• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?

    2019-08-20 09:24:36HangXu徐航andQiangSun孫強
    Communications in Theoretical Physics 2019年8期
    關鍵詞:孫強

    Hang Xu(徐航)and Qiang Sun(孫強)

    1State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    2Particulate Fluids Processing Centre,Department of Chemical Engineering,The University of Melbourne,Parkville,VIC 3010,Australia

    AbstractThe fully developed mixed convection hybrid nanofluid flow in a vertical microchannel is examined in detail.The simplified hybrid model that omits the nonlinear terms due to the interaction of different nanoparticle volumetric fractions is derived and compared with the existing one.The generalized model describing hybrid nanofluid suspended with multiple kinds of solid particles is suggested.The argument that the corresponding nanofluid solutions obtained by the homogenous model can be recovered from the results of the regular problems through simple arithmetic operations is checked.Solutions in similarity form for this flow problem are formulated by means of a set of similarity variables.The effects of various parameters on important physical quantities are analyzed and discussed.

    Key words:hybrid nanofluid,vertical channel,mixed convection,slippery effect

    Nomenclature

    ?

    1 Introduction

    Many recent studies revealed that nanofluids have better heat transfer capability than regular fluids.Therefore it is possible to replace traditional heat transfer fluids by nanofluids in the design of various heat transfer systems such as cooling systems,heat regenerators,and heat exchangers.Choi[1]noticed that,by suspending nanometer-sized metallic particles in conventional heat transfer fluids,the resulting nanofluids hold higher thermal conductivities than those of currently used ones.Xuan and Li[2]attributed the heat transfer enhancement of nanofluids to the increase of thermal conductivity of the nanofluid.Eastman et al.[3]found that the particle shape has stronger effects on effective nanofluid thermal conductivity than particle size or particle thermal conductivity.Wen and Ding[4]speculated that possible reasons for the heat transfer enhancement of nanofluids are due to the migration of nanoparticles and the resulting disturbance of the boundary layer.Buongiorno[5]concluded that the Brownian diffusion and thermophoresis are dominant factors for heat enhancement within the boundary layer owing to the effect of the temperature gradient and thermophoresis.Other classic researches on nanofluids have been experimentally done by Pak and Cho,[6]Xie et al.,[7]Williams et al.[8]and numerically done by Tiwari and Das,[9]Oztop and Abu-Nada,[10]Raza et al.,[11]Khan,[12]Sajid et al.,[13]Sheikholeslami and Sadoughi,[14]Sheremet and Pop,[15]Kefayati[16]and Alsabery et al.[17]

    Some researchers made attempts to investigate the characters of nanofluids containing different kinds of nanoparticles.Suresh et al.[18]found that both thermal conductivity and viscosity of hybrid nanofluids increase with the nanoparticle volume concentration while the viscosity increase is substantially higher than the increase in thermal conductivity for an Al2O3-Cu hybrid nanofluid.The behaviours of hybrid nanofluids then were examined in detail by different researchers such as Esfe et al.,[19]Rostamian et al.[20]and Ebrahimi and Saghravani.[21]From modelling point of view,Devi and Devi[22]proposed a mathematical model to investigate the effects of Lorentz force over a three-dimensional stretching surface subject to Newtonian heating.Tayebi and Chamkha[23?24]considered natural convection in an annulus between two confocal elliptic cylinders and eccentric horizontal cylinders filled with a Cu-Al2O3/water hybrid nanofluid.Huminic and Huminic[25]examined the influence of hybrid nanofluids on the performances of elliptical tube.Rostami et al.[26]considered mixed convective stagnation-point flow of an aqueous silica Calumina hybrid nanofluid.

    This paper intends to analyze a fully developed mixed convection hybrid nanofluid flow in a vertical microchannel by means of a generalized hybrid nanofluid model.We are to simplify the Devi and Devi’s model[22]by omitting the nonlinear terms due to the interaction of different nanoparticle volumetric fractions.Then we extend Devi and Devi’s model[22]to the case that the hybrid nanofluids contain various kinds of nanoparticles.The argument by Magayari[27]that corresponding nanofluid results can be recovered from the solutions of already solved regular problems by simple arithmetic operations is then checked.The similarity solutions for this microchannel fl ow and heat transfer of a hybrid nanofluid are formulated by means of a set of similarity variables.It should be mentioned at this end,that the studies on hybrid nanofluids are still very new at this stage.There is no conclusive idea on how nanoparticles act on fluid flow and heat transfer.Complementary studies are urgently needed to understand the heat transfer characteristics of hybrid nanofluids,especially for those in suspension of multiple kinds of small particles.

    2 Generalized Hybrid Nanofluid Model

    In experimental and numerical studies on nanofluids’behaviours,it is a common practice to model their physical quantities by using simplified mathematical relations between the corresponding ones of base fluid and solid particles,as presented by many researchers such as Vajravelu et al.and[28]Devi and Devi.[22]Several experiments have been carried out to confirm the validity of such expressions for dilute nanofluids in suspension of one single kind of solid particles[6]and two types of mixed solid particles.[18]Devi and Devi[22]suggested a group of correlations for physical quantities of hybrid nanofluids.In their approach,they took the fluid containing one kind of nanoparitcles as the base fluid and the other kind of nanoparticles as the individual particles.The correlations of viscosity and thermal conductivity matched the experimental results given by Suresh et al.[18]

    In Devi and Devi’s approach,[22]there are nonlinear terms due to the interaction of two kinds of different nanoparticles.However,in dilute solutions in which the nanoparticle volumetric fractions are usually small,the effects of these nonlinear terms may not be significant. Therefore,we reasonably neglect the nonlinear terms in Devi and Devi’s model.[22]Our simplified model of hybrid nanofluid,as well as the classic nanofluid model and Devi and Devi’s model[22]are listed in Table 1 in which Type I denotes the traditional nanofluid model(nanofluid in suspension one kind of small particles),Types II and III,respectively,denote Devi and Devi’s hybrid nanofluid model[22]and our simplified hybrid nanofluid model(nanofluid in suspension two different kind of small particles).

    Devi and Devi’s approach[22]used the recurrence formulae to represent the viscosity,density,specific heat and thermal conductivity of the hybrid nanofluid corresponding to the n-th kinds of nanoparticles as

    and

    Table 1 Models of nanofluid and hybrid nanofluid.

    By neglecting the nonlinear terms in above correlations,we obtain

    Note that we keep the recurrence formula(5)for the thermal conductivity khnfsince the interactions between different particles can hardly be expressed using the Maxwell equation.Also,M=3 is chosen throughout this work that means that the particle shape is spherical.

    3 Mathematical Description

    Consider a mixed convection flow of a hybrid nanofluid in a constant porosity medium between two parallel vertical infinite walls separated by a distance of 2H.As shown in Fig.1,the Cartesian coordinate system(x,y)is chosen with the x-axis being along the walls and the y-axis being perpendicular to the walls.The temperatures on both walls are assumed to vary linearly along the height that are prescribed as T1+ax and T2+ax on the left and the right walls,respectively.Since the hydrodynamically fl ow is fully-developed,the velocity along the wall is only a function of y.Invoking the Boussinesq approximation,the governing equations are written as

    subject to the boundary conditions

    Fig.1 Physical sketch.

    It is easy to see from Eq.(12)that ?2p/?x?y=0.This indicates that?p/?x is a constant and that all terms on the right-hand side of Eq.(11)are only dependent on y.Based on this fact,we define the following variables

    where Ur=gβfKaH/νfis a reference velocity.

    Substituting Eq.(16)into Eqs.(10),(11),and(13),the continuity equation(10)is automatically satisfied,and the rest of equations are reduced to

    with the boundary conditions

    where

    4 Comparison Analysis Between Models

    We calculate the coefficients ε1,ε2,and ε3in Eqs.(17)and(18)by Type II and Type III hybrid nanofluid models listed in Table 1.The data regarding to the basic thermophysical properties of the base fluid and nanoparticles are given in Table 2 where the thermophysical properties of water is chosen at 25C.

    Table 2 Thermophysical properties of fluid and nanoparticles.

    Substituting the quantities in Table 2 into different hybrid nanofluid models,the values of ε1,ε2,and ε3can be obtained,as shown in Table 3.It can be seen from the table,when the solution is dilute,namely,the nanoparticle volumetric fractions are small,the difference between the values of ε1,ε2and ε3obtained by both models is imperceptible.Recalling the experimental results and modelling tests by Pak et al.[6]and Suresh et al.,[18]it is clear that the computational range of nanoparticle volumetric fractions listed in Table 3 is acceptable and widely used.As a result,we can infer that our simplified hybrid nanofluid model is meaningful for prediction of nanofluids’behaviours.Further verification shows that,for the cases that two kinds of nanoparticles coexist,each nanoparticle volumetric fraction needs to be small to keep the solution remaining dilute.

    Magyari[27]once found that,without consideration of velocity-slip effects,the governing equations of homogeneous nanofluid models can be reduced via elementary scaling transformations to the corresponding equations of the regular fluids.Thus he concluded that the corresponding nanofluid results can be recovered from the solutions of already solved problems with regular Newtonian fluids by simple arithmetic operations.

    Here,we would like to check if this applicability is valid on the hybrid nanofluid flow problems.We introduce the following scaling transformations:

    Substituting Eq.(21)into Eqs.(17)and(18),we obtain

    To keep Eqs.(22)and(23)invariant in forms,the two relationships below must hold:

    which leads to

    Equation(26)clearly indicates that,for the problem considered in this work,there is no alternative scaling transformation that can be used to obtain solutions from the existing results.We therefore are able to conclude that Mayari’s conclusion[27]on that nanofluid results can be recovered from the solutions of already solved regular Newtonian fluid problems by simple arithmetic operations is only valid for several special cases in nanofluid researches.

    Table 3 Computation of nanoparticles related parameters.?

    5 Results

    It is known that Eq.(17)contains an unknown constant σ,which requires an additional boundary condition.In the studies on channel flow problems,it is a common practice to sprecify the mass flow rate as a prescribed quantity.We thus obtain

    which can be simplified,by using the similarity variables(16),to

    where Umis the constant average flow velocity across the channel,and λ=2Um/Ur.For convenience,we let Um=Urwhich leads to λ=2.

    The homotopy analysis method(HAM)is used to solve this flow problem.Since the similar HAM procedures are available in Refs.[29–30],we omit the detailed process but just give the core information as shown in Table 4.

    To check the accuracy of our solutions,we define the following functions to evaluate errors:

    where

    When all physical parameters are prescribed,the cor-responding errors can be obtained.For example,if we set Ra=10,γ=1/100,K1=1,N1=1/10,N2= ?1/10,and θw=1/10,and prescribe ?1and ?2for a range of values,at a certain HAM computational order,the errors can be determined by Eq.(29)as shown in Table 5.

    Table 4 HAM computation related quantities.

    ?

    Fig.2 Comparisons of U(η)and θ(η)in the case of Ra=10,γ =1/100,K1=1,N1=1/10,N2= ?1/10,θw=1/10.Line with gradients:solutions by Devi and Devi’s model,[22]Line with circles:solutions by our model.(a)?1= ?2=1/10.(b)?1= ?2=1/10.(c)?1= ?2= ?3=3/100.(d)?1= ?2= ?3=3/100.

    Further to check the validity and accuracy of our simplified model,we compare our results of velocity and temperature profiles for a hybrid nanofluid in suspension of two types of nanoparticles with those given by Devi and Devi.[22]It can be seen in Figs.2(a)and 2(b)that very good agreement is found.Note that here Al2O3and Cu nanoparticles are chosen for comparison.As shown in Figs.2(a)and 2(b),we also notice that the results by our simplified hybrid nanofluid model match to those given by the generalized hybrid nanofluid model when three types of nanoparticles,namely,Al2O3,Cu and TiO2are employed.

    In our computation,it is found that the variation of nanoparticle volumetric fraction plays limited influence on velocity profiles while it has significant effect on the temperature profiles,as shown in Fig.3.This indicates that the increase of nanoparticle volumetric fraction can enhance heat transfer significantly.In another words,this also verifies the fact that the nanofluids have better thermal transport capability than traditional ones.

    Physically,the skin friction and the Nusselt number are important quantities to measure the fluid behaviours.Since the flow and heat transfer exhibit similar characters on both walls,we therefore only consider those quantities on the left wall.In this situation,they are defined by

    where

    Substituting similarity variables in Eq.(16)into Eq.(32),we obtain

    where Re=UmH/νnhfis the Reynolds number.

    Fig.3 Variation of(a)U(η)and(b) θ(η)with ?2for Ra=10, γ =1/100,K1=1,N1=1/10,N2= ?1/10,θw=1/10,?1=25/1000.

    To test the effects of the nanoparticle volumetric fractions ?1and ?2on various physical quantities,we select Al2O3and Cu nanoparticles in following analysis.As shown in Fig.4(a),for a certain value of ?1,the absolute value of the skin friction coefficient CfLreduces as ?2enlarges.Similarly,when ?2is prescribed,the absolute value of CfLdecreases as ?1evolves.This clearly shows that the nanofluids can effectively diminish the skin friction.The slip effects between the velocities of nanoparticles and the base fluid is the key factor to affect the Nusselt number.The trend of NuLvaries with ?2is similar to that of CfL,namely,when ?1is given,the increase of ?2causes the decrease of the absolute value of NuL,or verse visa,as shown in Fig.4(b).As concluded by Buongiorno,[5]the temperature difference between the walls and the fluid can alter the temperature gradient and thermophoresis,which could result in a significant decrease of viscosity within the boundary layer,thus leading to heat transfer enhancement.

    The effect of nanoparticle volumetric fractions on the pressure constant is shown in Fig.4(c).For a given value of ?1,it is found that the pressure decreases gradually as ?2grows.Same trend is found for the variation of the pressure constant σ with ?1at a fixed value of ?2.This reflects another aspect that the flow velocity reduces owing to the reduction of skin friction caused by the increase of nanoparticle volumetric fractions,either for nanofluids or hybrid nanofluids.

    In microchannel studies,the slip of the channel wall is of great importance to alter flow and heat transfer behaviours.Take the hybrid nanofluid containing Al2O3,Cu and TiO2nanopaticles as an example.As shown in Fig.5(a),the absolute value of the skin friction coefficient CfLdecreases monotonously as N1grows.However,the absolute value of the Nusselt number NuLincreases continuously as N1increases,as shown in Fig.5(b),while the pressure constant σ reduces gradually as N1enlarges,as shown in Fig.5(c).It is seen from Fig.6(a)that the increase of N1leads to the increase of the velocity near the left wall.This velocity variation leads to the enhancement of temperature in the channel,as presented in Fig.6(b).Physically,the increase of the slip length indicates the decrease of the skin friction,which leads to the increase of fl ow velocity near that wall.Nevertheless,due to the conservation of flow flux,the flow velocity far from the left wall decreases with N1increasing.

    Fig.4 Variation of(a)reduced CfL,(b)reduced NuLand(c) σ with ?2for some values of ?1in the case of Ra=10,γ=1/100,K1=1,N1=1/10,N2=?1/10,θw=1/10.

    Fig.5 Variation of(a)reduced CfL,(b)reduced NuLand(c)σ with N1in the case of Ra=10,γ=1/100,K1=1,N2=0,θw=1/10,and ?1= ?2= ?3=3/100.

    Fig.6 Variation of(a)U(η)and(b)θ(η)with N1in the case of Ra=10,γ =1/100,K1=1,N2=0,θw=1/10,and ?1= ?2= ?3=3/100.

    6 Conclusion

    The generalized hybrid nanofluid model and its simplifi ed form have been proposed to study the flow and heat transfer behaviours of a hybrid nanofluid convection in a vertical microchannel.It has been found that when the solution is dilute,our simplified model can well predict the flow and heat transfer behaviours of hybrid nanofluids.The argument by Magyari[27]with regards to the homogenous model for expressions of nanofluid solutions by the results of already solved regular Newtonian fluid problems via simple arithmetic operations has been found problematic when it is applied to hybrid nanofluid flows.The effects of various parameters on important physical quantities are analysed and discussed with the following conclusions can be reached:

    (i) The variations of nanoparticle volumetric fractions have more obvious effects on temperature distribution than on velocity distribution.

    (ii)The nanoparticle volumetric fractions play a significant role on altering flow and heat transfer behaviours.

    (iii)The slip effect of the channel wall are of great importance to affect the flow and heat transfer behaviours.

    猜你喜歡
    孫強
    Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering
    Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    Effects of W6+occupying Sc3+on the structure,vibration,and thermal expansion properties of scandium tungstate?
    求解線性規(guī)劃問題的常規(guī)思路
    孫強作品
    我送男友3600萬,他卻拿錢悅前妻
    老公愛車勝過愛我
    婦女生活(2017年9期)2017-09-13 20:09:03
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    偷來的靠山
    1024视频免费在线观看| 丰满饥渴人妻一区二区三| 久久久久亚洲av毛片大全| av视频免费观看在线观看| 少妇裸体淫交视频免费看高清 | 国内毛片毛片毛片毛片毛片| 精品熟女少妇八av免费久了| av国产精品久久久久影院| 午夜激情av网站| 国产一区在线观看成人免费| 久久久久久久久久久久大奶| 高清av免费在线| 无限看片的www在线观看| 丝袜在线中文字幕| 在线永久观看黄色视频| 一个人观看的视频www高清免费观看 | 女性被躁到高潮视频| 动漫黄色视频在线观看| 亚洲片人在线观看| 国产成人精品久久二区二区91| 性少妇av在线| 亚洲av成人一区二区三| www.自偷自拍.com| 亚洲av日韩精品久久久久久密| 大香蕉久久成人网| 天堂影院成人在线观看| 日韩精品中文字幕看吧| 美女国产高潮福利片在线看| 窝窝影院91人妻| 一区二区三区国产精品乱码| 亚洲中文日韩欧美视频| 级片在线观看| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区四区五区乱码| av福利片在线| 国产av又大| 国产精品秋霞免费鲁丝片| 女警被强在线播放| 久久久久久亚洲精品国产蜜桃av| 国产成人欧美在线观看| 在线观看免费午夜福利视频| 热99re8久久精品国产| 真人一进一出gif抽搐免费| 国产欧美日韩综合在线一区二区| 午夜精品久久久久久毛片777| 亚洲五月婷婷丁香| 一进一出抽搐动态| 波多野结衣一区麻豆| 麻豆国产av国片精品| 亚洲免费av在线视频| 99久久精品国产亚洲精品| 久久九九热精品免费| 精品熟女少妇八av免费久了| 精品日产1卡2卡| 两个人看的免费小视频| 99国产精品99久久久久| 国产成+人综合+亚洲专区| 在线国产一区二区在线| 欧美日韩瑟瑟在线播放| 久久婷婷成人综合色麻豆| 身体一侧抽搐| 日本黄色视频三级网站网址| 老熟妇仑乱视频hdxx| 亚洲专区中文字幕在线| 亚洲片人在线观看| 亚洲av成人不卡在线观看播放网| 精品国产亚洲在线| 亚洲伊人色综图| 丰满的人妻完整版| 人人妻人人爽人人添夜夜欢视频| 久久人妻福利社区极品人妻图片| 久久性视频一级片| 午夜久久久在线观看| 亚洲专区字幕在线| 亚洲 国产 在线| 国产日韩一区二区三区精品不卡| 久久久久久久久免费视频了| 国产乱人伦免费视频| 精品熟女少妇八av免费久了| 免费高清在线观看日韩| 一级片'在线观看视频| 亚洲国产精品sss在线观看 | 操美女的视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 老熟妇仑乱视频hdxx| 中文字幕色久视频| 亚洲国产看品久久| 9色porny在线观看| 欧美激情高清一区二区三区| 深夜精品福利| 亚洲欧美日韩无卡精品| 黄片播放在线免费| 久久久水蜜桃国产精品网| netflix在线观看网站| 欧美成人性av电影在线观看| 麻豆久久精品国产亚洲av | 一边摸一边抽搐一进一出视频| 成人手机av| 神马国产精品三级电影在线观看 | 免费高清在线观看日韩| 亚洲五月色婷婷综合| √禁漫天堂资源中文www| 90打野战视频偷拍视频| 在线观看66精品国产| 老司机午夜十八禁免费视频| av中文乱码字幕在线| 91大片在线观看| 欧美日韩亚洲综合一区二区三区_| 中文亚洲av片在线观看爽| 国产97色在线日韩免费| 免费在线观看完整版高清| 国产伦一二天堂av在线观看| 两性夫妻黄色片| 亚洲国产看品久久| 亚洲午夜理论影院| 视频在线观看一区二区三区| 在线观看免费日韩欧美大片| 欧美日韩亚洲综合一区二区三区_| 满18在线观看网站| 国产一区二区激情短视频| avwww免费| 丝袜在线中文字幕| 精品福利观看| 国产精品一区二区精品视频观看| 老司机福利观看| 极品教师在线免费播放| 成人国产一区最新在线观看| 最新美女视频免费是黄的| 91av网站免费观看| 97碰自拍视频| 亚洲欧美日韩高清在线视频| 一级,二级,三级黄色视频| 在线视频色国产色| 9191精品国产免费久久| 亚洲专区字幕在线| 99国产精品一区二区三区| 美女福利国产在线| 国产99久久九九免费精品| 制服人妻中文乱码| 日本三级黄在线观看| 久久久久精品国产欧美久久久| 欧美成人性av电影在线观看| 久久国产精品男人的天堂亚洲| 成人永久免费在线观看视频| 桃色一区二区三区在线观看| 久久久国产精品麻豆| 自线自在国产av| 国产成人免费无遮挡视频| 国产熟女午夜一区二区三区| 美女高潮喷水抽搐中文字幕| 亚洲欧美精品综合一区二区三区| 午夜久久久在线观看| а√天堂www在线а√下载| 村上凉子中文字幕在线| 久久精品国产综合久久久| 三级毛片av免费| 久久久久久久午夜电影 | 黄频高清免费视频| 国产男靠女视频免费网站| 精品国产国语对白av| 老司机午夜十八禁免费视频| 90打野战视频偷拍视频| 新久久久久国产一级毛片| 韩国av一区二区三区四区| 操美女的视频在线观看| 国产精品av久久久久免费| 亚洲少妇的诱惑av| 成人永久免费在线观看视频| 首页视频小说图片口味搜索| 99精国产麻豆久久婷婷| 国产野战对白在线观看| 日韩免费高清中文字幕av| 精品久久蜜臀av无| 国产成人精品无人区| 在线观看免费视频网站a站| 亚洲av五月六月丁香网| 亚洲精品国产一区二区精华液| 亚洲aⅴ乱码一区二区在线播放 | 老熟妇乱子伦视频在线观看| av网站在线播放免费| 长腿黑丝高跟| 日韩免费av在线播放| 黑人操中国人逼视频| 亚洲第一欧美日韩一区二区三区| 最近最新中文字幕大全免费视频| 一区二区日韩欧美中文字幕| 女性被躁到高潮视频| 婷婷丁香在线五月| 国产精品 国内视频| 一进一出好大好爽视频| 丰满饥渴人妻一区二区三| 黄色a级毛片大全视频| 人人妻人人澡人人看| 俄罗斯特黄特色一大片| 日韩成人在线观看一区二区三区| 日韩国内少妇激情av| 亚洲男人的天堂狠狠| 久久久久国内视频| 成年人免费黄色播放视频| 日韩欧美国产一区二区入口| 91九色精品人成在线观看| 一级片'在线观看视频| 日韩大码丰满熟妇| 国产成年人精品一区二区 | 老鸭窝网址在线观看| 日韩欧美三级三区| www.自偷自拍.com| 中文字幕精品免费在线观看视频| 国产精品久久电影中文字幕| 99riav亚洲国产免费| 五月开心婷婷网| 波多野结衣av一区二区av| 午夜激情av网站| 午夜免费鲁丝| 首页视频小说图片口味搜索| 亚洲一区二区三区欧美精品| 十八禁网站免费在线| 免费看a级黄色片| 一二三四在线观看免费中文在| 久久久久久久久免费视频了| 热99re8久久精品国产| 日韩av在线大香蕉| 亚洲男人天堂网一区| 欧美日本亚洲视频在线播放| 变态另类成人亚洲欧美熟女 | 国产区一区二久久| 丰满迷人的少妇在线观看| 午夜两性在线视频| 日本免费一区二区三区高清不卡 | 不卡一级毛片| 午夜免费成人在线视频| 精品一区二区三卡| 好男人电影高清在线观看| 国产精品一区二区精品视频观看| 可以在线观看毛片的网站| 熟女少妇亚洲综合色aaa.| 99在线视频只有这里精品首页| 少妇裸体淫交视频免费看高清 | 国产高清国产精品国产三级| 国产精品美女特级片免费视频播放器 | 国产欧美日韩综合在线一区二区| 亚洲欧美激情综合另类| 久久伊人香网站| 黄色毛片三级朝国网站| 热99国产精品久久久久久7| 老汉色∧v一级毛片| 97人妻天天添夜夜摸| 国产成+人综合+亚洲专区| 一级毛片女人18水好多| 亚洲精品国产一区二区精华液| 99久久国产精品久久久| 亚洲人成电影观看| 男女下面插进去视频免费观看| 久久香蕉国产精品| 久久精品国产清高在天天线| 在线观看一区二区三区激情| 精品一区二区三区视频在线观看免费 | 首页视频小说图片口味搜索| 真人一进一出gif抽搐免费| 51午夜福利影视在线观看| 国产亚洲欧美在线一区二区| 男女做爰动态图高潮gif福利片 | 精品熟女少妇八av免费久了| 中亚洲国语对白在线视频| 中文字幕另类日韩欧美亚洲嫩草| 久久精品影院6| av视频免费观看在线观看| 亚洲少妇的诱惑av| 欧美日韩亚洲高清精品| 岛国在线观看网站| 丝袜美足系列| 国产在线精品亚洲第一网站| 精品欧美一区二区三区在线| 三级毛片av免费| 波多野结衣一区麻豆| 亚洲国产欧美一区二区综合| 天天添夜夜摸| 一二三四社区在线视频社区8| avwww免费| 国产精品久久久av美女十八| 亚洲专区中文字幕在线| 亚洲成人免费电影在线观看| 美女国产高潮福利片在线看| 亚洲自偷自拍图片 自拍| 久久欧美精品欧美久久欧美| 亚洲 欧美 日韩 在线 免费| 亚洲av五月六月丁香网| 日韩国内少妇激情av| 搡老熟女国产l中国老女人| 99国产精品99久久久久| 精品一区二区三区av网在线观看| 免费av中文字幕在线| 高清av免费在线| 首页视频小说图片口味搜索| x7x7x7水蜜桃| 精品熟女少妇八av免费久了| 如日韩欧美国产精品一区二区三区| 中亚洲国语对白在线视频| 精品福利永久在线观看| 亚洲av熟女| 亚洲七黄色美女视频| 丝袜美腿诱惑在线| 90打野战视频偷拍视频| videosex国产| 国产一区二区在线av高清观看| 午夜福利,免费看| 国产91精品成人一区二区三区| 国产精品久久久人人做人人爽| 精品一品国产午夜福利视频| 在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲欧美日韩无卡精品| 天天躁狠狠躁夜夜躁狠狠躁| 日本五十路高清| 亚洲少妇的诱惑av| 国产三级在线视频| 亚洲少妇的诱惑av| 亚洲美女黄片视频| 欧美av亚洲av综合av国产av| 国产野战对白在线观看| 在线视频色国产色| 精品一区二区三卡| 精品一品国产午夜福利视频| 国产高清激情床上av| av视频免费观看在线观看| av视频免费观看在线观看| av视频免费观看在线观看| 少妇被粗大的猛进出69影院| 国产91精品成人一区二区三区| 国产精品免费一区二区三区在线| 午夜福利,免费看| 一二三四社区在线视频社区8| 国产一区二区三区综合在线观看| 欧美激情极品国产一区二区三区| 五月开心婷婷网| 99精国产麻豆久久婷婷| 日本免费a在线| 69av精品久久久久久| 一级,二级,三级黄色视频| 国产成人影院久久av| 青草久久国产| 午夜精品久久久久久毛片777| 在线观看免费午夜福利视频| 精品一区二区三区四区五区乱码| 亚洲午夜理论影院| 亚洲国产精品999在线| 啦啦啦免费观看视频1| 亚洲精品久久成人aⅴ小说| 精品国产美女av久久久久小说| 天堂动漫精品| 亚洲人成77777在线视频| 欧美激情高清一区二区三区| 可以免费在线观看a视频的电影网站| 亚洲五月色婷婷综合| 精品久久久久久,| 99精国产麻豆久久婷婷| 又大又爽又粗| 在线观看免费午夜福利视频| 国内久久婷婷六月综合欲色啪| 黄片播放在线免费| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品九九99| 中文字幕人妻丝袜制服| 一边摸一边抽搐一进一小说| 成人黄色视频免费在线看| 女人精品久久久久毛片| 久久伊人香网站| 日日爽夜夜爽网站| 欧美性长视频在线观看| 欧美成人午夜精品| 97碰自拍视频| 黄频高清免费视频| 我的亚洲天堂| 水蜜桃什么品种好| 免费高清视频大片| 69精品国产乱码久久久| 黄色毛片三级朝国网站| 天天躁夜夜躁狠狠躁躁| 淫秽高清视频在线观看| 日本wwww免费看| 咕卡用的链子| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 18禁黄网站禁片午夜丰满| 法律面前人人平等表现在哪些方面| 国产成人av激情在线播放| 成人永久免费在线观看视频| 亚洲 欧美 日韩 在线 免费| 国产野战对白在线观看| 免费在线观看完整版高清| 香蕉丝袜av| 波多野结衣一区麻豆| 大码成人一级视频| 夜夜躁狠狠躁天天躁| 女性被躁到高潮视频| 女人被躁到高潮嗷嗷叫费观| 国产成人系列免费观看| 欧美日本中文国产一区发布| 精品免费久久久久久久清纯| 真人一进一出gif抽搐免费| 精品日产1卡2卡| 国产1区2区3区精品| 一级a爱视频在线免费观看| 日本五十路高清| 99精品欧美一区二区三区四区| 国内毛片毛片毛片毛片毛片| 欧美成狂野欧美在线观看| 老司机福利观看| 亚洲中文日韩欧美视频| 亚洲熟女毛片儿| 免费少妇av软件| 亚洲熟妇熟女久久| 亚洲国产欧美一区二区综合| 精品久久久久久电影网| 国产精品一区二区在线不卡| 美国免费a级毛片| 每晚都被弄得嗷嗷叫到高潮| 国产主播在线观看一区二区| 成人亚洲精品一区在线观看| 十八禁人妻一区二区| 久久久久国产一级毛片高清牌| 可以在线观看毛片的网站| 麻豆成人av在线观看| 国产野战对白在线观看| 99在线人妻在线中文字幕| 久久精品91无色码中文字幕| 国产单亲对白刺激| 一区二区三区国产精品乱码| 亚洲欧美激情在线| 久久国产精品男人的天堂亚洲| 如日韩欧美国产精品一区二区三区| 久久久久国产一级毛片高清牌| 99国产精品99久久久久| 亚洲熟女毛片儿| 日韩欧美一区视频在线观看| 国产亚洲欧美在线一区二区| 亚洲五月婷婷丁香| 日韩欧美在线二视频| 欧美人与性动交α欧美软件| 自线自在国产av| 亚洲精品美女久久久久99蜜臀| 午夜福利在线观看吧| av网站在线播放免费| 亚洲专区字幕在线| 亚洲精品在线观看二区| 国产黄a三级三级三级人| 国产精品成人在线| 美女扒开内裤让男人捅视频| 无限看片的www在线观看| 日韩欧美国产一区二区入口| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| www.熟女人妻精品国产| 女性被躁到高潮视频| 波多野结衣av一区二区av| 嫩草影院精品99| 国产麻豆69| 99久久99久久久精品蜜桃| 欧美+亚洲+日韩+国产| 啦啦啦 在线观看视频| 如日韩欧美国产精品一区二区三区| 成人影院久久| 女同久久另类99精品国产91| 两个人免费观看高清视频| 免费人成视频x8x8入口观看| 老司机福利观看| 激情在线观看视频在线高清| 精品久久久久久,| 激情在线观看视频在线高清| 搡老岳熟女国产| 亚洲欧美一区二区三区黑人| www国产在线视频色| 超碰成人久久| 欧美在线黄色| 亚洲九九香蕉| 国产成人欧美在线观看| 超碰成人久久| 精品国产一区二区三区四区第35| 欧美成人性av电影在线观看| 人妻久久中文字幕网| 日韩免费高清中文字幕av| 亚洲欧美日韩无卡精品| 亚洲欧美一区二区三区黑人| 老司机福利观看| 欧美日韩精品网址| 国产精品国产av在线观看| a级毛片在线看网站| 搡老乐熟女国产| 精品国产亚洲在线| 日本黄色日本黄色录像| 视频区图区小说| 搡老熟女国产l中国老女人| 精品久久久久久,| 欧美在线一区亚洲| 久久精品国产99精品国产亚洲性色 | 自线自在国产av| 国产精品av久久久久免费| 中出人妻视频一区二区| 欧美日韩精品网址| 宅男免费午夜| www.精华液| 另类亚洲欧美激情| aaaaa片日本免费| 夜夜看夜夜爽夜夜摸 | 午夜老司机福利片| 国产视频一区二区在线看| 欧美激情高清一区二区三区| av国产精品久久久久影院| 国产成年人精品一区二区 | 少妇 在线观看| 天堂√8在线中文| 久久久久久亚洲精品国产蜜桃av| 欧美国产精品va在线观看不卡| 国产av一区二区精品久久| 久久精品亚洲av国产电影网| 久久国产亚洲av麻豆专区| 在线视频色国产色| 久久久久国内视频| 免费一级毛片在线播放高清视频 | 麻豆成人av在线观看| 99在线人妻在线中文字幕| e午夜精品久久久久久久| 一边摸一边抽搐一进一出视频| 黄片小视频在线播放| 国产国语露脸激情在线看| 热99国产精品久久久久久7| 亚洲精品中文字幕一二三四区| 欧美激情久久久久久爽电影 | 国产精品秋霞免费鲁丝片| 精品人妻1区二区| 精品久久蜜臀av无| 另类亚洲欧美激情| 精品一区二区三区av网在线观看| videosex国产| 一本综合久久免费| 啪啪无遮挡十八禁网站| 亚洲 欧美 日韩 在线 免费| 别揉我奶头~嗯~啊~动态视频| av中文乱码字幕在线| 99久久综合精品五月天人人| 国产又爽黄色视频| 国产av一区在线观看免费| 国产欧美日韩精品亚洲av| 麻豆一二三区av精品| 一个人免费在线观看的高清视频| 色综合婷婷激情| 亚洲九九香蕉| 美女国产高潮福利片在线看| 久久精品成人免费网站| 夜夜看夜夜爽夜夜摸 | 美国免费a级毛片| 在线看a的网站| 九色亚洲精品在线播放| 桃红色精品国产亚洲av| 少妇粗大呻吟视频| 女警被强在线播放| 国产野战对白在线观看| 亚洲精品国产一区二区精华液| 午夜福利,免费看| 亚洲 欧美一区二区三区| 极品教师在线免费播放| 在线观看舔阴道视频| 亚洲性夜色夜夜综合| 欧美精品啪啪一区二区三区| www.www免费av| 男人舔女人的私密视频| 精品午夜福利视频在线观看一区| 国产一卡二卡三卡精品| 一级毛片精品| 亚洲av第一区精品v没综合| 亚洲av五月六月丁香网| 嫁个100分男人电影在线观看| 欧美亚洲日本最大视频资源| 性少妇av在线| 久久狼人影院| 国产在线精品亚洲第一网站| 男人舔女人下体高潮全视频| 久久久久精品国产欧美久久久| 国产精品九九99| 超碰成人久久| 亚洲五月婷婷丁香| 国产精品影院久久| 精品欧美一区二区三区在线| 久久天堂一区二区三区四区| 看片在线看免费视频| 亚洲狠狠婷婷综合久久图片| 欧美性长视频在线观看| 久久精品亚洲av国产电影网| 午夜免费成人在线视频| 日本三级黄在线观看| 99在线人妻在线中文字幕| 无限看片的www在线观看| av网站免费在线观看视频| 精品一区二区三区视频在线观看免费 | 99精品久久久久人妻精品| 亚洲欧美日韩无卡精品| 色尼玛亚洲综合影院| 国产午夜精品久久久久久| 色婷婷久久久亚洲欧美| 午夜福利在线观看吧| 夜夜看夜夜爽夜夜摸 | 欧美 亚洲 国产 日韩一| 午夜免费激情av| 国产男靠女视频免费网站| 可以免费在线观看a视频的电影网站| 80岁老熟妇乱子伦牲交| 亚洲精品av麻豆狂野| 国产伦人伦偷精品视频| 激情在线观看视频在线高清| tocl精华| 丁香欧美五月| 久久影院123| 国产一区二区在线av高清观看| 欧美国产精品va在线观看不卡|