• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?

    2019-08-20 09:24:36HangXu徐航andQiangSun孫強
    Communications in Theoretical Physics 2019年8期
    關鍵詞:孫強

    Hang Xu(徐航)and Qiang Sun(孫強)

    1State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    2Particulate Fluids Processing Centre,Department of Chemical Engineering,The University of Melbourne,Parkville,VIC 3010,Australia

    AbstractThe fully developed mixed convection hybrid nanofluid flow in a vertical microchannel is examined in detail.The simplified hybrid model that omits the nonlinear terms due to the interaction of different nanoparticle volumetric fractions is derived and compared with the existing one.The generalized model describing hybrid nanofluid suspended with multiple kinds of solid particles is suggested.The argument that the corresponding nanofluid solutions obtained by the homogenous model can be recovered from the results of the regular problems through simple arithmetic operations is checked.Solutions in similarity form for this flow problem are formulated by means of a set of similarity variables.The effects of various parameters on important physical quantities are analyzed and discussed.

    Key words:hybrid nanofluid,vertical channel,mixed convection,slippery effect

    Nomenclature

    ?

    1 Introduction

    Many recent studies revealed that nanofluids have better heat transfer capability than regular fluids.Therefore it is possible to replace traditional heat transfer fluids by nanofluids in the design of various heat transfer systems such as cooling systems,heat regenerators,and heat exchangers.Choi[1]noticed that,by suspending nanometer-sized metallic particles in conventional heat transfer fluids,the resulting nanofluids hold higher thermal conductivities than those of currently used ones.Xuan and Li[2]attributed the heat transfer enhancement of nanofluids to the increase of thermal conductivity of the nanofluid.Eastman et al.[3]found that the particle shape has stronger effects on effective nanofluid thermal conductivity than particle size or particle thermal conductivity.Wen and Ding[4]speculated that possible reasons for the heat transfer enhancement of nanofluids are due to the migration of nanoparticles and the resulting disturbance of the boundary layer.Buongiorno[5]concluded that the Brownian diffusion and thermophoresis are dominant factors for heat enhancement within the boundary layer owing to the effect of the temperature gradient and thermophoresis.Other classic researches on nanofluids have been experimentally done by Pak and Cho,[6]Xie et al.,[7]Williams et al.[8]and numerically done by Tiwari and Das,[9]Oztop and Abu-Nada,[10]Raza et al.,[11]Khan,[12]Sajid et al.,[13]Sheikholeslami and Sadoughi,[14]Sheremet and Pop,[15]Kefayati[16]and Alsabery et al.[17]

    Some researchers made attempts to investigate the characters of nanofluids containing different kinds of nanoparticles.Suresh et al.[18]found that both thermal conductivity and viscosity of hybrid nanofluids increase with the nanoparticle volume concentration while the viscosity increase is substantially higher than the increase in thermal conductivity for an Al2O3-Cu hybrid nanofluid.The behaviours of hybrid nanofluids then were examined in detail by different researchers such as Esfe et al.,[19]Rostamian et al.[20]and Ebrahimi and Saghravani.[21]From modelling point of view,Devi and Devi[22]proposed a mathematical model to investigate the effects of Lorentz force over a three-dimensional stretching surface subject to Newtonian heating.Tayebi and Chamkha[23?24]considered natural convection in an annulus between two confocal elliptic cylinders and eccentric horizontal cylinders filled with a Cu-Al2O3/water hybrid nanofluid.Huminic and Huminic[25]examined the influence of hybrid nanofluids on the performances of elliptical tube.Rostami et al.[26]considered mixed convective stagnation-point flow of an aqueous silica Calumina hybrid nanofluid.

    This paper intends to analyze a fully developed mixed convection hybrid nanofluid flow in a vertical microchannel by means of a generalized hybrid nanofluid model.We are to simplify the Devi and Devi’s model[22]by omitting the nonlinear terms due to the interaction of different nanoparticle volumetric fractions.Then we extend Devi and Devi’s model[22]to the case that the hybrid nanofluids contain various kinds of nanoparticles.The argument by Magayari[27]that corresponding nanofluid results can be recovered from the solutions of already solved regular problems by simple arithmetic operations is then checked.The similarity solutions for this microchannel fl ow and heat transfer of a hybrid nanofluid are formulated by means of a set of similarity variables.It should be mentioned at this end,that the studies on hybrid nanofluids are still very new at this stage.There is no conclusive idea on how nanoparticles act on fluid flow and heat transfer.Complementary studies are urgently needed to understand the heat transfer characteristics of hybrid nanofluids,especially for those in suspension of multiple kinds of small particles.

    2 Generalized Hybrid Nanofluid Model

    In experimental and numerical studies on nanofluids’behaviours,it is a common practice to model their physical quantities by using simplified mathematical relations between the corresponding ones of base fluid and solid particles,as presented by many researchers such as Vajravelu et al.and[28]Devi and Devi.[22]Several experiments have been carried out to confirm the validity of such expressions for dilute nanofluids in suspension of one single kind of solid particles[6]and two types of mixed solid particles.[18]Devi and Devi[22]suggested a group of correlations for physical quantities of hybrid nanofluids.In their approach,they took the fluid containing one kind of nanoparitcles as the base fluid and the other kind of nanoparticles as the individual particles.The correlations of viscosity and thermal conductivity matched the experimental results given by Suresh et al.[18]

    In Devi and Devi’s approach,[22]there are nonlinear terms due to the interaction of two kinds of different nanoparticles.However,in dilute solutions in which the nanoparticle volumetric fractions are usually small,the effects of these nonlinear terms may not be significant. Therefore,we reasonably neglect the nonlinear terms in Devi and Devi’s model.[22]Our simplified model of hybrid nanofluid,as well as the classic nanofluid model and Devi and Devi’s model[22]are listed in Table 1 in which Type I denotes the traditional nanofluid model(nanofluid in suspension one kind of small particles),Types II and III,respectively,denote Devi and Devi’s hybrid nanofluid model[22]and our simplified hybrid nanofluid model(nanofluid in suspension two different kind of small particles).

    Devi and Devi’s approach[22]used the recurrence formulae to represent the viscosity,density,specific heat and thermal conductivity of the hybrid nanofluid corresponding to the n-th kinds of nanoparticles as

    and

    Table 1 Models of nanofluid and hybrid nanofluid.

    By neglecting the nonlinear terms in above correlations,we obtain

    Note that we keep the recurrence formula(5)for the thermal conductivity khnfsince the interactions between different particles can hardly be expressed using the Maxwell equation.Also,M=3 is chosen throughout this work that means that the particle shape is spherical.

    3 Mathematical Description

    Consider a mixed convection flow of a hybrid nanofluid in a constant porosity medium between two parallel vertical infinite walls separated by a distance of 2H.As shown in Fig.1,the Cartesian coordinate system(x,y)is chosen with the x-axis being along the walls and the y-axis being perpendicular to the walls.The temperatures on both walls are assumed to vary linearly along the height that are prescribed as T1+ax and T2+ax on the left and the right walls,respectively.Since the hydrodynamically fl ow is fully-developed,the velocity along the wall is only a function of y.Invoking the Boussinesq approximation,the governing equations are written as

    subject to the boundary conditions

    Fig.1 Physical sketch.

    It is easy to see from Eq.(12)that ?2p/?x?y=0.This indicates that?p/?x is a constant and that all terms on the right-hand side of Eq.(11)are only dependent on y.Based on this fact,we define the following variables

    where Ur=gβfKaH/νfis a reference velocity.

    Substituting Eq.(16)into Eqs.(10),(11),and(13),the continuity equation(10)is automatically satisfied,and the rest of equations are reduced to

    with the boundary conditions

    where

    4 Comparison Analysis Between Models

    We calculate the coefficients ε1,ε2,and ε3in Eqs.(17)and(18)by Type II and Type III hybrid nanofluid models listed in Table 1.The data regarding to the basic thermophysical properties of the base fluid and nanoparticles are given in Table 2 where the thermophysical properties of water is chosen at 25C.

    Table 2 Thermophysical properties of fluid and nanoparticles.

    Substituting the quantities in Table 2 into different hybrid nanofluid models,the values of ε1,ε2,and ε3can be obtained,as shown in Table 3.It can be seen from the table,when the solution is dilute,namely,the nanoparticle volumetric fractions are small,the difference between the values of ε1,ε2and ε3obtained by both models is imperceptible.Recalling the experimental results and modelling tests by Pak et al.[6]and Suresh et al.,[18]it is clear that the computational range of nanoparticle volumetric fractions listed in Table 3 is acceptable and widely used.As a result,we can infer that our simplified hybrid nanofluid model is meaningful for prediction of nanofluids’behaviours.Further verification shows that,for the cases that two kinds of nanoparticles coexist,each nanoparticle volumetric fraction needs to be small to keep the solution remaining dilute.

    Magyari[27]once found that,without consideration of velocity-slip effects,the governing equations of homogeneous nanofluid models can be reduced via elementary scaling transformations to the corresponding equations of the regular fluids.Thus he concluded that the corresponding nanofluid results can be recovered from the solutions of already solved problems with regular Newtonian fluids by simple arithmetic operations.

    Here,we would like to check if this applicability is valid on the hybrid nanofluid flow problems.We introduce the following scaling transformations:

    Substituting Eq.(21)into Eqs.(17)and(18),we obtain

    To keep Eqs.(22)and(23)invariant in forms,the two relationships below must hold:

    which leads to

    Equation(26)clearly indicates that,for the problem considered in this work,there is no alternative scaling transformation that can be used to obtain solutions from the existing results.We therefore are able to conclude that Mayari’s conclusion[27]on that nanofluid results can be recovered from the solutions of already solved regular Newtonian fluid problems by simple arithmetic operations is only valid for several special cases in nanofluid researches.

    Table 3 Computation of nanoparticles related parameters.?

    5 Results

    It is known that Eq.(17)contains an unknown constant σ,which requires an additional boundary condition.In the studies on channel flow problems,it is a common practice to sprecify the mass flow rate as a prescribed quantity.We thus obtain

    which can be simplified,by using the similarity variables(16),to

    where Umis the constant average flow velocity across the channel,and λ=2Um/Ur.For convenience,we let Um=Urwhich leads to λ=2.

    The homotopy analysis method(HAM)is used to solve this flow problem.Since the similar HAM procedures are available in Refs.[29–30],we omit the detailed process but just give the core information as shown in Table 4.

    To check the accuracy of our solutions,we define the following functions to evaluate errors:

    where

    When all physical parameters are prescribed,the cor-responding errors can be obtained.For example,if we set Ra=10,γ=1/100,K1=1,N1=1/10,N2= ?1/10,and θw=1/10,and prescribe ?1and ?2for a range of values,at a certain HAM computational order,the errors can be determined by Eq.(29)as shown in Table 5.

    Table 4 HAM computation related quantities.

    ?

    Fig.2 Comparisons of U(η)and θ(η)in the case of Ra=10,γ =1/100,K1=1,N1=1/10,N2= ?1/10,θw=1/10.Line with gradients:solutions by Devi and Devi’s model,[22]Line with circles:solutions by our model.(a)?1= ?2=1/10.(b)?1= ?2=1/10.(c)?1= ?2= ?3=3/100.(d)?1= ?2= ?3=3/100.

    Further to check the validity and accuracy of our simplified model,we compare our results of velocity and temperature profiles for a hybrid nanofluid in suspension of two types of nanoparticles with those given by Devi and Devi.[22]It can be seen in Figs.2(a)and 2(b)that very good agreement is found.Note that here Al2O3and Cu nanoparticles are chosen for comparison.As shown in Figs.2(a)and 2(b),we also notice that the results by our simplified hybrid nanofluid model match to those given by the generalized hybrid nanofluid model when three types of nanoparticles,namely,Al2O3,Cu and TiO2are employed.

    In our computation,it is found that the variation of nanoparticle volumetric fraction plays limited influence on velocity profiles while it has significant effect on the temperature profiles,as shown in Fig.3.This indicates that the increase of nanoparticle volumetric fraction can enhance heat transfer significantly.In another words,this also verifies the fact that the nanofluids have better thermal transport capability than traditional ones.

    Physically,the skin friction and the Nusselt number are important quantities to measure the fluid behaviours.Since the flow and heat transfer exhibit similar characters on both walls,we therefore only consider those quantities on the left wall.In this situation,they are defined by

    where

    Substituting similarity variables in Eq.(16)into Eq.(32),we obtain

    where Re=UmH/νnhfis the Reynolds number.

    Fig.3 Variation of(a)U(η)and(b) θ(η)with ?2for Ra=10, γ =1/100,K1=1,N1=1/10,N2= ?1/10,θw=1/10,?1=25/1000.

    To test the effects of the nanoparticle volumetric fractions ?1and ?2on various physical quantities,we select Al2O3and Cu nanoparticles in following analysis.As shown in Fig.4(a),for a certain value of ?1,the absolute value of the skin friction coefficient CfLreduces as ?2enlarges.Similarly,when ?2is prescribed,the absolute value of CfLdecreases as ?1evolves.This clearly shows that the nanofluids can effectively diminish the skin friction.The slip effects between the velocities of nanoparticles and the base fluid is the key factor to affect the Nusselt number.The trend of NuLvaries with ?2is similar to that of CfL,namely,when ?1is given,the increase of ?2causes the decrease of the absolute value of NuL,or verse visa,as shown in Fig.4(b).As concluded by Buongiorno,[5]the temperature difference between the walls and the fluid can alter the temperature gradient and thermophoresis,which could result in a significant decrease of viscosity within the boundary layer,thus leading to heat transfer enhancement.

    The effect of nanoparticle volumetric fractions on the pressure constant is shown in Fig.4(c).For a given value of ?1,it is found that the pressure decreases gradually as ?2grows.Same trend is found for the variation of the pressure constant σ with ?1at a fixed value of ?2.This reflects another aspect that the flow velocity reduces owing to the reduction of skin friction caused by the increase of nanoparticle volumetric fractions,either for nanofluids or hybrid nanofluids.

    In microchannel studies,the slip of the channel wall is of great importance to alter flow and heat transfer behaviours.Take the hybrid nanofluid containing Al2O3,Cu and TiO2nanopaticles as an example.As shown in Fig.5(a),the absolute value of the skin friction coefficient CfLdecreases monotonously as N1grows.However,the absolute value of the Nusselt number NuLincreases continuously as N1increases,as shown in Fig.5(b),while the pressure constant σ reduces gradually as N1enlarges,as shown in Fig.5(c).It is seen from Fig.6(a)that the increase of N1leads to the increase of the velocity near the left wall.This velocity variation leads to the enhancement of temperature in the channel,as presented in Fig.6(b).Physically,the increase of the slip length indicates the decrease of the skin friction,which leads to the increase of fl ow velocity near that wall.Nevertheless,due to the conservation of flow flux,the flow velocity far from the left wall decreases with N1increasing.

    Fig.4 Variation of(a)reduced CfL,(b)reduced NuLand(c) σ with ?2for some values of ?1in the case of Ra=10,γ=1/100,K1=1,N1=1/10,N2=?1/10,θw=1/10.

    Fig.5 Variation of(a)reduced CfL,(b)reduced NuLand(c)σ with N1in the case of Ra=10,γ=1/100,K1=1,N2=0,θw=1/10,and ?1= ?2= ?3=3/100.

    Fig.6 Variation of(a)U(η)and(b)θ(η)with N1in the case of Ra=10,γ =1/100,K1=1,N2=0,θw=1/10,and ?1= ?2= ?3=3/100.

    6 Conclusion

    The generalized hybrid nanofluid model and its simplifi ed form have been proposed to study the flow and heat transfer behaviours of a hybrid nanofluid convection in a vertical microchannel.It has been found that when the solution is dilute,our simplified model can well predict the flow and heat transfer behaviours of hybrid nanofluids.The argument by Magyari[27]with regards to the homogenous model for expressions of nanofluid solutions by the results of already solved regular Newtonian fluid problems via simple arithmetic operations has been found problematic when it is applied to hybrid nanofluid flows.The effects of various parameters on important physical quantities are analysed and discussed with the following conclusions can be reached:

    (i) The variations of nanoparticle volumetric fractions have more obvious effects on temperature distribution than on velocity distribution.

    (ii)The nanoparticle volumetric fractions play a significant role on altering flow and heat transfer behaviours.

    (iii)The slip effect of the channel wall are of great importance to affect the flow and heat transfer behaviours.

    猜你喜歡
    孫強
    Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering
    Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    Effects of W6+occupying Sc3+on the structure,vibration,and thermal expansion properties of scandium tungstate?
    求解線性規(guī)劃問題的常規(guī)思路
    孫強作品
    我送男友3600萬,他卻拿錢悅前妻
    老公愛車勝過愛我
    婦女生活(2017年9期)2017-09-13 20:09:03
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    偷來的靠山
    国产av精品麻豆| 熟女人妻精品中文字幕| 日本与韩国留学比较| 色网站视频免费| 尾随美女入室| 黑人巨大精品欧美一区二区蜜桃 | 成年人午夜在线观看视频| 中文天堂在线官网| 日本爱情动作片www.在线观看| 80岁老熟妇乱子伦牲交| 国产综合精华液| 纵有疾风起免费观看全集完整版| 99热6这里只有精品| 精品熟女少妇av免费看| av在线播放精品| 久久久久久久国产电影| 国产午夜精品久久久久久一区二区三区| 免费在线观看成人毛片| 深夜a级毛片| 超碰97精品在线观看| 美女主播在线视频| 亚洲精品乱码久久久v下载方式| 亚洲精品日韩av片在线观看| 2022亚洲国产成人精品| 国产 一区精品| 2022亚洲国产成人精品| av免费观看日本| 成人黄色视频免费在线看| 国国产精品蜜臀av免费| 久久久久国产精品人妻一区二区| 国产精品久久久久久精品电影小说| 日韩 亚洲 欧美在线| 99久久人妻综合| 亚洲,欧美,日韩| 大话2 男鬼变身卡| 国产男女内射视频| av女优亚洲男人天堂| 丝袜喷水一区| 亚洲av二区三区四区| 3wmmmm亚洲av在线观看| 国产精品久久久久久av不卡| 亚洲av在线观看美女高潮| 国产欧美亚洲国产| 亚洲美女视频黄频| 好男人视频免费观看在线| 亚洲国产成人一精品久久久| 国产精品.久久久| 国产 一区精品| 一级二级三级毛片免费看| 国产成人aa在线观看| 男人添女人高潮全过程视频| a级毛片在线看网站| 一级片'在线观看视频| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲 | 韩国高清视频一区二区三区| 精品少妇黑人巨大在线播放| 哪个播放器可以免费观看大片| 美女xxoo啪啪120秒动态图| 少妇人妻精品综合一区二区| 久久av网站| freevideosex欧美| 一级毛片久久久久久久久女| 亚洲av不卡在线观看| 伦精品一区二区三区| 久久久午夜欧美精品| 伦理电影免费视频| 秋霞在线观看毛片| 99re6热这里在线精品视频| 亚洲精品久久久久久婷婷小说| 精品一区在线观看国产| 亚洲av综合色区一区| 人人妻人人爽人人添夜夜欢视频 | 高清欧美精品videossex| 高清在线视频一区二区三区| 男女免费视频国产| 久久久国产一区二区| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 色网站视频免费| 99热网站在线观看| 男人爽女人下面视频在线观看| 一本一本综合久久| 午夜精品国产一区二区电影| 亚洲成色77777| 久久久久久久久久久久大奶| 又大又黄又爽视频免费| 久久97久久精品| 男人狂女人下面高潮的视频| 成人亚洲精品一区在线观看| 免费不卡的大黄色大毛片视频在线观看| 大片免费播放器 马上看| 亚洲精品乱码久久久v下载方式| 麻豆成人av视频| 中文欧美无线码| 成人影院久久| 天堂俺去俺来也www色官网| 亚洲无线观看免费| 少妇人妻 视频| 18禁在线无遮挡免费观看视频| 国产在线一区二区三区精| 久久久久久久久久人人人人人人| av福利片在线| 美女内射精品一级片tv| 涩涩av久久男人的天堂| 久久久久久久久久人人人人人人| 男女边摸边吃奶| 99久久中文字幕三级久久日本| 亚洲综合精品二区| 中文字幕人妻熟人妻熟丝袜美| 精品人妻一区二区三区麻豆| 夜夜爽夜夜爽视频| 日韩一本色道免费dvd| 搡老乐熟女国产| 天堂俺去俺来也www色官网| 欧美人与善性xxx| 黄片无遮挡物在线观看| 亚洲婷婷狠狠爱综合网| 国产成人精品一,二区| 两个人的视频大全免费| 成人影院久久| 国产深夜福利视频在线观看| 天天操日日干夜夜撸| 精品久久国产蜜桃| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| 午夜av观看不卡| 天美传媒精品一区二区| 乱人伦中国视频| 女性生殖器流出的白浆| freevideosex欧美| 久久久久久伊人网av| 国产视频首页在线观看| 免费观看无遮挡的男女| 黑人猛操日本美女一级片| 精品少妇内射三级| 亚洲欧美中文字幕日韩二区| 熟妇人妻不卡中文字幕| 久热这里只有精品99| 国产成人一区二区在线| 色94色欧美一区二区| 久久久久久久久久久久大奶| 国产精品偷伦视频观看了| 最近最新中文字幕免费大全7| 视频中文字幕在线观看| 亚洲av免费高清在线观看| 亚洲av综合色区一区| 久久久久久久大尺度免费视频| 成年女人在线观看亚洲视频| 免费看不卡的av| 黄色日韩在线| freevideosex欧美| 少妇人妻久久综合中文| 日韩中文字幕视频在线看片| 亚洲国产精品一区三区| 国产精品熟女久久久久浪| 国产精品久久久久久久久免| 午夜影院在线不卡| 久久久久国产网址| 亚洲欧美精品专区久久| 夫妻午夜视频| 精品亚洲乱码少妇综合久久| 一级毛片黄色毛片免费观看视频| 99久久中文字幕三级久久日本| 精品少妇内射三级| 欧美3d第一页| 夜夜爽夜夜爽视频| 99精国产麻豆久久婷婷| 日日啪夜夜撸| 女人精品久久久久毛片| 亚洲欧美日韩卡通动漫| 91精品伊人久久大香线蕉| 晚上一个人看的免费电影| 午夜免费观看性视频| 日本免费在线观看一区| 国产成人免费观看mmmm| 热re99久久国产66热| 国产精品一二三区在线看| h视频一区二区三区| 欧美区成人在线视频| 黄色日韩在线| 在线播放无遮挡| 亚洲丝袜综合中文字幕| 一个人免费看片子| 91精品国产九色| 久久久久久久精品精品| 亚洲美女黄色视频免费看| 人妻夜夜爽99麻豆av| 伊人亚洲综合成人网| 波野结衣二区三区在线| 一级毛片黄色毛片免费观看视频| 在线天堂最新版资源| 欧美三级亚洲精品| 成人毛片60女人毛片免费| 亚洲美女黄色视频免费看| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩卡通动漫| 蜜桃久久精品国产亚洲av| 欧美区成人在线视频| 色婷婷av一区二区三区视频| 亚洲婷婷狠狠爱综合网| 欧美日韩av久久| 秋霞在线观看毛片| a 毛片基地| 国产一级毛片在线| 国产色婷婷99| 99re6热这里在线精品视频| 国产精品人妻久久久久久| 亚洲一区二区三区欧美精品| a级毛片免费高清观看在线播放| 国产老妇伦熟女老妇高清| 久久国内精品自在自线图片| 色哟哟·www| 免费观看无遮挡的男女| 精品少妇久久久久久888优播| 国产精品熟女久久久久浪| 女的被弄到高潮叫床怎么办| 成人美女网站在线观看视频| 亚洲国产日韩一区二区| 久久久久久久久久久久大奶| 日韩中文字幕视频在线看片| av卡一久久| 麻豆乱淫一区二区| 中文在线观看免费www的网站| 国产在线免费精品| 免费高清在线观看视频在线观看| 2018国产大陆天天弄谢| 啦啦啦中文免费视频观看日本| 亚洲精品第二区| 成人午夜精彩视频在线观看| 寂寞人妻少妇视频99o| 在线观看三级黄色| 久久青草综合色| 国产一区有黄有色的免费视频| 深夜a级毛片| 在线 av 中文字幕| 精品国产一区二区三区久久久樱花| 一级毛片电影观看| 精品久久久噜噜| 国产熟女午夜一区二区三区 | 久久99热6这里只有精品| 一级毛片黄色毛片免费观看视频| 少妇猛男粗大的猛烈进出视频| av视频免费观看在线观看| 日本vs欧美在线观看视频 | 久久精品国产自在天天线| 亚洲欧美中文字幕日韩二区| av.在线天堂| 人人妻人人添人人爽欧美一区卜| 国产在线男女| 国产精品人妻久久久影院| 欧美日韩亚洲高清精品| 久久久午夜欧美精品| 一本大道久久a久久精品| 亚洲性久久影院| 中文精品一卡2卡3卡4更新| 久热久热在线精品观看| 婷婷色麻豆天堂久久| 日韩欧美精品免费久久| 国产在线视频一区二区| 精品一区在线观看国产| 晚上一个人看的免费电影| 插逼视频在线观看| av在线播放精品| 秋霞伦理黄片| 国产一区亚洲一区在线观看| 韩国av在线不卡| 中文资源天堂在线| 亚州av有码| 51国产日韩欧美| 97超碰精品成人国产| 一级毛片 在线播放| 嘟嘟电影网在线观看| 久久久久久久久久久久大奶| 日韩亚洲欧美综合| 国产有黄有色有爽视频| 91精品国产国语对白视频| 成人午夜精彩视频在线观看| 一级片'在线观看视频| 老熟女久久久| 国产一区二区在线观看日韩| 国产一级毛片在线| 91aial.com中文字幕在线观看| 亚洲精品日本国产第一区| 亚洲av二区三区四区| 人人澡人人妻人| 秋霞伦理黄片| 九色成人免费人妻av| 伊人久久国产一区二区| 日韩不卡一区二区三区视频在线| 中文字幕亚洲精品专区| 国产一区二区三区av在线| 狂野欧美白嫩少妇大欣赏| 高清午夜精品一区二区三区| 日韩欧美精品免费久久| 国产男女超爽视频在线观看| 久久韩国三级中文字幕| 国产在线视频一区二区| 日韩成人av中文字幕在线观看| 国产在线男女| 免费av中文字幕在线| 丁香六月天网| 日韩伦理黄色片| 青春草国产在线视频| 日本免费在线观看一区| 亚洲精品国产av成人精品| 国产伦在线观看视频一区| 夫妻性生交免费视频一级片| 在线观看一区二区三区激情| 看免费成人av毛片| 精品久久久久久电影网| 麻豆成人午夜福利视频| 免费看不卡的av| 三级国产精品欧美在线观看| 国产亚洲最大av| av不卡在线播放| 久久久久久久亚洲中文字幕| 国产精品一区二区性色av| 搡老乐熟女国产| 99热这里只有精品一区| 在线天堂最新版资源| a级毛片免费高清观看在线播放| 国产精品伦人一区二区| 国产高清不卡午夜福利| 午夜激情久久久久久久| 妹子高潮喷水视频| 国产av码专区亚洲av| 一边亲一边摸免费视频| 久久99热6这里只有精品| 色94色欧美一区二区| √禁漫天堂资源中文www| 91精品国产九色| 国产成人精品久久久久久| 丰满乱子伦码专区| 国产精品蜜桃在线观看| 亚洲国产精品一区二区三区在线| 亚洲欧洲日产国产| 欧美日韩亚洲高清精品| 亚洲欧美一区二区三区黑人 | 久久久久久久久久久久大奶| 搡老乐熟女国产| 蜜桃久久精品国产亚洲av| 亚洲欧美一区二区三区黑人 | 美女cb高潮喷水在线观看| 色5月婷婷丁香| 日韩精品有码人妻一区| kizo精华| 97超视频在线观看视频| 亚洲国产精品成人久久小说| 日韩熟女老妇一区二区性免费视频| 欧美精品国产亚洲| 久久国产乱子免费精品| 美女福利国产在线| 久久这里有精品视频免费| 欧美日韩在线观看h| 中国国产av一级| 水蜜桃什么品种好| 国产一区有黄有色的免费视频| av福利片在线观看| 五月伊人婷婷丁香| 人人澡人人妻人| 国产 精品1| 精品久久久噜噜| 插逼视频在线观看| 亚洲怡红院男人天堂| 免费观看性生交大片5| 日韩一区二区三区影片| 午夜免费观看性视频| 国产精品一区二区性色av| 丰满人妻一区二区三区视频av| 久久午夜福利片| 久久久欧美国产精品| 亚洲国产av新网站| 日本黄色片子视频| 交换朋友夫妻互换小说| 精品久久久精品久久久| 日本黄色日本黄色录像| 国产精品欧美亚洲77777| 久久精品国产亚洲av天美| 日韩av在线免费看完整版不卡| 国产精品一区www在线观看| 久久热精品热| 建设人人有责人人尽责人人享有的| 日产精品乱码卡一卡2卡三| 少妇人妻精品综合一区二区| 亚洲美女黄色视频免费看| 亚洲精品456在线播放app| 欧美日韩精品成人综合77777| 在线亚洲精品国产二区图片欧美 | 久久久国产一区二区| 一级毛片aaaaaa免费看小| 免费av中文字幕在线| 18+在线观看网站| 丰满迷人的少妇在线观看| 色5月婷婷丁香| 日本av手机在线免费观看| 免费大片黄手机在线观看| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av涩爱| 亚洲色图综合在线观看| 黑丝袜美女国产一区| 丰满少妇做爰视频| 制服丝袜香蕉在线| 狂野欧美激情性bbbbbb| 国产精品成人在线| 精品99又大又爽又粗少妇毛片| 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 午夜激情久久久久久久| 97超碰精品成人国产| 一级毛片久久久久久久久女| 性高湖久久久久久久久免费观看| 欧美日韩国产mv在线观看视频| av.在线天堂| 精品一区二区三区视频在线| 欧美亚洲 丝袜 人妻 在线| 亚洲精品中文字幕在线视频 | 妹子高潮喷水视频| 又大又黄又爽视频免费| 又黄又爽又刺激的免费视频.| 午夜激情久久久久久久| 日韩成人伦理影院| 亚洲欧美日韩卡通动漫| 你懂的网址亚洲精品在线观看| 中文乱码字字幕精品一区二区三区| 日韩一本色道免费dvd| 丰满饥渴人妻一区二区三| 一区在线观看完整版| 丝瓜视频免费看黄片| 日韩大片免费观看网站| 久久久精品免费免费高清| 男女国产视频网站| 日本黄色日本黄色录像| 亚洲va在线va天堂va国产| 两个人的视频大全免费| 在线观看www视频免费| 99热国产这里只有精品6| 精品亚洲成a人片在线观看| 国产亚洲91精品色在线| 午夜视频国产福利| 黄色怎么调成土黄色| 亚洲经典国产精华液单| 热99国产精品久久久久久7| 亚洲精品乱码久久久久久按摩| 性色av一级| 欧美bdsm另类| 欧美精品高潮呻吟av久久| 亚洲欧洲日产国产| 国产在线视频一区二区| 国产在视频线精品| 伊人亚洲综合成人网| 欧美丝袜亚洲另类| 亚洲国产精品专区欧美| 久久久久久久国产电影| 亚洲国产欧美在线一区| 国产精品人妻久久久久久| 黄色怎么调成土黄色| av天堂中文字幕网| 国产精品一区www在线观看| 日本与韩国留学比较| 内地一区二区视频在线| 有码 亚洲区| 少妇被粗大的猛进出69影院 | 3wmmmm亚洲av在线观看| 丝袜喷水一区| 久久午夜综合久久蜜桃| 女性生殖器流出的白浆| 成年人午夜在线观看视频| 欧美亚洲 丝袜 人妻 在线| 狠狠精品人妻久久久久久综合| 国产精品国产三级国产av玫瑰| 久热这里只有精品99| 色视频在线一区二区三区| 亚洲成人av在线免费| 在现免费观看毛片| 91aial.com中文字幕在线观看| 乱人伦中国视频| 国产亚洲91精品色在线| 99国产精品免费福利视频| 六月丁香七月| 欧美精品一区二区大全| 晚上一个人看的免费电影| 一本—道久久a久久精品蜜桃钙片| 少妇的逼水好多| 最近中文字幕高清免费大全6| 国产av码专区亚洲av| 狂野欧美白嫩少妇大欣赏| av福利片在线| 精品一区二区三卡| 精品少妇久久久久久888优播| 国产有黄有色有爽视频| 日韩一区二区三区影片| 能在线免费看毛片的网站| 日韩欧美 国产精品| 丰满饥渴人妻一区二区三| 国内揄拍国产精品人妻在线| 成人综合一区亚洲| 久久99热这里只频精品6学生| 国产熟女欧美一区二区| 青春草国产在线视频| 国产一区二区在线观看av| 亚洲丝袜综合中文字幕| 日日爽夜夜爽网站| 国产精品一区二区性色av| 国产无遮挡羞羞视频在线观看| 桃花免费在线播放| 久久亚洲国产成人精品v| 王馨瑶露胸无遮挡在线观看| 亚洲激情五月婷婷啪啪| 久久久久久人妻| 18禁裸乳无遮挡动漫免费视频| 欧美一级a爱片免费观看看| 欧美日韩视频高清一区二区三区二| 欧美日韩综合久久久久久| 精品人妻熟女av久视频| 国产极品粉嫩免费观看在线 | 精品人妻熟女毛片av久久网站| 欧美日韩国产mv在线观看视频| 亚洲精品乱码久久久久久按摩| 免费黄网站久久成人精品| 有码 亚洲区| 国产一区二区三区综合在线观看 | 成人18禁高潮啪啪吃奶动态图 | 日韩欧美一区视频在线观看 | 人妻制服诱惑在线中文字幕| 啦啦啦视频在线资源免费观看| 欧美激情国产日韩精品一区| 中文字幕av电影在线播放| 男女免费视频国产| 一级av片app| 一本—道久久a久久精品蜜桃钙片| 国产午夜精品一二区理论片| 国产免费视频播放在线视频| 国内少妇人妻偷人精品xxx网站| 另类精品久久| 女人精品久久久久毛片| 在线播放无遮挡| 99九九在线精品视频 | 国产精品伦人一区二区| 免费不卡的大黄色大毛片视频在线观看| 欧美老熟妇乱子伦牲交| 成人无遮挡网站| 22中文网久久字幕| 极品教师在线视频| 日韩三级伦理在线观看| 国产精品99久久久久久久久| 亚洲综合精品二区| 免费高清在线观看视频在线观看| 久久久久久久久久久丰满| 欧美另类一区| 少妇高潮的动态图| 曰老女人黄片| 最新中文字幕久久久久| 久久这里有精品视频免费| 啦啦啦视频在线资源免费观看| 亚洲精品aⅴ在线观看| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 国产欧美亚洲国产| 亚洲精品日本国产第一区| 日本午夜av视频| 亚洲三级黄色毛片| 精品少妇久久久久久888优播| 精品熟女少妇av免费看| 91精品国产九色| 亚洲自偷自拍三级| 免费看光身美女| 中文字幕精品免费在线观看视频 | 国产精品一区二区在线观看99| 51国产日韩欧美| 桃花免费在线播放| 一个人看视频在线观看www免费| 精品一区二区三区视频在线| 精品国产一区二区久久| av专区在线播放| 午夜91福利影院| 日本av免费视频播放| 日韩精品免费视频一区二区三区 | 97超视频在线观看视频| 欧美日本中文国产一区发布| 下体分泌物呈黄色| 色婷婷av一区二区三区视频| 欧美人与善性xxx| 久久久久精品性色| 日韩不卡一区二区三区视频在线| 日韩在线高清观看一区二区三区| 99久久精品国产国产毛片| 哪个播放器可以免费观看大片| 国产伦精品一区二区三区四那| 成人无遮挡网站| 欧美日韩视频精品一区| 日韩电影二区| 王馨瑶露胸无遮挡在线观看| 欧美日韩在线观看h| 精品一品国产午夜福利视频| 99久久综合免费| 欧美精品一区二区免费开放| 中文字幕久久专区| 王馨瑶露胸无遮挡在线观看| 国产一区二区三区av在线| 国产欧美日韩精品一区二区| 一区二区三区四区激情视频| 夜夜看夜夜爽夜夜摸| 水蜜桃什么品种好| 亚洲经典国产精华液单| 色哟哟·www| 秋霞伦理黄片| 免费观看无遮挡的男女| 大话2 男鬼变身卡| 国产精品一二三区在线看| 亚洲美女视频黄频| 中文字幕久久专区| 青青草视频在线视频观看| 性高湖久久久久久久久免费观看| 午夜福利影视在线免费观看|