Pbcn). All the calculations of structure and lattice constants were performed on Fullprof software (version 1.10). Raman spectra were recorded by a LabRAM HR Evolution Raman spectrometer (France HORIBA Jobin Yvon S.A.S.) with the excitation wavelength of 532 nm.

    To predict the stable structure of the doped system, the first-principles calculations based on DFT were performed as implemented in the Viennaab initiosimulation package (VASP).[35]The ion–electron interaction is depicted by projector augmented wave (PAW) method,[36]and the exchange and correlation effects are described by the GGA-PBE functional.[37]The wave functions are expanded by the plane waves up to an energy cutoff of 380 eV.Due to the large unit cell(~10 ?A×10 ?A×13 ?A),integrals over the first BZ are approximated by a Monkhorst–PackK-point mesh of 1×1×1.The total energy was calculated with high precision,converged to 10?7eV/atom, and the structural relaxation was stopped when the residual forces become less than 10?3eV/?A.

    The substitutional energy of Sc replaced by W is calculated by

    whereEsubis substitutional energy,EdopedandEundopedare the total energy of W doped and undoped systems, respectively;ESc(atom)andEW(atom)are energy of per Sc or W atom;nis the number of substitutional W.

    3. Results and discussion

    Figure 1(a) shows the XPS total spectrum of the doped sample. It can be seen that the spectrum contains the elements of C,Sc,W and O.The C element is derived from the experimental oil pump. Figures 1(b)–1(d) give the XPS spectra of Sc 2p,W 4f and O 1s. The integrated areas of the XPS peaks were calculated to determine the atomic ratio of the sample.Lorenz fittings of the peaks were used to determine the binding energies of Sc 2p,W 4f and O 1s and then the valence of element. The spin-orbit splitting of Sc 2p into 2p3/2and 2p1/2were found in the Sc 2p spectrum. The corresponding binding energies are 402.67 eV and 407.26 eV, respectively. The W 4f spectrum(Fig.1(c))can be fitted by two Lorenz peaks with the binding energies of 35.37 eV and 37.63 eV for W 4f7/2and W 4f5/2,respectively. It indicates that the tungsten ions in the sample are in+6 valence. By fitting the spectrum of O 1s(Fig. 1(d)), the binding energies were found to be 530.53 eV and 531.82 eV. Table 1 gives the semi-quantitative results of the XPS spectra. It can be seen that the atomic ratio of the sample is Sc:W:O≈1:2.50:9.68, which is very close to the design ratio of 6:14:48±δ.

    Table 1. The integration results of the XPS peaks and the atomic ratio of Sc 2p,W 4f and O 1s.

    Fig.1. XPS spectra of the doped sample: (a)total XPS spectrum;(b)–(d)XPS spectra corresponding to the Sc 2p,W 4f,and O 1s.

    Figure 2(a)gives the Rietveld refined results of the XRD spectrum at 300 K for the doped sample (the black curve as the measured intensity;the red symbol as the calculated intensity).The results show that the sample adopts an orthorhombic structure at room temperature with space groupPbcn(No.60).The lattice constants obtained by the refinement are as follows:a=13.2461(6) ?A,b=9.52801(5) ?A,c=9.6208(5) ?A,V=1214.2(1) ?A3. The reliability factors for the refinement are as follows:Rp=11.4,Rwp=13.9 andRexp=1.61. The cell parameters of the basic material Sc2W3O12at room temperature(300 K) reported previously[38]are as below:a=9.6720 ?A,b=13.318 ?A,c=9.5795 ?A,V=1234.0 ?A3. Comparing the two sets of data, it is not difficult to find that the cell parameters of the doped sample are slightly smaller than those of Sc2W3O12. Figure 2(b) shows a partial enlargement of the XRD pattern of the sample at 300 K.Each peak in the figure can be well indexed. Table 2 provides the metal coordinates and atomic occupancies of the doped sample and Sc2W3O12.As can be seen from the table, it contains three unequivalent positions of W in the unit cell of the doped sample, where~16% of the Sc positions are occupied by W. Figure 2(c)presents the structure schematic diagram of the doped sample by the Rietveld refinement. The framework of the crystal consists of corner-shared WO4tetrahedra and ScO6/WO6octahedra. There are four W(1)O4tetrahedra and eight W(2)O4tetrahedra occupying the normal lattice positions similar to Sc2W3O12. The additional W(3) occupies the positions of Sc and forms WO6octahedra. Each ScO6/WO6octahedron shares its six oxygen atoms with the adjacent WO4tetrahedra,and each WO4tetrahedron shares all of its oxygen atoms with the adjacent ScO6octahedra. Therefore, the structure can be regarded as quasi-rigid unit modules (QRUMs). It can be concluded that the synthesized sample crystallizes into an orthorhombic structure similar to that of Sc2W3O12, and with two W6+occupying two sites of Sc3+in the unit cell of Sc2W3O12.

    Figure 2(d) gives the temperature-dependent SXRD patterns of the doped sample. As temperature increasing,no significant change was observed in the patterns, indicating that no phase transition occurs within 150–650 K.Also, there are no impurity peaks in the patterns other than the XRD peaks of the orthorhombic structure, indicating that the sample is a pure single-phase material.

    Fig. 2. (a) Results of the Rietveld refinement of the SXRD pattern at 300 K. (b) The partially enlarged SXRD pattern at 300 K with Peaks indexed. (c)Schematic diagram of the doped sample with orthorhombic symmetry depending on our experiments. O atoms are shown in red balls,ScO6/WO6 octahedra in purple and WO4 tetrahedra in gray. (d)SXRD patterns of the doped sample measured from 150 K to 650 K.

    Table 2. Metal atomic coordinates of the doped sample and Sc2(WO4)3.

    The lattice parameters at deferent temperatures were calculated by the method of LeBail fit. Figure 3 shows the changes of the lattice constants of the doped sample as a function of temperature. As can be seen from the figure,thea-axis expands while theb-axis and thec-axis continuously contract as temperature increasing, which eventually cause a continuous contraction of the volume. The linear CTEs of thea,bandcaxes in 150–650 K are calculated to be 5.64×10?6K?1,?3.80×10?6K?1and?6.33×10?6K?1,respectively,which results in a volumetric CTE of?4.52×10?6K?1and a linear CTE of?1.51×10?6K?1.An intrinsic NTE in the doped material is determined. This absolute value of linear CTE is a little smaller than that of the reported value?2.2×10?6K?1for Sc2W3O12at 10–450 K.[38]The little changes of cell parameters between the doped and undoped materials can be used to explain the little change of linear CTE.

    Figure 4(a) shows the Raman spectra of the doped and undoped samples at room temperature. All the Raman modes can be identified by referring to the literature on spectroscopy studies.[3,15,39]Usually, the symmetric modes of tungstate crystal are located in the areas of the higher frequencies.Here,a strong mode centered at 1024.3 cm?1,a shoulder mode near 1008.4 cm?1and a weak mode near 974.1 cm?1all can be assigned to the W–O symmetric stretching vibrations(ν1)of the WO4tetrahedra. A weaker mode centered at 959.1 cm?1,two shoulder modes near 850.3 cm?1and 842.5 cm?1,and a strong mode near 828.1 cm?1all can be identified as the W–O asymmetric stretching vibrations (ν3) of the WO4tetrahedra. The mode centered at 354.9 cm?1is recognized as the antisymmetric bending vibration(ν4)of the WO4tetrahedron. The modes near 327.5 cm?1and 287.7 cm?1are assigned to the symmetric bending vibration(ν2)of the WO4tetrahedron and the rotation (T'(Sc3+)) of the Sc3+, respectively. The mode near 258.2 cm?1is considered as the rotation (T'(Sc3+)) of Sc3+.The mode below 200 cm?1is deemed as the translational and liberations(T'(WO4),L(WO4))of the WO4tetrahedra.

    Fig.3. The changes of the lattice constants with temperature.

    Lorentz peak fitting was used to find the subtle differences between the Raman spectra of the doped and undoped samples as shown in Figs. 4(a)–4(d). Most stretching and bending modes of the doped sample are located in the positions of higher wave numbers (blueshifts) than that of Sc2W3O12,indicating that the W–O bonds of the doped sample are somewhat stronger (harder) than those of Sc2W3O12. This is due to the stress introduced by W(3)6+occupying the positions of Sc3+and the distortion of the crystal. The electronegativity of Sc3+(1.36)differs greatly from that of W6+(2.36),which results in the significant difference of distributions of negative charges between the doped and undoped samples, and distinct changes of bond strength between the metal atom and the oxygen atom and the introduction of stress. In addition,the apparent difference of ionic radius between W6+(0.41 ?A)and Sc3+(0.73 ?A) also inevitably causes distortions of polyhedra, thus stresses are introduced. Combining it with the shrink of the unit cell volume, we can infer the stress to be compressive stress. Since the changes of bond strength and introduced stress usually cause blueshift or redshift in Raman mode frequency,the mode frequencyωiof the doped sample can be expressed by the sum of the natural frequencyωi0(T)of Sc2W3O12and the change of frequency ?ωiintroduced by W(3)6+occupying Sc3+sites,that is,ωi=ωi0(T)+?ωi.

    Fig. 4. (a) Raman spectra of the doped sample and Sc2W3O12 at room temperature; (b)–(c) Lorentz fits of the spectra; (d) FWHMs of the Raman peaks of the spectra,squares and circles represent the data of the doped sample and Sc2W3O12,respectively.

    Figure 4(d) gives the comparison of full width at half maximum(FWHM)of Raman peaks of the two spectra. Obviously,the FWHMs of the doped sample are larger than that of Sc2W3O12,indicating the wider linewidths of Raman peaks in the doped sample, due to the distortion of polyhedra and stress introduced. Thus the Raman linewidth,Γ,of the doped sample can be expressed by the sum of the natural linewidth,Γ0(T),of Sc2W3O12and the variation of linewidth ?Γcaused by W(3)6+occupying Sc3+site,namely,Γ=Γ0(T)+?Γ.

    Structure stability of different Sc3+occupied by W6+in the unit cell of Sc2W3O12was analyzed by first-principles calculations based on DFT.Results show that with one W6+occupying the site of Sc3+, the polyhedron distorted severely and the structure of crystal is unstable (substitutional energy 1.19 eV/W, the positive value implies that the substitution is endothermal).The unit cell parameters of the crystal are as follows:a=13.22 ?A,b=9.61 ?A,c=9.96 ?A.It no longer maintains the orthorhombic structure(α=91?,β=93?,γ=89?).With two W6+occupying the sites of Sc3+, the structure of crystal is more stable than the former case(substitutional energy 0.85 eV/W).The unit cell parameters of the crystal are as follows:a=13.56 ?A,b=9.66 ?A,c=9.79 ?A.The orthorhombic structure is still maintained. Compared to the unit cell parameters of the undoped sample (a=13.66 ?A,b=9.72 ?A,c=9.83 ?A), the volume of the doped crystal shrinks lightly.Figures 5(a)–5(c) give the schematic diagrams of Sc2W3O12crystal and the crystals with different Sc3+occupied by W6+.These calculation results further demonstrate the reliability of the structure of the doped sample.

    Fig.5. (a)Schematic diagram of the Sc2W3O12 crystal. (b)Schematic diagram with one W occupying Sc site in the unit cell of Sc2W3O12.(c)Schematic diagram with two W occupying Sc sites in the unit cell of Sc2W3O12. O atoms are shown in red balls,ScO6 octahedra in purple,WO6 octahedrain in brown and WO4 tetrahedra in gray.

    4. Conclusions

    In summary,we have investigated the effects of W6+occupying the sites of Sc3+in the unit cell of Sc2W3O12by employing experiment and first-principles calculations. The structure of the doped sample (Sc6W2)W12O48±δis similar to that of orthorhombic Sc2W3O12but with three unequivalent W in the sites of the crystal lattice, two of which occupy the positions similar to Sc2W3O12,and the other one occupies the remaining positions of Sc and thus formed WO6octahedra. It also exhibits an intrinsic NTE property (linear CTE,?1.51×10?6K?1) within the measured temperature range (150 K–650 K). Compared to the Raman spectrum of Sc2W3O12, the stretching modes and bending modes of the doped samples shift toward the higher wave numbers,indicating that the W–O bonds in the doped sample become harder(stronger). In addition,the increase of the FWHMs means the broadening of Raman linewidths in the spectrum of the doped sample. The distortion of crystal and stress in crystal,induced by W6+occupying Sc3+, are account for these changes. Results of first-principles calculations show that the crystal with even W6+occupying even Sc3+in the unit cell is stable while the structure with odd W6+occupying odd Sc3+in the unit cell is unstable due to the unit cell is severely distorted. It further proves the reliability of the structure of the doped sample.

    猜你喜歡
    孫強
    Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering
    Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    求解線性規(guī)劃問題的常規(guī)思路
    孫強作品
    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?
    我送男友3600萬,他卻拿錢悅前妻
    老公愛車勝過愛我
    婦女生活(2017年9期)2017-09-13 20:09:03
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    偷來的靠山
    欧美日韩亚洲综合一区二区三区_| 精品一区二区免费观看| svipshipincom国产片| 午夜日韩欧美国产| 三上悠亚av全集在线观看| 亚洲第一青青草原| 欧美日韩成人在线一区二区| 欧美中文综合在线视频| 亚洲综合精品二区| 国产野战对白在线观看| 女人久久www免费人成看片| 91国产中文字幕| 免费av中文字幕在线| 日本欧美国产在线视频| 极品少妇高潮喷水抽搐| 天天添夜夜摸| av福利片在线| 亚洲,一卡二卡三卡| 黄网站色视频无遮挡免费观看| 久久婷婷青草| 男女边摸边吃奶| 亚洲综合色网址| 中文字幕av电影在线播放| 久久久精品区二区三区| 高清视频免费观看一区二区| 亚洲人成电影观看| 天堂8中文在线网| 欧美成人午夜精品| 久久精品国产亚洲av涩爱| 这个男人来自地球电影免费观看 | 在线观看www视频免费| 午夜福利乱码中文字幕| 日韩av不卡免费在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区乱码不卡18| 飞空精品影院首页| 五月开心婷婷网| 最新的欧美精品一区二区| 国产97色在线日韩免费| 久久精品亚洲熟妇少妇任你| 久久狼人影院| 色精品久久人妻99蜜桃| 亚洲精品国产色婷婷电影| 亚洲欧美中文字幕日韩二区| 赤兔流量卡办理| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 一级黄片播放器| 国产精品久久久人人做人人爽| 日韩人妻精品一区2区三区| 色综合欧美亚洲国产小说| av电影中文网址| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久久久久| 日韩大片免费观看网站| 久久久久网色| 国产精品国产av在线观看| 一级片免费观看大全| 国产激情久久老熟女| 在现免费观看毛片| 80岁老熟妇乱子伦牲交| 大香蕉久久成人网| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠躁躁| 你懂的网址亚洲精品在线观看| 亚洲精品乱久久久久久| 欧美日韩精品网址| 欧美老熟妇乱子伦牲交| 99香蕉大伊视频| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影 | 一二三四中文在线观看免费高清| 国产精品久久久久久精品电影小说| 青春草国产在线视频| 日韩av免费高清视频| 精品国产国语对白av| 晚上一个人看的免费电影| 高清视频免费观看一区二区| 人成视频在线观看免费观看| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品一区三区| 美女福利国产在线| 老司机在亚洲福利影院| 激情视频va一区二区三区| 老熟女久久久| 午夜影院在线不卡| 亚洲精品美女久久久久99蜜臀 | videosex国产| 永久免费av网站大全| 一区在线观看完整版| 国产男人的电影天堂91| 人人妻人人添人人爽欧美一区卜| 国产在视频线精品| 黄网站色视频无遮挡免费观看| 在线观看人妻少妇| 男女之事视频高清在线观看 | 中文字幕最新亚洲高清| 中文字幕亚洲精品专区| 一级毛片黄色毛片免费观看视频| 黑人猛操日本美女一级片| 最近的中文字幕免费完整| 热99久久久久精品小说推荐| 成人手机av| 观看美女的网站| 欧美日韩亚洲高清精品| 亚洲欧美一区二区三区黑人| 在线观看国产h片| 精品国产超薄肉色丝袜足j| 国产探花极品一区二区| 爱豆传媒免费全集在线观看| 一级黄片播放器| 91精品三级在线观看| 视频区图区小说| 大片免费播放器 马上看| 丁香六月天网| 大香蕉久久成人网| 国语对白做爰xxxⅹ性视频网站| 少妇精品久久久久久久| 在线看a的网站| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 国产精品一区二区在线观看99| 日韩制服骚丝袜av| 午夜激情av网站| kizo精华| 亚洲天堂av无毛| 中文字幕高清在线视频| 日韩精品免费视频一区二区三区| 99精品久久久久人妻精品| 丰满少妇做爰视频| 熟女av电影| 一区在线观看完整版| 王馨瑶露胸无遮挡在线观看| 亚洲视频免费观看视频| 亚洲欧美成人综合另类久久久| 天天躁日日躁夜夜躁夜夜| 亚洲第一av免费看| 只有这里有精品99| 中文字幕精品免费在线观看视频| 亚洲欧美成人精品一区二区| 观看av在线不卡| 亚洲国产欧美网| 亚洲国产看品久久| 观看av在线不卡| 美国免费a级毛片| 国产精品香港三级国产av潘金莲 | 国产一区二区 视频在线| 国产精品蜜桃在线观看| 高清黄色对白视频在线免费看| www.熟女人妻精品国产| 韩国精品一区二区三区| 一级,二级,三级黄色视频| 日本wwww免费看| 卡戴珊不雅视频在线播放| av不卡在线播放| 欧美乱码精品一区二区三区| 色吧在线观看| 久久热在线av| 两个人看的免费小视频| 伦理电影大哥的女人| 老司机影院毛片| 久久99精品国语久久久| 精品国产一区二区三区久久久樱花| 狠狠婷婷综合久久久久久88av| 午夜日本视频在线| 成人三级做爰电影| 日韩欧美精品免费久久| 中文字幕亚洲精品专区| av视频免费观看在线观看| 在线看a的网站| 午夜久久久在线观看| 国产老妇伦熟女老妇高清| 新久久久久国产一级毛片| 亚洲人成77777在线视频| 在线观看免费日韩欧美大片| 亚洲美女视频黄频| 欧美日韩视频高清一区二区三区二| 久久久久网色| tube8黄色片| 国产成人精品无人区| 啦啦啦在线观看免费高清www| 久久久久网色| 久久婷婷青草| 国产精品无大码| 色视频在线一区二区三区| 热re99久久精品国产66热6| 人人妻人人爽人人添夜夜欢视频| 亚洲色图 男人天堂 中文字幕| 一级毛片电影观看| av女优亚洲男人天堂| 一个人免费看片子| 亚洲精品美女久久av网站| 十八禁人妻一区二区| 欧美中文综合在线视频| 亚洲国产精品成人久久小说| 精品国产一区二区三区四区第35| av.在线天堂| 精品久久蜜臀av无| 亚洲精品av麻豆狂野| 亚洲国产精品成人久久小说| 80岁老熟妇乱子伦牲交| 亚洲国产欧美一区二区综合| 夫妻午夜视频| 亚洲精品第二区| 国产av一区二区精品久久| 纵有疾风起免费观看全集完整版| 少妇人妻 视频| 啦啦啦中文免费视频观看日本| 亚洲国产精品成人久久小说| 国产xxxxx性猛交| 国产av码专区亚洲av| 又大又爽又粗| 国产激情久久老熟女| 国产1区2区3区精品| 女的被弄到高潮叫床怎么办| 一级片免费观看大全| av卡一久久| 久久精品aⅴ一区二区三区四区| 99精品久久久久人妻精品| 下体分泌物呈黄色| 午夜福利免费观看在线| 成人影院久久| 久久国产精品男人的天堂亚洲| 大香蕉久久成人网| 日韩 亚洲 欧美在线| 午夜福利在线免费观看网站| 观看美女的网站| 美女午夜性视频免费| 免费观看a级毛片全部| 免费在线观看视频国产中文字幕亚洲 | 最近中文字幕高清免费大全6| av在线老鸭窝| 人人妻人人澡人人看| 水蜜桃什么品种好| 国产免费现黄频在线看| 在线观看国产h片| 国产精品麻豆人妻色哟哟久久| 久久性视频一级片| 少妇人妻精品综合一区二区| 狠狠婷婷综合久久久久久88av| 看免费av毛片| 亚洲视频免费观看视频| 国产精品三级大全| 波多野结衣av一区二区av| 街头女战士在线观看网站| www日本在线高清视频| 亚洲成av片中文字幕在线观看| 久久久久视频综合| 丝袜在线中文字幕| 国产精品成人在线| 欧美日韩av久久| 看十八女毛片水多多多| 国产99久久九九免费精品| 国产av一区二区精品久久| 精品久久久久久电影网| 一级a爱视频在线免费观看| 人体艺术视频欧美日本| 高清不卡的av网站| 欧美激情 高清一区二区三区| 成人国语在线视频| 韩国精品一区二区三区| 黄片无遮挡物在线观看| 国产乱来视频区| 国产成人精品无人区| 大片免费播放器 马上看| 亚洲男人天堂网一区| 熟女少妇亚洲综合色aaa.| 飞空精品影院首页| 国产精品一国产av| 狂野欧美激情性bbbbbb| 母亲3免费完整高清在线观看| netflix在线观看网站| 欧美激情 高清一区二区三区| 777米奇影视久久| 午夜精品国产一区二区电影| av免费观看日本| 免费黄色在线免费观看| 久久久亚洲精品成人影院| 国产成人免费无遮挡视频| 精品亚洲成a人片在线观看| 叶爱在线成人免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 一二三四中文在线观看免费高清| 亚洲精品一区蜜桃| 亚洲欧美精品自产自拍| 国产男女内射视频| 亚洲四区av| avwww免费| 人体艺术视频欧美日本| 亚洲综合色网址| 亚洲精品日本国产第一区| 国产午夜精品一二区理论片| 成人免费观看视频高清| av在线观看视频网站免费| 大片电影免费在线观看免费| 校园人妻丝袜中文字幕| 另类精品久久| 亚洲成av片中文字幕在线观看| 欧美日韩成人在线一区二区| 日日摸夜夜添夜夜爱| 涩涩av久久男人的天堂| 欧美精品一区二区大全| 国产男女内射视频| 亚洲精品国产区一区二| 男女床上黄色一级片免费看| 亚洲av成人精品一二三区| 国产精品国产三级国产专区5o| 久久av网站| 精品一区二区三区四区五区乱码 | 国产成人啪精品午夜网站| 一级黄片播放器| 成人免费观看视频高清| 观看美女的网站| 国产成人午夜福利电影在线观看| 国产亚洲最大av| 免费少妇av软件| 精品一区二区三区四区五区乱码 | 久久国产精品男人的天堂亚洲| 99久久精品国产亚洲精品| 晚上一个人看的免费电影| 一区二区三区精品91| 97精品久久久久久久久久精品| 欧美在线一区亚洲| 水蜜桃什么品种好| 麻豆av在线久日| 免费日韩欧美在线观看| 久久国产精品大桥未久av| 亚洲色图综合在线观看| 伦理电影大哥的女人| 免费观看性生交大片5| 一本一本久久a久久精品综合妖精| 国产精品三级大全| 另类亚洲欧美激情| 青春草亚洲视频在线观看| 久久精品aⅴ一区二区三区四区| 亚洲av福利一区| 免费黄频网站在线观看国产| 久久久久视频综合| 丝袜喷水一区| 爱豆传媒免费全集在线观看| 日本欧美视频一区| 亚洲av福利一区| 国产精品久久久av美女十八| 少妇的丰满在线观看| 免费黄频网站在线观看国产| av又黄又爽大尺度在线免费看| 午夜福利视频在线观看免费| av又黄又爽大尺度在线免费看| 丝袜喷水一区| 国产男人的电影天堂91| 一区福利在线观看| 国产成人啪精品午夜网站| 美女中出高潮动态图| 亚洲精品乱久久久久久| 日韩 欧美 亚洲 中文字幕| 国产精品亚洲av一区麻豆 | 欧美另类一区| 久久亚洲国产成人精品v| 欧美另类一区| 黄片小视频在线播放| 成人18禁高潮啪啪吃奶动态图| 宅男免费午夜| 久久午夜综合久久蜜桃| 亚洲在久久综合| 校园人妻丝袜中文字幕| 午夜福利乱码中文字幕| 十八禁人妻一区二区| 伦理电影大哥的女人| 国产麻豆69| 一级a爱视频在线免费观看| 成人亚洲精品一区在线观看| 亚洲精品国产色婷婷电影| 女人高潮潮喷娇喘18禁视频| 只有这里有精品99| 色播在线永久视频| 人妻一区二区av| 免费久久久久久久精品成人欧美视频| av在线app专区| 国产熟女午夜一区二区三区| 老司机影院成人| 一本一本久久a久久精品综合妖精| 国产成人免费观看mmmm| 婷婷色av中文字幕| 亚洲国产精品一区二区三区在线| 久久97久久精品| 久久久欧美国产精品| 精品国产一区二区久久| 欧美国产精品va在线观看不卡| 91精品三级在线观看| 亚洲一级一片aⅴ在线观看| 国产精品99久久99久久久不卡 | 国产成人免费观看mmmm| 一级a爱视频在线免费观看| 大陆偷拍与自拍| 成人影院久久| 无遮挡黄片免费观看| 最新的欧美精品一区二区| 久久精品国产综合久久久| 中文字幕人妻丝袜一区二区 | 亚洲第一av免费看| 青草久久国产| 我要看黄色一级片免费的| 久久天堂一区二区三区四区| 免费在线观看黄色视频的| 777久久人妻少妇嫩草av网站| 国产精品一区二区在线观看99| 国产日韩一区二区三区精品不卡| kizo精华| 中文字幕av电影在线播放| 免费高清在线观看日韩| 国产精品嫩草影院av在线观看| 最近最新中文字幕大全免费视频 | 热99久久久久精品小说推荐| 色视频在线一区二区三区| 欧美激情极品国产一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 国产男女超爽视频在线观看| 免费在线观看视频国产中文字幕亚洲 | tube8黄色片| 一边亲一边摸免费视频| 免费在线观看完整版高清| 国产99久久九九免费精品| 90打野战视频偷拍视频| 无限看片的www在线观看| 国产成人精品久久二区二区91 | 男女免费视频国产| a 毛片基地| 亚洲精品自拍成人| 婷婷色av中文字幕| 日韩一卡2卡3卡4卡2021年| 亚洲欧美色中文字幕在线| 各种免费的搞黄视频| 日韩 欧美 亚洲 中文字幕| 伦理电影免费视频| 老汉色av国产亚洲站长工具| 精品卡一卡二卡四卡免费| 人体艺术视频欧美日本| 国产精品一区二区精品视频观看| 男人操女人黄网站| 亚洲伊人色综图| 777米奇影视久久| 另类亚洲欧美激情| 黄色毛片三级朝国网站| 久久人妻熟女aⅴ| 日韩 亚洲 欧美在线| 欧美精品一区二区免费开放| 国产乱人偷精品视频| av网站在线播放免费| 18禁国产床啪视频网站| 中文字幕av电影在线播放| 国产精品av久久久久免费| 9热在线视频观看99| 最新的欧美精品一区二区| 女人被躁到高潮嗷嗷叫费观| 国产成人欧美在线观看 | 丝袜人妻中文字幕| 国产精品蜜桃在线观看| 中文字幕色久视频| 尾随美女入室| 欧美日韩国产mv在线观看视频| 成年美女黄网站色视频大全免费| 午夜av观看不卡| 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 精品视频人人做人人爽| 校园人妻丝袜中文字幕| 国产有黄有色有爽视频| 99热全是精品| 国产麻豆69| 日韩 欧美 亚洲 中文字幕| 丰满迷人的少妇在线观看| 亚洲欧洲日产国产| 在线精品无人区一区二区三| 好男人视频免费观看在线| 成年美女黄网站色视频大全免费| 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| 国产老妇伦熟女老妇高清| 制服丝袜香蕉在线| 欧美精品一区二区大全| 亚洲成人手机| av有码第一页| 观看美女的网站| 人人妻人人爽人人添夜夜欢视频| 激情五月婷婷亚洲| 久久狼人影院| 亚洲在久久综合| 男女高潮啪啪啪动态图| 热99久久久久精品小说推荐| 久久ye,这里只有精品| 欧美激情 高清一区二区三区| 欧美日韩视频高清一区二区三区二| 中文字幕人妻丝袜一区二区 | 国产在线一区二区三区精| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 七月丁香在线播放| 国产在线一区二区三区精| 成人国产av品久久久| 美女中出高潮动态图| 中文字幕色久视频| 在线观看免费视频网站a站| 777米奇影视久久| 一区二区日韩欧美中文字幕| 制服人妻中文乱码| 免费在线观看完整版高清| 精品第一国产精品| 亚洲在久久综合| 久久 成人 亚洲| 90打野战视频偷拍视频| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜制服| 久久久久网色| 国产精品 国内视频| 欧美人与性动交α欧美软件| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 久久鲁丝午夜福利片| 亚洲 欧美一区二区三区| 五月开心婷婷网| 黄色毛片三级朝国网站| 国产成人精品福利久久| 综合色丁香网| 99国产精品免费福利视频| 综合色丁香网| 亚洲在久久综合| av国产精品久久久久影院| 黄色视频不卡| 黄色怎么调成土黄色| 人妻一区二区av| 久久ye,这里只有精品| 日韩视频在线欧美| 大码成人一级视频| 巨乳人妻的诱惑在线观看| 久久久久视频综合| 国产亚洲精品第一综合不卡| 中文欧美无线码| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o | av电影中文网址| 波野结衣二区三区在线| 国产免费视频播放在线视频| 男女床上黄色一级片免费看| 精品第一国产精品| 国产伦理片在线播放av一区| 色综合欧美亚洲国产小说| 久久精品熟女亚洲av麻豆精品| 国产亚洲欧美精品永久| 精品亚洲成国产av| 精品久久蜜臀av无| av线在线观看网站| 久久精品久久久久久噜噜老黄| 纯流量卡能插随身wifi吗| 91aial.com中文字幕在线观看| 黄色 视频免费看| 91aial.com中文字幕在线观看| 亚洲欧美日韩另类电影网站| 丝袜人妻中文字幕| 啦啦啦啦在线视频资源| 午夜日本视频在线| 国产日韩欧美视频二区| 国产黄频视频在线观看| 狂野欧美激情性bbbbbb| 在线看a的网站| 国产 精品1| 一区二区三区精品91| 久热爱精品视频在线9| 久久久亚洲精品成人影院| 亚洲欧美精品综合一区二区三区| 一级,二级,三级黄色视频| 97精品久久久久久久久久精品| 汤姆久久久久久久影院中文字幕| 麻豆精品久久久久久蜜桃| 国产精品一国产av| 建设人人有责人人尽责人人享有的| 午夜日本视频在线| 在线免费观看不下载黄p国产| 超色免费av| 丝袜在线中文字幕| 七月丁香在线播放| 亚洲人成网站在线观看播放| 久久97久久精品| 成人亚洲欧美一区二区av| 五月天丁香电影| 十八禁人妻一区二区| 18禁观看日本| 极品人妻少妇av视频| 国产精品香港三级国产av潘金莲 | 丝袜美足系列| 天堂中文最新版在线下载| 老司机深夜福利视频在线观看 | 亚洲精品成人av观看孕妇| 欧美亚洲 丝袜 人妻 在线| 国产无遮挡羞羞视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 黑人猛操日本美女一级片| 亚洲成av片中文字幕在线观看| 亚洲,一卡二卡三卡| 性高湖久久久久久久久免费观看| 超碰成人久久| 又大又爽又粗| 国产欧美日韩一区二区三区在线| 日韩一卡2卡3卡4卡2021年| 精品亚洲成国产av| 精品一区在线观看国产| 19禁男女啪啪无遮挡网站| 精品久久久精品久久久| 亚洲激情五月婷婷啪啪| 在线亚洲精品国产二区图片欧美| 久久久久视频综合| a级片在线免费高清观看视频| 中文字幕av电影在线播放| 久久精品国产亚洲av高清一级| 久久精品久久久久久久性|