倪安安,王育飛,薛花
(上海電力大學(xué)電氣工程學(xué)院,上海市楊浦區(qū) 200090)
近年來,光伏發(fā)電在能源供應(yīng)體系中的作用愈加凸顯[1]。然而,由于光伏發(fā)電輸出功率影響因素多、耦合復(fù)雜、隨機性強且變化頻率快,導(dǎo)致光伏發(fā)電輸出功率預(yù)測難度大,準(zhǔn)確率難以滿足電網(wǎng)實際需求,部分地區(qū)棄光現(xiàn)象嚴(yán)重,給電力系統(tǒng)的調(diào)峰調(diào)頻和并網(wǎng)消納帶來一定挑戰(zhàn)。利用儲能系統(tǒng)對光伏發(fā)電輸出功率波動進行實時平抑,可增加光伏發(fā)電的利用率,保證電網(wǎng)安全穩(wěn)定運行;提高光伏發(fā)電輸出功率預(yù)測準(zhǔn)確度能有效幫助儲能系統(tǒng)制定平滑控制策略[2]。
目前,針對光伏發(fā)電輸出功率預(yù)測的研究方法總體可分為物理法、統(tǒng)計法和元啟發(fā)式學(xué)習(xí)法[3]。其中物理法基于氣象因素和光伏組件參數(shù)間光電能量轉(zhuǎn)換的物理聯(lián)系進行預(yù)測,建模過程復(fù)雜且要求氣象數(shù)據(jù)質(zhì)量較高[4];統(tǒng)計法基于光伏電站歷史數(shù)據(jù)的統(tǒng)計學(xué)規(guī)律,應(yīng)用概率統(tǒng)計、聚類和譜分析等方法展開預(yù)測,建模過程簡單,所需信息易于獲取,在實際工程中應(yīng)用前景廣闊[5-7];元啟發(fā)式學(xué)習(xí)方法通過挖掘光伏發(fā)電輸出功率、氣象等歷史數(shù)據(jù)的變化規(guī)律,基于人工智能算法尋找歷史數(shù)據(jù)與未來光伏發(fā)電輸出功率之間的映射關(guān)系[8]。目前利用數(shù)學(xué)方法模擬神經(jīng)元活動的誤差反向傳輸(back propagation, BP)和長短期記憶(long short-term memory, LSTM)神 經(jīng) 網(wǎng) 絡(luò) 方 法,以及利用核函數(shù)進行回歸預(yù)測的支持向量機(support vector machine, SVM)、最小二乘支持向量機(least squares support vector machine, LSSVM)方 法,已在光伏預(yù)測領(lǐng)域得到廣泛應(yīng)用[9-11]。其中SVM利用支持向量樣本集決定預(yù)測結(jié)果,具有一定的魯棒性,但計算復(fù)雜、耗時長。LSSVM利用誤差變量的正則項確定最終的決策函數(shù),一定程度上降低了SVM支持向量樣本集的求解難度,提高了收斂速度。為進一步提高這類預(yù)測方法的穩(wěn)定性和適用性,通常采用尋優(yōu)算法優(yōu)化參數(shù)以獲得組合預(yù)測方法,提高算法預(yù)測準(zhǔn)確度[12]。然而,這些方法并未從根本上解決SVM懲罰系數(shù)難以確定、核函數(shù)受Mercer條件限制的問題。文獻[13]提出一種基于貝葉斯框架的稀疏有監(jiān)督學(xué)習(xí)方法相關(guān)向量機(relevance vector machine, RVM),RVM可以在先驗參數(shù)結(jié)構(gòu)下結(jié)合自相關(guān)判定,移除統(tǒng)計學(xué)上不相關(guān)的數(shù)據(jù)點獲得稀疏化的概率方法,相較SVM極大地減少了核函數(shù)的運算量,具有良好的稀疏性、泛化能力,已在趨勢預(yù)測領(lǐng)域得到一定的應(yīng)用[14]??紤]到RVM的泛化能力受核函數(shù)影響,采用尋優(yōu)算法迭代RVM的解析解獲得最優(yōu)核函數(shù)參數(shù),能進一步提高預(yù)測方法準(zhǔn)確度和適應(yīng)性。鯨魚優(yōu)化算法(whale optimization algorithm, WOA)是通過模擬座頭鯨捕殺獵物行為設(shè)計的一種啟發(fā)式算法,具有結(jié)構(gòu)簡單、調(diào)節(jié)參數(shù)少且全局尋優(yōu)能力強等優(yōu)點[15],因此,基于WOA優(yōu)化RVM對光伏發(fā)電輸出功率進行預(yù)測是一種提高預(yù)測準(zhǔn)確度的可能途徑。文獻[16]通過分析光伏序列的混沌特性,利用混沌相空間重構(gòu)方法挖掘光伏時間序列的動力學(xué)本質(zhì),結(jié)合徑向基神經(jīng)網(wǎng)絡(luò)預(yù)測光伏發(fā)電輸出功率,表明混沌理論可用于提高光伏發(fā)電輸出功率預(yù)測準(zhǔn)確度。在此基礎(chǔ)上,文獻[17]將光伏電站氣象因素和混沌特征結(jié)合,優(yōu)化方法輸入量品質(zhì),同時采用雙模式布谷鳥算法改進小波神經(jīng)網(wǎng)絡(luò),進一步提高預(yù)測準(zhǔn)確度。
為提高方法適應(yīng)性、改善預(yù)測準(zhǔn)確度,本文通過提取光伏時間序列混沌特征,挖掘其隱藏的動力學(xué)信息與預(yù)測方法間的物理聯(lián)系,提出一種基于光伏發(fā)電輸出功率混沌特征改進的WOA-RVM預(yù)測方法。建模過程簡單,具有一定的實際應(yīng)用潛力。
為從光伏發(fā)電輸出功率時間序列中得到有用的混沌特征進行分析,需對原始序列進行相空間重構(gòu),將光伏發(fā)電輸出功率原始的動力學(xué)行為以混沌吸引子形態(tài)在相空間內(nèi)無奇異地呈現(xiàn)出來。相空間重構(gòu)的關(guān)鍵在于選取合適的混沌參數(shù):時間延遲 τ和嵌入維數(shù)m[18]。
1.1.1 基于偽近鄰法計算嵌入維數(shù)
混沌對初值具有敏感依賴性,初值的微小差異會導(dǎo)致吸引子軌道演化的巨大差別,影響預(yù)測準(zhǔn)確度。由于光伏序列在采集過程中難免混入噪聲,為在m維空間內(nèi)恢復(fù)體現(xiàn)光伏系統(tǒng)規(guī)律性的混沌吸引子,采用抗噪性能較好的偽近鄰法計算m。取光伏序列 X 中任意相點 Xi,則在高維相空間內(nèi)存在其最鄰近相點 XiNN,相點間歐式距離為 Ri,其中
當(dāng)相空間的維數(shù)增加到m+1維時,兩點間的距離變?yōu)?Ri+1,兩鄰近點之間的距離變化為:
若 Ri+1大 于 Ri,則認(rèn)為混沌吸引子中兩個不相鄰的點投影到低維軌道上變成相鄰的兩點,稱這兩個點為偽近鄰點,即這樣的近鄰點是虛設(shè)的。真正的近鄰點距離為 Rm, 定義兩鄰近點距離與 Rm的比率為:
式中:ai為偽近鄰率,當(dāng)兩鄰近點距離不隨維度m增大而變化時,即 Ri+1與 Ri相等。通過迭代 Xi和XiNN的值, ai和設(shè)定判據(jù)的偽近鄰率同時到達零點,此時對應(yīng)的m即為最小嵌入維數(shù)。
1.1.2 基于復(fù)自相關(guān)法計算時間延遲
時間延遲 τ為延遲坐標(biāo),決定吸引子的耗散程度,即光伏序列各時刻點的相關(guān)性。由于光伏系統(tǒng)是復(fù)雜的非線性系統(tǒng),故采用復(fù)自相關(guān)法計算τ[19]。光伏序列 X 的復(fù)自相關(guān)函數(shù)Cτ定義如下:
式中:xk為k時刻的光伏發(fā)電輸出功率,N=n?(m?1)τ為 相點總數(shù),xˉ為樣本均值。理論上所有大于或等于 τ處,復(fù)自相關(guān)函數(shù)為0。
相空間重構(gòu)后得到的相軌跡矩陣如下式所示:
RVM可以有效解決小樣本、高維、非線性系統(tǒng)的回歸問題,故在建立高維空間內(nèi)光伏序列的動力學(xué)方法基礎(chǔ)上,采用RVM構(gòu)造預(yù)測方法。
式中: ω0為 方法的偏差; ω=(ω0,ω1,···,ωn)為權(quán)值,假設(shè)其服從 (0,α?1)高 斯分布,每一個權(quán)值ωi定義高斯分布的先驗概率分布來約束最大似然估計超參數(shù)α,通過跟蹤過去的評估結(jié)果,選擇合適的 α來評估泛化能力,實現(xiàn)方法的回歸擬合;εi為獨立分布的高斯白噪聲; k(x,xi)為徑向基(RBF)核函數(shù),又稱為高斯核函數(shù),其表達式如下:
式中:δ為高斯核核寬,用訓(xùn)練向量參數(shù)化的核函數(shù)來定義基函數(shù) ?(xi)≡k(x,xi),RVM基函數(shù)矩陣 為 Φ=[Φ(x1),Φ(x2),···,Φ(xN)]T。 其 中,Φ(xi)=[1,k(xi,x1),k(xi,x2),···k(xi,xN)]T。
根據(jù)相軌跡矩陣,構(gòu)建預(yù)測方法的輸入和輸出變量如表1所示,即將相空間中的第k個相點作為輸入變量,將第k+1個相點的最后一維作為輸出變量。
根據(jù)輸入和輸出之間的映射關(guān)系,基函數(shù)矩陣變?yōu)椋?/p>
式中: p=k+(m?1)τ。
核寬 δ愈大,徑向范圍愈大,若超出這一范圍,高斯核函數(shù)快速衰減至0,RVM核函數(shù)失去泛化能力,因此需要根據(jù)光伏序列的相軌跡矩陣調(diào)整核寬參數(shù)。隨著維度的增加,通過高斯核函數(shù)暴力枚舉迭代得到RVM核參數(shù),將增加時間復(fù)雜度。各向異性高斯核通過提取同一緯度樣本的歐式距離來設(shè)定核參數(shù),其效果優(yōu)于傳統(tǒng)高斯核的特征選擇[20]。歐氏距離
可見,隨著維度的增加,光伏相空間矩陣的歐式距離d增大,為使高斯核函數(shù)工作在限定范圍內(nèi),通過將各個相點的歐式距離作為核寬賦值給對應(yīng)的基函數(shù)矩陣,采用各向異性高斯核自適應(yīng)確定高斯核核寬,即核函數(shù)徑向范圍,核函數(shù)表達式如下:
表1 預(yù)測方法的輸入變量與輸出變量Table 1 Input and output variables of forecasting method
式中: j∈[0,m?1], δk=dk。
為提高RVM方法在各典型天氣下的適應(yīng)性,采用WOA優(yōu)化RVM核函數(shù)的核寬和最大似然估計超參數(shù)α,WOA尋優(yōu)步驟為:
1)包圍獵物。
WOA算法通過搜索代理包圍目標(biāo)來尋找最佳位置,這一行為可由如下方程表示:
2)泡泡網(wǎng)捕食。
通過式(13)螺旋更新位置:
式中,b是定義對數(shù)螺旋形狀的常量系數(shù);l是屬于 [?1,1]區(qū) 間的隨機數(shù);是第i次迭代時與獵物的距離。
3)搜索獵物。
接著,建立基于WOA優(yōu)化的RVM預(yù)測方法,其流程如圖1所示。
具體實現(xiàn)步驟如下:
1) 確定WOA中搜索代理數(shù)量 magent為3,單個搜索代理最大尋優(yōu)次數(shù)為1000,最大迭代次數(shù)Tmax為 20,尋優(yōu)參數(shù)上限 ub為 20、 下限 lb為 210;
圖1 基于WOA優(yōu)化的RVM預(yù)測方法Fig.1 WOA-optimization based RVM forecasting method
2)初始化鯨群位置,并根據(jù)RVM預(yù)測方法,計算初始的預(yù)測值,以最小均方差作為適應(yīng)度函數(shù),然后根據(jù)式(15)計算出每個個體的適應(yīng)度值。
6)以真實值和預(yù)測值的最小均方差作為適應(yīng)度值,重復(fù)步驟3)、4)、5),達到最大迭代次數(shù)時,輸出全局最優(yōu)解作為RVM方法的核函數(shù)參數(shù),得到最終的WOA-RVM預(yù)測方法。
為進一步提高RVM的回歸擬合能力,基于光伏發(fā)電輸出功率混沌特征的提取,利用WOA算法對RVM核函數(shù)參數(shù)進行尋優(yōu),建立一種改進的WOA-RVM光伏發(fā)電輸出功率組合預(yù)測方法。具體流程如圖2所示。首先,基于光伏發(fā)電輸出功率時間混沌特征提取重構(gòu)相空間,恢復(fù)原始序列混沌吸引子動力學(xué)演化軌跡;接著,基于相軌跡矩陣自適應(yīng)確定RVM高斯核徑向范圍;然后,選取合適的訓(xùn)練集和預(yù)測集,利用組合預(yù)測方法進行光伏發(fā)電輸出功率超短期預(yù)測。
圖2 基于混沌特征改進的WOA-RVM預(yù)測方法Fig.2 The forecasting method based on chaotic characteristic-improved whale optimization algorithm and relevance vector machine
為驗證所提方法在光伏發(fā)電輸出功率超短期預(yù)測上的有效性和優(yōu)越性,選擇美國國家標(biāo)準(zhǔn)與技術(shù)研究所(NIST)提供的光伏陣列61 天出力數(shù)據(jù)進行仿真[21]。采樣時段為6:00—19:00,采樣步長5 min,一天共157個采樣點,光伏陣列額定功率243 kW,在Matlab 2016a環(huán)境下分析5種典型天氣下的光伏發(fā)電輸出功率超短期預(yù)測效果。
分別采用偽近鄰法和復(fù)自相關(guān)函數(shù)法確定混沌相空間重構(gòu)參數(shù),統(tǒng)計量結(jié)果見圖3。
由圖3(a)知,在m為6處,3個判據(jù)同時為0,因此m為6。圖3(b)中,時間延遲為21處初次出現(xiàn)復(fù)自相關(guān)函數(shù)為0,因此時間延遲 τ為21。
為驗證混沌特征提取對WOA-RVM方法的提高效果,選取光伏發(fā)電輸出功率的前56天作為訓(xùn)練集,分別從后幾天(以晴天為代表的非突變天氣和以多云轉(zhuǎn)晴、晴轉(zhuǎn)多云、多云、陰雨天為代表的突變天氣)中各挑選1天作為測試集,分別從收斂速度和預(yù)測絕對誤差兩方面進行比較。
圖4為兩種預(yù)測方法適應(yīng)度進化曲線對比,隨著迭代次數(shù)的增加,所提預(yù)測方法迅速收斂,而WOA-RVM預(yù)測方法前期收斂速度較慢,且收斂時預(yù)測準(zhǔn)確度低于所提方法。
圖3 混沌參數(shù)計算Fig.3 Calculation of chaotic parameters
圖4 不同預(yù)測方法的適應(yīng)度值進化曲線對比Fig.4 Fitness values comparison of the proposed method and that of WOA-RVM method
圖5 為所提方法與WOA-RVM的絕對誤差曲線對比,所提方法預(yù)測的準(zhǔn)確度和適應(yīng)性明顯高于WOA-RVM方法。
為客觀對比分析所提方法的預(yù)測性能,利用WOA優(yōu)化LSSVM和SVM核寬參數(shù)得到WOALSSVM和WOA-SVM組合預(yù)測方法,并將所提方法、WOA-LSSVM、WOA-SVM、RVM、BP和LSTM方法基于單步循環(huán)滾動局域預(yù)測機制, 進行光伏發(fā)電輸出功率超短期預(yù)測,同時考慮到BP和LSTM魯棒性較差,分別獨立運行30次取均值得到最終預(yù)測值,各方法預(yù)測結(jié)果見圖6。
圖5 絕對誤差曲線對比Fig.5 Comparison of absolute error curves
圖6 各種天氣情況下不同預(yù)測方法的預(yù)測結(jié)果Fig.6 Forecasting results by different forecasting methods under various weather situation
由圖6可見,在5種典型天氣下,各預(yù)測方法都與實際值有不同程度的偏差,其中BP和LSTM方法整體偏差較大。各預(yù)測方法在晴天時跟蹤性能較好,陰雨天氣誤差波動最為劇烈。在圖6(a)晴轉(zhuǎn)多云天氣和圖6(d)多云轉(zhuǎn)晴天氣10:00—11:00這部分光伏發(fā)電輸出功率急劇上升或下降的時段,從局部放大圖上可以看出,BP和LSTM方法預(yù)測結(jié)果均出現(xiàn)了較顯著的偏差,無法很好反映出光伏發(fā)電輸出功率變化趨勢,而利用核函數(shù)進行擬合的WOA-LSSVM、WOASVM和RVM方法誤差波動較小,跟蹤性能較好。在圖6多云天氣9:00—10:00和圖6(c)(e)陰雨天氣11:00—12:00,這部分波動較頻繁的時段,BP和LSTM方法跟蹤性能明顯較差,預(yù)測準(zhǔn)確度有待進一步提升,WOA-LSSVM、WOA-SVM和RVM方法雖有一定的時滯現(xiàn)象,但能較好反映光伏發(fā)電輸出功率波動情況,誤差波動范圍有所減小。所提預(yù)測方法通過重構(gòu)混沌相空間提取原始光伏發(fā)電輸出功率時間序列的隱藏信息,建立混沌特征與RVM高斯核函數(shù)的物理聯(lián)系,對光伏發(fā)電輸出功率突變和波動更加敏感,尤其在光伏發(fā)電輸出功率低而劇烈波動的拐點處,跟蹤性能最好。
為定量分析預(yù)測結(jié)果,利用標(biāo)準(zhǔn)化平均相對誤差百分比( NMAPE)、標(biāo)準(zhǔn)化均方根誤差百分比( NRMSE) 、標(biāo)準(zhǔn)化平均絕對誤差百分比( NMAE)和決定系數(shù)百分比(R-square)對預(yù)測結(jié)果進行評價,對比結(jié)果見表2。各項指標(biāo)表達式分別為:
式中: Ntotal為 預(yù)測點個數(shù); Pinst為額定裝機容量;yi為 實際出力;為預(yù)測值;為實測值的均值。
表2 不同天氣情況下預(yù)測誤差分析Table 2 Analysis of forecasting errors under various weather situations
從表2可以看出,5種典型天氣情況下,所提預(yù)測方法通過挖掘光伏發(fā)電輸出功率的混沌特征并將WOA和RVM兩種方法結(jié)合起來,預(yù)測準(zhǔn)確度得到進一步提升。從表2可以看出,除了個別指標(biāo)略差于LSTM預(yù)測方法,所提出的方法在不同天氣條件下的表現(xiàn)一般優(yōu)于所有對比方法,表中以粗體顯示。并且在以晴天為代表的非突變天氣情況下,各預(yù)測方法的預(yù)測性能差異最小,且預(yù)測效果要優(yōu)于突變天氣情況。所提方法總體NMAPE比WOA-LSSVM、WOA-SVM、RVM、BP和LSTM預(yù)測方法分別降低13.80%、26.26%、38.49%、24.86%和22.67%,其中在光伏發(fā)電輸出功率波動頻繁的多云天氣總體提升最多。
同時,從表2中可以看到,所提方法總體NRMSE比其他預(yù)測方法分別降低1.31%、2.00%、2.97%、3.69%和3.21%,其中在晴轉(zhuǎn)多云和陰雨天天氣下提升較多;總體 NMAE比其他預(yù)測方法分別降低8.93%、7.24%、12.93%、16.65%和2.80%,其中在波動劇烈的多云天氣和光伏發(fā)電輸出功率急劇上升的多云轉(zhuǎn)晴天氣下提升較多;所提方法R-square在各種天氣情況下均超過90%,優(yōu)于所有對比方法,表明各個天氣情況下所提方法均能對光伏發(fā)電輸出功率進行較好擬合,具有一定適應(yīng)性。
實例證明所提的預(yù)測方法不僅預(yù)測準(zhǔn)確度高、適應(yīng)性強,而且建模過程簡單,具有以下優(yōu)點:
1)充分挖掘光伏混沌特性對RVM核函數(shù)泛化能力的影響,基于混沌特征確定RVM的基函數(shù)矩陣,再利用WOA對RVM參數(shù)進行尋優(yōu),相較WOA-RVM自回歸預(yù)測方法,泛化能力得到提高;
2)在5種天氣條件下的預(yù)測性能指標(biāo)均高于優(yōu)化后的LSSVM和SVM預(yù)測方法,方法的擬合能力指標(biāo)R-square均超過90%,尤其在波動較大的天氣下,跟蹤性能更好;
3)通過提取光伏發(fā)電輸出功率的混沌特征避免了多次尋找最鄰近相點,預(yù)測過程簡單,便于工程實踐,為將超短期預(yù)測結(jié)果應(yīng)用于光伏發(fā)電功率平滑控制領(lǐng)域奠定了理論基礎(chǔ)。