• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      水分脅迫對(duì)溫室雙孢菇動(dòng)態(tài)發(fā)育品質(zhì)及水分利用效率的影響

      2021-06-01 14:53:42姬江濤趙向鵬王榮先趙凱旋
      關(guān)鍵詞:雙孢菇出菇實(shí)體

      姬江濤,趙向鵬,王榮先,趙凱旋,馬 淏,金 鑫

      水分脅迫對(duì)溫室雙孢菇動(dòng)態(tài)發(fā)育品質(zhì)及水分利用效率的影響

      姬江濤1,2,趙向鵬1,王榮先3,趙凱旋1,馬 淏1,金 鑫1

      (1. 河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,洛陽(yáng) 471003;2. 河南省機(jī)械裝備先進(jìn)制造協(xié)同創(chuàng)新中心,洛陽(yáng) 471003;3. 洛陽(yáng)理工學(xué)院機(jī)械工程學(xué)院,洛陽(yáng) 471023)

      為研究基質(zhì)水分脅迫對(duì)雙孢菇全育期內(nèi)菇形的動(dòng)態(tài)發(fā)育、產(chǎn)菇品質(zhì)的影響,確定溫室雙孢菇適宜、高效的施水方案,以“奧吉1號(hào)”品種為試驗(yàn)材料,于2020年8月進(jìn)行雙孢菇全育期基質(zhì)水分脅迫試驗(yàn)。該試驗(yàn)設(shè)置正常T1(基質(zhì)飽和持水率的80%~90%)、輕度水分脅迫T2(基質(zhì)飽和持水率的70%~80%)、中度水分脅迫T3(基質(zhì)飽和持水率的60%~70%)、重度水分脅迫T4(基質(zhì)飽和持水率的50%~60%)4種水分處理方案,出菇期測(cè)定雙孢菇發(fā)育動(dòng)態(tài)、單菇品質(zhì)、區(qū)域產(chǎn)菇品質(zhì)、產(chǎn)量與水分利用效率(Water Use Efficiency,WUE)。結(jié)果表明:1)菇蓋與菇柄的形態(tài)指標(biāo)、出菇品質(zhì)與基質(zhì)含水量呈正相關(guān),菇高受水分脅迫影響不明顯。2)蓋厚、莖粗、菇高的發(fā)育經(jīng)歷逐漸增長(zhǎng)、快速增長(zhǎng)和緩慢增長(zhǎng)3個(gè)階段。在T4水處理下菇厚、莖粗的最大值比T1水處理減少26.1%、24.9%,出菇時(shí)間延遲16.5 h(<0.05)。隨著水分脅迫的加劇,菇柄與菇蓋的生長(zhǎng)速率峰值逐步提前,迅速增長(zhǎng)期延長(zhǎng)。3)在T2水處理下,雙孢菇WUE和產(chǎn)菇數(shù)最高,相比T1水處理提高2.3%和9.2%(<0.05),出菇產(chǎn)量和優(yōu)質(zhì)菇率略低于T1水處理。4)雙孢菇結(jié)菇前期和后期可進(jìn)行輕度水分脅迫提高WUE,形成耐旱機(jī)制??焖侔l(fā)育期內(nèi)應(yīng)保持基質(zhì)充足含水量,以提高雙孢菇品質(zhì),加快出菇時(shí)間。該研究為雙孢菇水分精準(zhǔn)管理提供理論依據(jù)。

      含水率;溫室;水脅迫;雙孢菇;動(dòng)態(tài)發(fā)育;水分利用效率

      0 引 言

      雙孢菇又稱白蘑菇,因其常生長(zhǎng)2個(gè)擔(dān)孢子而得名,其富含蛋白質(zhì)和多種維生素、脂肪含量低、營(yíng)養(yǎng)價(jià)值高,深受全球各地消費(fèi)者的喜愛,至今已有近300年人工栽培歷史。菌類工廠化栽培多分布于歐洲、北美等地[1-2],在中國(guó)華中、華南地區(qū)已經(jīng)具有一定規(guī)模并有向西北地區(qū)引進(jìn)趨勢(shì)[3]。成熟的雙孢菇根據(jù)形態(tài)、大小有著精細(xì)的分級(jí),高品質(zhì)的雙孢菇色澤透白、菇蓋肥厚、通體圓滑、質(zhì)感硬脆;低品質(zhì)的雙孢菇,菇體發(fā)育畸形、質(zhì)感綿軟、表層有病斑[4-5]。工廠化栽培環(huán)境中的雙孢菇在不同發(fā)育期內(nèi)水分、溫度、CO2濃度、通風(fēng)、光線通過現(xiàn)代化技術(shù)和設(shè)備實(shí)現(xiàn)合理控制,能有效避免氣候、緯度、降雨量等自然不定因素的干擾。過多施水易致表層積水、滋生雜菌,影響子實(shí)體發(fā)育制造病害現(xiàn)象;水分缺失嚴(yán)重會(huì)影響子實(shí)體吸收養(yǎng)分、內(nèi)部物質(zhì)積累及各器官分配比重,易導(dǎo)致子實(shí)體菇柄細(xì)長(zhǎng),發(fā)育緩慢,影響雙孢菇出菇品質(zhì)和產(chǎn)量[6]。因此探尋雙孢菇對(duì)不同水處理?xiàng)l件下響應(yīng)生長(zhǎng)規(guī)律對(duì)提高出菇品質(zhì)有著重要意義。

      國(guó)內(nèi)外在作物生理對(duì)水分脅迫的響應(yīng)方面已有相當(dāng)成熟的研究方法和相應(yīng)結(jié)論[7-12]。楊再?gòu)?qiáng)等[13]在甜椒的結(jié)果期進(jìn)行水分脅迫試驗(yàn),研究表明:隨著水分脅迫程度的加劇,整體葉面積和果徑長(zhǎng)度明顯減少,果實(shí)的生長(zhǎng)速率提前到達(dá)峰值且數(shù)值降低,但輕度脅迫下果實(shí)的生長(zhǎng)速率相對(duì)正常灌溉水平有明顯增大且到達(dá)最大生長(zhǎng)速率的時(shí)間有所推遲,水分脅迫下甜椒的單株果實(shí)數(shù)、果實(shí)質(zhì)量和平均產(chǎn)量都有所降低;張效星等[14]認(rèn)為虧水會(huì)引起作物葉片氣孔關(guān)閉、光合作用下降,影響作物的干物質(zhì)分配,導(dǎo)致各器官發(fā)育不完善,進(jìn)而造成其生長(zhǎng)受抑制,果實(shí)發(fā)育緩慢。Gasque等[15-16]以Navelina橘為研究對(duì)象,表明輕度虧水處理在節(jié)水12%~27%的情況下,果橘的產(chǎn)量沒有顯著變化,并發(fā)現(xiàn)莖水勢(shì)低于-2 MPa時(shí)虧水將會(huì)影響果橘的生長(zhǎng)品質(zhì)及整體產(chǎn)量。李雅善等[17-19]在葡萄未轉(zhuǎn)色時(shí)實(shí)施水分脅迫發(fā)現(xiàn):果實(shí)橫縱直徑發(fā)育會(huì)隨著脅迫程度加劇而減小,進(jìn)而造成出果產(chǎn)量降低。目前對(duì)于設(shè)施作物果實(shí)發(fā)育受水分脅迫影響的研究多為綠色植物[20],其葉面積的發(fā)育對(duì)水分脅迫同樣敏感。與綠色植物不同,菌類生長(zhǎng)發(fā)育多依靠根部吸收養(yǎng)分,沒有葉子進(jìn)行光合作用,其形態(tài)在水分脅迫下會(huì)發(fā)生顯著變化。丁翠英[21]在杏鮑菇工廠化水分調(diào)控的研究中,總結(jié)菌包發(fā)酵、菌絲發(fā)育、出菇產(chǎn)菇等階段的水分管理與基料水分、菇產(chǎn)量之間的相關(guān)性規(guī)律,得到高效的杏鮑菇生產(chǎn)水分管理模式。郭來民等[22]在食用菌相關(guān)研究中發(fā)現(xiàn)香菇菌絲階段基質(zhì)的最適含水率為58%~60%,子實(shí)體階段基質(zhì)的最適含水率65%左右。李彤等[23]在雙孢菇的高效節(jié)水試驗(yàn)中發(fā)現(xiàn),隨著供水量增加,雙孢菇的菇高、菇蓋直徑、菌絲長(zhǎng)勢(shì)、菌絲質(zhì)量有著不同程度變化。供水量每次為400 mL/m2時(shí),雙孢菇的生長(zhǎng)量達(dá)到最大,水分利用效率與經(jīng)濟(jì)狀況達(dá)到最佳,水轉(zhuǎn)化效益高。前人對(duì)雙孢菇生長(zhǎng)發(fā)育與水分之間規(guī)律的研究,多從出菇后子實(shí)體形態(tài)和產(chǎn)量來判斷水分對(duì)子實(shí)體發(fā)育影響[24],從結(jié)菇到第一潮菇出菇約為1周內(nèi)子實(shí)體的動(dòng)態(tài)發(fā)育受水分影響的規(guī)律沒有相關(guān)研究。不同程度水分脅迫后子實(shí)體動(dòng)態(tài)生長(zhǎng)變化值得探究。

      利用自研溫室環(huán)境控制系統(tǒng),研究不同基質(zhì)水分方案下雙孢菇全育期動(dòng)態(tài)發(fā)育規(guī)律,分析出菇階段雙孢菇品質(zhì)指標(biāo)、產(chǎn)量及水分利用效率對(duì)不同水分虧缺的響應(yīng)結(jié)果,進(jìn)而探討雙孢菇對(duì)培養(yǎng)料水分的生態(tài)適應(yīng)性機(jī)理。精化溫室雙孢菇生長(zhǎng)階段適宜的施水方案,提高出菇品質(zhì)和水分利用效率,為建立雙孢菇生長(zhǎng)模擬模型、完善自適應(yīng)環(huán)境管控系統(tǒng),打造智慧化食用菌工廠提供理論基礎(chǔ)。

      1 材料與方法

      1.1 試驗(yàn)區(qū)概況

      試驗(yàn)于2020年8—10月在河南科技大學(xué)食用菌智慧工廠實(shí)驗(yàn)室內(nèi)進(jìn)行。實(shí)驗(yàn)室由寬3 m 、長(zhǎng)7 m的菇房和寬4 m 、長(zhǎng)7 m的控制室組成。溫室環(huán)境控制系統(tǒng)能夠?qū)⒐椒績(jī)?nèi)溫度、濕度、CO2調(diào)節(jié)到設(shè)定范圍[25-26]。雙孢菇的栽培過程環(huán)境要求:子實(shí)體適宜生長(zhǎng)溫度為16~25 ℃,適應(yīng)空氣濕度85%~90%,二氧化碳濃度以1 000~5 000mol/mol為宜[27-28]。菇房?jī)?nèi)搭建一列四層的菇床,1層菇床可擺置18包培養(yǎng)基料包。培養(yǎng)基料由洛陽(yáng)奧吉特有限公司供試。培養(yǎng)基質(zhì)飽和持水率為78%,主要為腐熟后的麥草和牛糞[29],按一定比例混制發(fā)酵而成,配置尿素、硫酸銨、過磷酸鈣、石灰、石膏、草木灰?;蟨H值為8.95。

      1.2 試驗(yàn)設(shè)計(jì)

      第1潮菇從菌絲生長(zhǎng)到出菇整個(gè)生育期為10~15 d左右。供試基料包尺寸規(guī)格相同、基質(zhì)養(yǎng)肥均勻。培養(yǎng)料含水率按照梯度大小設(shè)置4個(gè)水處理:正常水處理T1(基料飽和持水率的80%~90%)、輕度水分脅迫T2(基料飽和持水率的70%~80%)、中度水分脅迫T3(基料飽和持水率的60%~70%)、重度水分脅迫T4(基料飽和持水率的50%~60%)。每個(gè)處理的區(qū)域?yàn)? m2,設(shè)3個(gè)不連續(xù)小區(qū),共12個(gè)試驗(yàn)區(qū)域,將基料包均勻碼放在同層菇床上后進(jìn)入發(fā)酵工序。約兩周后,基料表層出現(xiàn)菌團(tuán),并開始逐步擴(kuò)散。將基質(zhì)包上塑料袋拆除,同時(shí)用薄板隔分出12個(gè)試驗(yàn)區(qū)域。一周后菌絲長(zhǎng)勢(shì)良好且菌料呈現(xiàn)紅褐色時(shí)進(jìn)行覆土?;习蠈庸郊馨仓肅O2濃度傳感器(RS-CO2-NO1-2,仁碩電子科技有限公司,濟(jì)南,中國(guó))和溫濕度傳感器(RS-WS-N01-2仁碩電子科技有限公司,濟(jì)南,中國(guó))。將土壤濕度傳感器(RS485,仁碩電子科技有限公司,濟(jì)南,中國(guó))埋在基料約15 cm深處,采集培養(yǎng)料含水率信息。采集頻率為60 min。經(jīng)計(jì)算保留每天的平均值。

      在雙孢菇不同生長(zhǎng)期內(nèi)提供適宜的環(huán)境溫度和濕度是保證其正常生長(zhǎng)和發(fā)育的前提。雙孢菇發(fā)育過程中,菇房?jī)?nèi)溫度和濕度的調(diào)控至關(guān)重要。本試驗(yàn)過程中環(huán)境溫度、溫度和CO2濃度由自主研發(fā)的菇房環(huán)境調(diào)控系統(tǒng)進(jìn)行精準(zhǔn)控制[30]。環(huán)境信息經(jīng)中央控制器分析處理后,向執(zhí)行設(shè)備發(fā)出控制命令進(jìn)行菇房溫濕環(huán)境調(diào)控。環(huán)境溫度、濕度傳感器和土壤信息傳感器安裝布置情況如圖1所示。

      開啟室內(nèi)環(huán)境控制系統(tǒng)保持室內(nèi)空氣濕度在85%左右。通過計(jì)算機(jī)采集室內(nèi)溫度、濕度、CO2信息等環(huán)境信息。試驗(yàn)培養(yǎng)基料擺放完整后,提前進(jìn)行水分預(yù)處理,使其滿足菌絲發(fā)育的水分條件。當(dāng)潮菇子實(shí)體開始冒出,形似黃豆般大小時(shí),通過自制的水分管理控制系統(tǒng)開啟控制電磁閥打開水路,定量施水,輔以噴霧器對(duì)各區(qū)域進(jìn)行補(bǔ)充供水,施水額定按照此式計(jì)算

      式中0為噴水強(qiáng)度,L/(min·m2);為試驗(yàn)區(qū)域內(nèi)噴頭數(shù)目;為設(shè)定噴水時(shí)長(zhǎng),min;為噴霧器底面積,mm2;1、2為施水前后容量刻度值,mm;為區(qū)域施水量,mL/m2。

      1.3 測(cè)定指標(biāo)與方法

      1.3.1 子實(shí)體形態(tài)相關(guān)參數(shù)的模擬

      在每個(gè)試驗(yàn)區(qū)選取6顆大小相仿、發(fā)育良好的雙孢菇,做出標(biāo)記,雙孢菇子實(shí)體的截面幾何模型如圖2所示,其關(guān)鍵的形態(tài)尺寸包括菇蓋最大直徑1、柄粗2、菇高1、菇蓋厚度2。當(dāng)子實(shí)體發(fā)育至豆粒般大小,用游標(biāo)卡尺測(cè)量不同水處理下標(biāo)記子實(shí)體的菇蓋、菇柄直徑和菇蓋厚度;用標(biāo)準(zhǔn)直尺測(cè)量菇高(以基質(zhì)面為原點(diǎn)測(cè)量),測(cè)量單位均為mm,測(cè)量頻率為4 h。菇蓋厚度、直徑、菇高、柄粗的的生長(zhǎng)速率計(jì)算公式為

      式中AGR為子實(shí)體菇高、菇柄直徑、菇蓋厚度的生長(zhǎng)速率,mm/h;12為相鄰兩次時(shí)間內(nèi)測(cè)量的數(shù)值,mm;12為相鄰兩次測(cè)定的時(shí)間,h。

      注:1為菇蓋直徑,mm;2為菇柄直徑,mm;1為菇高,mm;2為菇蓋厚度,mm。

      Note:1is the diameter of mushroom cover, mm;2is the diameter of mushroom stalk, mm;1is the height of mushroom, mm;2is the thickness of mushroom cover, mm.

      圖2 子實(shí)體截面幾何模型

      Fig.2 Geometric model of sub-solid section

      1.3.2 雙孢菇品質(zhì)測(cè)定

      雙孢菇品質(zhì)主要從2方面來判斷,一方面通過區(qū)域內(nèi)采收統(tǒng)計(jì)優(yōu)質(zhì)菇比例和畸形菇及病菇的數(shù)量。另一方面通過質(zhì)構(gòu)儀質(zhì)地多面分析TPA(Texture Profile Analysis)試驗(yàn)法,對(duì)不同水處理下的雙孢菇進(jìn)行品質(zhì)分析。試驗(yàn)儀器質(zhì)構(gòu)儀圖3a型號(hào)TA.XTC.16(上海保圣實(shí)業(yè)發(fā)展有限公司,上海,中國(guó))。參數(shù)設(shè)定為預(yù)壓速度1 mm/s,下壓、上行速度同為2 mm/s,2次下壓間隔預(yù)留時(shí)間為5 s,當(dāng)試樣受壓形變40%,觸發(fā)力為0.3 N得到質(zhì)地特征曲線,如圖3b。其中表征雙孢菇質(zhì)地的參數(shù)有:硬度、凝聚性、彈性、咀嚼性。

      1.3.3 區(qū)域產(chǎn)量

      當(dāng)雙孢菇達(dá)到出菇標(biāo)準(zhǔn)即菇蓋直徑大小達(dá)到40 ~45 mm,開始通過人工陸續(xù)收采,直到第一潮菇發(fā)育期結(jié)束。將菇床清理完畢,記錄每次的出菇數(shù)量和質(zhì)量。最終產(chǎn)量為區(qū)域內(nèi)第一潮菇采摘后累計(jì)的總量。

      1.3.4 水分利用效率ETa

      試驗(yàn)區(qū)水分平衡公式為[20]

      式中為全育期降水量,mm;為降水小于一定界限值的降水量,mm;為施水量,mm;△為全育期內(nèi)土壤儲(chǔ)水的變化量,mm。因本試驗(yàn)為室內(nèi)試驗(yàn),、都為0。通過區(qū)域產(chǎn)量、基質(zhì)耗水量及灌水量計(jì)算各水處理下雙孢菇的水分利用效率WUE(Water Use Efficiency)公式為

      式中為區(qū)域采收雙孢菇產(chǎn)量,kg/m2;水分利用效率(WUE)為區(qū)域產(chǎn)量與全育期施水總量與培養(yǎng)料儲(chǔ)水變化之和的比值,kg/m3。

      1.4 雙孢菇子實(shí)體形態(tài)指標(biāo)生長(zhǎng)模型

      生長(zhǎng)曲線用來描述大多數(shù)事物發(fā)展過程中經(jīng)歷的開始、發(fā)展、成熟3個(gè)階段,每一段的持續(xù)時(shí)間和發(fā)展速率與事物本身性質(zhì)密切相關(guān)[31-32]。本文選擇Logistic模型曲線與雙孢菇形態(tài)發(fā)育信息進(jìn)行回歸擬合,求得基礎(chǔ)參數(shù)。Logistic模型廣泛的用于描述和預(yù)測(cè)個(gè)體生長(zhǎng)動(dòng)態(tài)發(fā)育模擬及經(jīng)濟(jì)特性的領(lǐng)域,其適應(yīng)性與解釋性較強(qiáng),計(jì)算與公式相對(duì)簡(jiǎn)單,適用于大多數(shù)作物的生長(zhǎng)規(guī)律。

      Logistic模型曲線方程為

      式中為所測(cè)物質(zhì)增長(zhǎng)量(本文中為菇高、柄粗、蓋厚,mm);為雙孢菇從結(jié)菇到出菇的生長(zhǎng)時(shí)間,h;為所測(cè)量的極限值;、為基礎(chǔ)參數(shù),e為自然對(duì)數(shù)的底數(shù)。對(duì)Logistic生長(zhǎng)函求一階導(dǎo)數(shù),得到生長(zhǎng)曲線的速率函數(shù)為

      對(duì)Logistics曲線生長(zhǎng)的速率函數(shù)求一階導(dǎo)數(shù),并令其等于零得到生長(zhǎng)速率高峰時(shí)間點(diǎn)1。

      1= (ln)/(8)

      當(dāng)=(ln)/時(shí),其達(dá)到生長(zhǎng)速率的最大值max。

      對(duì)Logistics生長(zhǎng)速度函數(shù)求二階導(dǎo)數(shù),并令其等于0得

      2= (ln-1.317)/,3= (ln+1.317)/(11)

      式中2、1、3分別對(duì)應(yīng)雙孢菇物質(zhì)增長(zhǎng)量的開始迅速增長(zhǎng)時(shí)間點(diǎn)(始盛點(diǎn))、增長(zhǎng)高峰時(shí)間點(diǎn)(高峰點(diǎn))、結(jié)束迅速增長(zhǎng)時(shí)間點(diǎn)(盛末點(diǎn))。雙孢菇生長(zhǎng)過程中形態(tài)指標(biāo)變化漸增期為(0,2),快速增長(zhǎng)期為(2,3),緩增期為3以后。

      1.5 數(shù)據(jù)計(jì)算與處理

      試驗(yàn)數(shù)據(jù)使用SPSS軟件進(jìn)行求平均值、誤差分析和差異顯著性測(cè)定,運(yùn)用OriginPro 2016進(jìn)行相關(guān)的擬合統(tǒng)計(jì)分析和圖表繪制。質(zhì)構(gòu)特性、產(chǎn)量、耗水量結(jié)果采用均值表示[33]。

      2 結(jié)果與分析

      2.1 試驗(yàn)溫室相關(guān)環(huán)境變化

      雙孢菇生育期內(nèi)不同水處理下根系層土壤含水率的變化特征如圖4所示。為保證雙孢菇的存活率,覆土后統(tǒng)一施水1次,使基質(zhì)表層無積水即可。前期不同水處理下基質(zhì)含水率波動(dòng)較大,后期通過水分管理控制,使基質(zhì)含水率逐漸穩(wěn)定在各要求梯度范圍內(nèi)。室內(nèi)環(huán)境溫度、基質(zhì)溫度滿足雙孢菇的栽培要求。在發(fā)酵階段環(huán)境溫度和基料溫度均在25 ℃左右,覆土施水后環(huán)境溫度有所降低,基料溫度控制在28 ℃以下范圍。在結(jié)菇期內(nèi)環(huán)境溫度逐次降低,降至19 ℃?;蠝囟入S之下降到17 ℃。環(huán)境相對(duì)濕度控制在95%左右,環(huán)境相對(duì)濕度是菌絲發(fā)育階段獲得水分的重要途徑。在栽培前期頻率保持風(fēng)機(jī)頻率在25~35 Hz范圍,CO2濃度逐步增加,達(dá)到5 000mol/mol。覆土后送風(fēng)頻率降低到18~20 Hz。結(jié)菇后控制CO2濃度逐次降低,保持在1 500mol/mol范圍內(nèi)。

      2.2 水分脅迫對(duì)子實(shí)體動(dòng)態(tài)發(fā)育的影響

      2.2.1 水分脅迫對(duì)子實(shí)體發(fā)育的影響

      由圖5可知,水分脅迫對(duì)雙孢菇子實(shí)體的菇蓋與菇柄發(fā)育都有顯著影響,導(dǎo)致了雙孢菇出菇外觀品質(zhì)的變化。水分脅迫下菇高無明顯差異。菇蓋厚度、菇柄直徑和菇體高度都呈現(xiàn)S型生長(zhǎng)曲線。菇蓋直徑大小是判斷采收的依據(jù),與T1水分處理相比,不同程度水分處理下T2、T3、T4雙孢菇達(dá)到采收標(biāo)準(zhǔn)的時(shí)間分別延長(zhǎng)8.3、15.6、16.5 h(<0.05)。菇蓋厚度開始緩慢增長(zhǎng)階段為0~40 h,線性增長(zhǎng)階段約為40~100 h,100 h后進(jìn)入緩慢增長(zhǎng)階段,并逐漸穩(wěn)定。在采收后T2、T3、T4水處理下菇蓋厚度為24.6、21.56、18.7 mm相比T1水處理(25.3 mm)減少了2.7%、14.8%、26.1%(<0.05)。菇體高度受水分脅迫的影響不明顯,其在不同水處理?xiàng)l件下逐漸增長(zhǎng)階段0~50 h和108 h以后的緩慢增長(zhǎng)階段無明顯差異。菇柄直徑緩慢增長(zhǎng)階段為0~32 h,呈線性快速增長(zhǎng)階段為32~108 h,108 h后進(jìn)入緩慢增長(zhǎng)階段,并趨于穩(wěn)定。菇柄直徑隨著水分脅迫加劇而減小。在采收后T2、T3、T4水分處理下雙孢菇的菇柄直徑分別為19.84、17.58、16.11 mm較T1水處理(21.45 mm)減少了7.5%、18.1%和24.9%(<0.05)。

      2.2.2 水分脅迫對(duì)子實(shí)體生長(zhǎng)速率的影響

      圖6a、6b、6c分別為雙孢菇菇蓋厚度、菇蓋直徑和菇柄直徑生長(zhǎng)速率對(duì)不同程度水分脅迫的響應(yīng)結(jié)果。由圖6可知菇蓋厚度生長(zhǎng)速率的最大值隨著基質(zhì)含水率的降低而減小,T2、T3、T4水處理下菇蓋厚度生長(zhǎng)速率峰值分別為0.41、0.36、0.28 mm/h占T1水處理(0.48 mm/h)的85.4%、75%和58.3%,且差異顯著(<0.05)。菇蓋直徑生長(zhǎng)速率隨著土壤含水率的降低出現(xiàn)不同程度的減小,在20~90 h內(nèi)菇蓋直徑生長(zhǎng)速率進(jìn)入穩(wěn)定期。由圖知菇柄直徑生長(zhǎng)速率的最大值同樣隨著基質(zhì)含水率的降低而減小,T2、T3、T4水處理下菇柄直徑生長(zhǎng)速率峰值分別為0.31、0.29和0.24 mm/h占T1水處理(0.36 mm/h)的86.1%、80.6%和66.7%,差異效果顯著(<0.05)。菇蓋和菇柄形態(tài)及動(dòng)態(tài)發(fā)育速率受水分虧缺脅迫影響顯著。

      2.3 水分脅迫對(duì)雙孢菇出菇品質(zhì)的影響

      雙孢菇的品質(zhì)一方面從出菇外觀品質(zhì)判斷,另一方面對(duì)內(nèi)部質(zhì)感進(jìn)行分析。合格的優(yōu)質(zhì)菇通體潔白、質(zhì)地較硬、體態(tài)勻稱,其實(shí)際價(jià)值更高。低品質(zhì)的次品菇外形、質(zhì)地不滿足要求,其價(jià)值相對(duì)較低,銷售獲取利潤(rùn)降低。

      2.3.1 水分脅迫對(duì)雙孢菇數(shù)量和優(yōu)質(zhì)菇比率的影響

      在維持1周左右的采摘期內(nèi),對(duì)符合出菇標(biāo)準(zhǔn)的雙孢菇進(jìn)行分批采摘。分析不同基質(zhì)含水率下區(qū)域產(chǎn)出雙孢菇的品質(zhì)狀況。統(tǒng)計(jì)各試驗(yàn)區(qū)內(nèi)總出菇的數(shù)量和畸形菇、開傘菇、病斑菇的數(shù)量?;喂桨ü奖?xì)長(zhǎng)的高腳菇、并蒂菇和菇蓋不圓整的雙孢菇,開傘菇為在采收后菇蓋下表層傘幕有開裂的雙孢菇,病斑菇特征為顏色深黃,菇蓋上有褐斑,采摘后需要剔除。統(tǒng)計(jì)結(jié)果如圖 7所示,T2水處理相較T1水處理區(qū)域產(chǎn)菇數(shù)量增加9.2%,優(yōu)質(zhì)菇占總菇數(shù)的比例相近(<0.05)。T3、T4水處理下畸形菇、病斑菇、開傘菇數(shù)量都明顯增加,與T1水處理相比出菇數(shù)量減少14.2%和25.7%,優(yōu)質(zhì)菇比例下降11.4%、32.8%,且差異效果顯著(<0.05)。輕度水分脅迫對(duì)雙孢菇區(qū)域出菇品質(zhì)無顯著差異且致出菇數(shù)目增加。嚴(yán)重水分虧缺導(dǎo)致雙孢菇畸形率都有了成倍的上升,產(chǎn)菇品質(zhì)和出菇數(shù)目也顯著下降。

      2.3.2 水分脅迫對(duì)雙孢菇TPA品質(zhì)分析影響

      由TPA試驗(yàn)得到不同水分處理下雙孢菇質(zhì)地特性的各項(xiàng)參數(shù),從而分析出菇品質(zhì)標(biāo)準(zhǔn)對(duì)水脅迫的響應(yīng)程度。子實(shí)體的硬度、內(nèi)聚性、咀嚼性與基質(zhì)含水量呈正相關(guān)。如表1所示,隨著水分脅迫加劇,子實(shí)體硬度下降顯著,但輕度水脅迫下,與T1水處理相比差異不明顯。子實(shí)體硬度直觀反映了子實(shí)體密實(shí)程度。質(zhì)地測(cè)試中子實(shí)體彈性與水分脅迫相關(guān)性較低,其受水分脅迫的變化不顯著(>0.05)。凝聚性反映了子實(shí)體內(nèi)細(xì)胞間結(jié)合力大小,其隨著水分脅迫加劇,呈逐步降低趨勢(shì),表現(xiàn)出綿軟特性。咀嚼性與硬度相關(guān)性很高,其模擬消費(fèi)者食用時(shí)持續(xù)咀嚼下果實(shí)的抗性。以咀嚼性作為綜合品質(zhì)評(píng)價(jià)標(biāo)準(zhǔn)可知,T2、T3、T4水處理下子實(shí)體的咀嚼性相比T1水處理下分別下降了21.8%、47.9%和70.3%(<0.05)。中度、重度水分脅迫下,雙孢菇品質(zhì)差異顯著較大,在雙孢菇栽培期間,應(yīng)通過環(huán)境調(diào)控盡量避免。

      表1 不同基質(zhì)水處理雙孢菇口感品質(zhì)

      注:同列不同小寫字母表示處理間差異顯著(<0.05)。下同。

      Note: Different lowercase letters in the same line indicate significant difference among treatment for same season (<0.05). Same below.

      2.4 水分脅迫對(duì)雙孢菇產(chǎn)量及水分利用效率的影響

      不同水處理方案對(duì)雙孢菇整個(gè)生育階段的影響,在采摘后最終反映在作物的經(jīng)濟(jì)產(chǎn)量和水分利用效率上(WUE)。水分利用效率是衡量作物產(chǎn)量和用水量關(guān)系的重要指標(biāo),也是判斷溫室栽培水處理方案的決定因素。雙孢菇第一潮菇在不同水處理下的產(chǎn)量、耗水量及WUE如表2所示。隨著基質(zhì)含水率的范圍梯度下降,雙孢菇耗水量、產(chǎn)量和WUE均呈現(xiàn)下降趨勢(shì),其差異化顯著(<0.05)。與T1水處理下區(qū)域雙孢菇產(chǎn)量10.416 kg/m2相比,T2、T3、T4水處理下,雙孢菇產(chǎn)量分別降低了5.5%、26.3%、39.1%(<0.05)。T2水分脅迫下WUE為23.94 kg/m3,高于其他水處理,相比T1水處理提高約2.3%。T3、T4水處理下WUE相較T1水處理分別降低14.6%和25.3%。

      2.5 不同水分處理子實(shí)體的Logistic 生長(zhǎng)參數(shù)模型

      經(jīng)分析可知雙孢菇菇柄直徑和菇蓋厚度在不同水分脅迫下的生長(zhǎng)參數(shù)受影響顯著,對(duì)菇蓋和菇柄進(jìn)行Logistic生長(zhǎng)曲線擬合(<0.01),得到了模型特征參數(shù)。如表3所示,在T4水處理下雙孢菇菇柄直徑和菇蓋厚度生長(zhǎng)速率的始盛點(diǎn)、高峰點(diǎn)都顯著提前。菇蓋厚度與菇柄直徑的始盛點(diǎn)相比T1水處理分別提前了21、17 h(<0.05)。T2、T3水處理下菇蓋厚度的始盛點(diǎn)、高峰點(diǎn)和盛末點(diǎn)與T1水處理相比有不同程度的推遲(<0.05),但本身兩種水處理相比無明顯差異。隨著水分虧缺的持續(xù)加重,菇蓋厚度與菇柄直徑的快速增長(zhǎng)時(shí)間也明顯延長(zhǎng)。與T1水處理相比,T2、T3、T4水處理下菇蓋厚度的快速增長(zhǎng)時(shí)間分別延長(zhǎng)了4.1、5.4、10.6 h。菇柄直徑的快速增長(zhǎng)時(shí)間分別延長(zhǎng)了10、4.2、7.6 h(<0.05)。其中菇柄直徑在輕度脅迫下相較其他水處理迅速增長(zhǎng)期持續(xù)時(shí)間最久。

      表2 不同水處理下雙孢菇產(chǎn)量、耗水量及水分利用效率

      表3 不同水處理下雙孢菇菇形指標(biāo)的Logistic生長(zhǎng)模型及特征值

      注:*表示0.05水平上顯著,**表示在0.01水平上顯著相關(guān),為柄粗、蓋厚模擬值,mm;為結(jié)菇后時(shí)間,h。

      Note:is the simulation value of stem diameter and cover thickness, mm;is the time after fruiting, h;<0.05(significant.*),<0.01(very significant.**).

      研究表明在基質(zhì)水分虧缺的情況下,雙孢菇的形態(tài)如柄粗、蓋厚的動(dòng)態(tài)發(fā)育速率都受到顯著影響,在水分脅迫加重時(shí),出菇品質(zhì)明顯下降,畸形菇、開傘菇、病斑菇的數(shù)量相比T1水處理有了快速增加,優(yōu)質(zhì)菇比例下降明顯。雙孢菇在生育期內(nèi)對(duì)輕微的水分脅迫有一定的自適應(yīng)調(diào)節(jié)能力,輕微適度的水分虧缺鍛煉了菌菇的耐旱能力,使物質(zhì)積累傾斜于根部發(fā)育,提高了根部吸水能力,子實(shí)體快速發(fā)育時(shí)間和發(fā)育速率峰值提前。在快速增長(zhǎng)期內(nèi),保持基質(zhì)正常的含水率,能夠?yàn)樽訉?shí)體的快速增長(zhǎng)階段提供充足水分,同時(shí)保證雙孢菇正常的產(chǎn)出品質(zhì)和產(chǎn)量,在結(jié)菇末期,子實(shí)體對(duì)于基質(zhì)水分需求量降低,此時(shí)適當(dāng)?shù)乃痔澣睂?duì)雙孢菇的發(fā)育和品質(zhì)未有消極影響。在水分虧缺嚴(yán)重的環(huán)境下,子實(shí)體不能很好的適應(yīng),其物質(zhì)積累不足,地上、地下部分都不能正常發(fā)育。郭來民等[22]在香菇的最適基質(zhì)水環(huán)境研究中,對(duì)菌絲日平均生長(zhǎng)速率測(cè)量后的極差和顯著性檢測(cè)分析發(fā)現(xiàn):香菇不同的發(fā)育階段對(duì)于水分的需求不同,快速發(fā)育階段基質(zhì)含水量過低導(dǎo)致出菇個(gè)小、品質(zhì)差。充足基質(zhì)水分環(huán)境下,菌絲生長(zhǎng)速度快、團(tuán)絲健壯、密盛,子實(shí)體優(yōu)質(zhì)、高產(chǎn),與本文試驗(yàn)結(jié)論相似。

      環(huán)境濕度和溫度同樣是食用菌栽培過程中關(guān)鍵的環(huán)境因子。趙麗等[34]在杏鮑菇溫濕環(huán)境研究中建立了棚內(nèi)溫、濕度機(jī)理模型,并通過回歸分析得到杏鮑菇產(chǎn)量與菇形的綜合預(yù)測(cè)模型。在菌絲生長(zhǎng)的環(huán)境影響因子顯著程度中溫度高于濕度。通過響應(yīng)面曲線計(jì)算出溫度25.48 ℃、濕度66.8%下菌絲布滿菌袋的最短時(shí)間為30.1 d,其對(duì)接下來雙孢菇溫濕環(huán)境試驗(yàn)有一定引導(dǎo)意義。在雙孢菇基質(zhì)含水量試驗(yàn)后,結(jié)合環(huán)境溫度與濕度因素。雙孢菇環(huán)境因素試驗(yàn)需進(jìn)一步深入,得到重要環(huán)境因素的交互影響規(guī)律,達(dá)到建立雙孢菇動(dòng)態(tài)發(fā)育與產(chǎn)量綜合預(yù)測(cè)模型的目的。

      3 結(jié) 論

      本文研究了全育期水分脅迫對(duì)雙孢菇動(dòng)態(tài)發(fā)育、品質(zhì)、水分利用效率的影響,探究菇房高效施水管理方案,得到以下結(jié)論:

      1)隨著基質(zhì)水分脅迫程度加劇,蓋厚和柄粗的最大生長(zhǎng)速率降低,生長(zhǎng)速率峰值提前,快速增長(zhǎng)期顯著延長(zhǎng)。輕度水分脅迫促進(jìn)子實(shí)體根部發(fā)育和營(yíng)養(yǎng)吸收,與T1水處理相比,蓋厚、莖粗中期快速發(fā)育時(shí)間延長(zhǎng)4.1、10 h(<0.05)。過多水分虧缺下,雙孢菇質(zhì)感綿軟、畸形菇數(shù)目激增,在T4水處理下體現(xiàn)明顯。

      2)不同水處理下雙孢菇產(chǎn)量、耗水量差異顯著。與TI水處理相比,T2、T3、T4水處理下產(chǎn)量分別降低5.5%、26.3%、39.1%(<0.05)。雙孢菇產(chǎn)量微降前提下,T2水處理下耗水量顯著下降,水分利用效率達(dá)到最高,相比T1水處理提高2.3%(<0.05)。T2水處理方案在雙孢菇部分發(fā)育階段更加節(jié)約、高效,經(jīng)濟(jì)效益更高。

      在結(jié)菇前期和期末進(jìn)行適度水分脅迫(基質(zhì)飽和持水率的60%~70%),有助于增強(qiáng)雙孢菇根部發(fā)育,形成耐旱機(jī)制,提升整體施水方案的合理性。該研究為食用菌發(fā)育環(huán)境優(yōu)化控制提供理論支持。

      [1]錢振華,王秦越,何彥虎,等. 食用菌工廠化生產(chǎn)線控制系統(tǒng)設(shè)計(jì)[J]. 物流技術(shù),2020,39(7):133-136. Qian Zhenhua, Wang Qinyue, He Yanhu, et al. Design of control system of edible fungus factory production line[J]. Logistics Technology, 2020, 39(7): 133-136. (in Chinese with English abstract)

      [2]Aisala H, Linderborg K M, Sandell M. Fiber depth, column coating and extraction time are major contributors in the headspace solid phase microextraction gas chro-matography analysis of Nordic wild mushrooms[J]. European Food Research and Technology, 2018, 244(5): 841-850.

      [3]杜昌戰(zhàn). 雙孢菇高產(chǎn)高效生產(chǎn)及栽培技術(shù)[J]. 農(nóng)業(yè)與技術(shù),2018,38(13):47-48. Du Changzhan. High yield and high efficiency production and cultivation techniques of agaricus bisporus[J]. Agriculture & Technology, 2018, 38(13): 47-48. (in Chinese with English abstract)

      [4]高振鵬,袁亞宏,岳田利,等. 超聲波輔助提取雙孢菇多糖的研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(7):215-220. Gao Zhenpeng, Yuan Yahong, Yue Tianli, et al. Study on the polysaccharides extraction of agaricus bisporus using ultrasonic[J]. Journal of Northwest A&F University (Natural Science Edition), 2012, 40(7): 215-220. (in Chinese with English abstract)

      [5]馮自洋,李守勉,李明,等. 八個(gè)雙孢菇品種比較試驗(yàn)[J]. 北方園藝,2016(19):160-163. Feng Ziyang, Li Shoumian, Li Ming, et al. Comparison test of eight agaricus bisporus varieties[J]. Northern Horticulture, 2016(19): 160-163. (in Chinese with English abstract)

      [6]Gloria B, Carvajal M. Genetic regulation of water and nutrient transport in water stress tolerance in roots[J]. Journal of Biotechnology, 2020, 324: 134-142.

      [7]Li S H, Huguet J C, Schuch P G, el al. Response of peach tree growth and cropping to soil water deficit at various physiological stages of fruit development[J]. J Hurt Sci, 1989, 64: 541-552.

      [8]Cheryl H P, Chris V, Dean H, et al. Harmonization and translation of crop modeling data to ensure interoperability[J]. Environmental Modelling & Software, 2014, 62: 495-508.

      [9]李婷,季宇寒,張漫,等. CO2與土壤水分交互作用的番茄光合速率預(yù)測(cè)模型[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(增刊1):208-214. Li Ting, Ji Yuhan, Zhang Man, et al. Tomato photosynthetic rate prediction models under interaction of CO2enrichments and soil moistures[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(Suppl.1): 208-214. (in Chinese with English abstract)

      [10]胡瑾,隆星月,鄧一飛,等. 基于水分利用率與光合速率的溫室作物需水模型研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(10):362-370. Hu Jin, Long Xingyue, Deng Yifei, et al. Water demand model for greenhouse crops considering water use efficiency and photosynthetic rate[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 362-370. (in Chinese with English abstract)

      [11]王麗燕,朱夢(mèng)婷,李莉,等. 施肥脅迫對(duì)溫室番茄不同生長(zhǎng)期表型數(shù)據(jù)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(增刊1):321-326. Wang Liyan, Zhu Mengting, Li Li, et al. Influence of different fertilization on phenotypic data of greenhouse tomato in all growth periods[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(suppl.1): 321-326. (in Chinese with English abstract)

      [12]張忠學(xué),陳鵬,鄭恩楠,等. 基于Δ13C的不同水氮管理對(duì)水稻水分利用效率的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):303-312. Zhang Zhongxue, Chen Peng, Zheng Ennan, et al. Effect of different water and nitrogen managements on rice leaf water use efficiency based on Δ13C[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 303-312. (in Chinese with English abstract)

      [13]楊再?gòu)?qiáng),侯夢(mèng)媛,張曼義,等. 水分脅迫對(duì)設(shè)施甜椒結(jié)果期葉面積擴(kuò)展及果實(shí)發(fā)育的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):170-177. Yang Zaiqiang, Hou Mengyuan, Zhang Manyi, et al. Effects of soil water stress on expansion of leaf area and development of fruit in fruiting period of greenhouse sweet pepper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 170-177. (in Chinese with English abstract)

      [14]張效星,樊毅,賈悅,等. 水分虧缺對(duì)滴灌柑橘光合和產(chǎn)量及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):143-150. Zhang Xiaoxing, Fan Yi, Jia Yue, et al. Effect of water deficit on photosynthetic characteristics, yield and water use efficiency in Shiranui citrus under drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 143-150. (in Chinese with English abstract)

      [15]Gasque, Granero, Turegano, et al. Regulated deficit irrigation effects on yield, fruit quality and vegetative growth of 'Navelina' citrus trees[J]. Spanish Journal of Agricultural Research, 2010, 8(suppl.2): 40-51.

      [16]Gasque, María, Martí, et al. Effects of long-term summer deficit irrigation on 'Navelina' citrus trees[J]. Agricultural Water Management, 2016, 169: 140-147.

      [17]李雅善,李華,王華,等. 設(shè)施栽培下不同灌溉處理對(duì)‘希姆勞特’植株生長(zhǎng)及果實(shí)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(9):1784-1792. Li Yashan, Li Hua, Wang Hua, et al. Effects of different irrigation treatments on the growth and fruit quality of himrod in protected cultivation[J]. Scientia Agricultura Sinica, 2014, 47(9): 1784-1792. (in Chinese with English abstract)

      [18]張芮,王旺田,吳玉霞,等. 水分脅迫度及時(shí)期對(duì)設(shè)施延遲栽培葡萄耗水和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):155-161. Zhang Rui, Wang Wangtian, Wu Yuxia, et al. Effect of moisture stress level and stage on evapotranspiration and yield of grape under protected and delayed cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 155-161. (in Chinese with English abstract)

      [19]張芮,成自勇,王旺田,等. 水分脅迫對(duì)延后栽培葡萄果實(shí)生長(zhǎng)的影響[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,36(6):47-54. Zhang Bing, Cheng Ziyong, Wang Wangtian, et al. Effect of water stress on grape fruit growth under delayed cultivation[J]. Journal of South China Agricultural University, 2015, 36(6): 47-54. (in Chinese with English abstract)

      [20]龔雪文,劉浩,孫景生,等. 日光溫室番茄不同空間尺度蒸散量變化及主控因子分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):166-175. Gong Xuewen, Liu Hao, Sun Jingsheng, et al. Variation of evapotranspiration in different spatial scales for solar greenhouse tomato and its controlling meteorological factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 166-175. (in Chinese with English abstract)

      [21]丁翠英. 不同栽培基質(zhì)對(duì)杏鮑菇品質(zhì)及收益的影響[J]. 中國(guó)食用菌,2020,39(9):18-21. Ding Cuiying. Effects of different cultivation media on quality and economic benefits of pleurotus eryngii[J]. Edible Fungi of China, 2020, 39(9): 18-21. (in Chinese with English abstract)

      [22]郭來民,劉文暉. 香菇對(duì)水分的要求及調(diào)控措施[J]. 食用菌,2013,35(4):49-50. Guo Laimin, Liu Wenhui. Water requirement and control measures of lentinus edodes[J]. Edible Fungi, 2013, 35(4): 49-50. (in Chinese with English abstract)

      [23]李彤,高世銘,張朝巍,等. 不同灌水處理對(duì)日光溫室雙孢菇的生長(zhǎng)及水分利用效率的影響[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,(6):53-57. Li Tong, Gao Shiming, Zhang Chaowei, et al. Effects of different supplying water treatments on development and water utilizing efficiency of agaricus bisporus in sunlight greenhouse[J]. Journal of GanSu Agricultural University, 2006, (6): 53-57. (in Chinese with English abstract)

      [24]Sepulcre-Canto G, Gellens-Meulenberghs F, Arboleda A, et al. Estimating crop-specific evapotranspiration using remote-sensing imagery at various spatial resolutions for improving crop growth modelling[J]. International Journal of Remote Sensing, 2013, 34(9/10): 3274-3288.

      [25]杜尚豐,何耀楓,梁美惠,等. 物聯(lián)網(wǎng)溫室環(huán)境調(diào)控系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(增刊1):296-301. Du Shangfeng, He Yaofeng, Liang Meihui, et al. Greenhouse environment network control system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(Supp.1): 296-301. (in Chinese with English abstract)

      [26]Ebrahimi-Mollabashi E, Huth N, Holzwoth D P, et al. Enhancing APSIM to simulate excessive moisture effects on root growth[J]. Field Crops Research, 2019, 236: 58-67.

      [27]耿宇聰,張濤,劉宏斌,等. 不同壓塊模式對(duì)雙孢菇生產(chǎn)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊2):275-278. Geng Yucong, Zhang Tao, Liu Hongbin, et al. Effects of different briquetting modes on production of agaricus bisporus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 275-278. (in Chinese with English abstract)

      [28]尤宇新,吳向格,胡自向,等. 雙孢菇新品種W192的高產(chǎn)優(yōu)質(zhì)高效栽培技術(shù)初探[J]. 農(nóng)業(yè)科技通訊,2019,(3):245-247. You Yuxin, Wu Xiangge, Hu Zixiang, et al. Preliminary study on high yield, good quality and high efficiency cultivation techniques of new agaricus bisporus W192[J]. Bulletin of Agricultural Science and Technology, 2019, (3): 245-247. (in Chinese with English abstract)

      [29]Roland B. Simulating the yields of bioenergy and food crops with the crop modeling software BioSTAR: The carbon-based growth engine and the BioSTAR ET0 method[J]. Environmental sciences Europe, 2014, 26(1): 1-9.

      [30]朱雪峰,趙凱旋,姬江濤,等. 雙孢菇工廠化生產(chǎn)環(huán)境因子調(diào)控系統(tǒng)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2021,43(2):156-162. Zhu Xuefeng, Zhao Kaixuan, Ji Jiangtao, et al. Design and experiment of environmental factor control system for industrialized production of agaricus bisporus[J]. Journal of Agricultural Mechanization Research, 2021, 43(2): 156-162. (in Chinese with English abstract)

      [31]崔黨群. Logistic曲線方程的解析與擬合優(yōu)度測(cè)驗(yàn)[J]. 數(shù)理統(tǒng)計(jì)與管理,2005(1):112-115. Cui Dangqun. Analysis and making good fitting degree test for logistic curve regression equation[J]. Application of Statistics and Management, 2005(1): 112-115. (in Chinese with English abstract)

      [32]Thomas S A, Brick L A D, Micalizzi L, et al. Parent-adolescent relationship characteristics and adolescent cannabis use: A growth curve analysis[J]. The American Journal of Drug and Alcohol Abuse, 2020, 46(5): 1-11.

      [33]Kenny Q, Hamada, Michael. A step-down lenth method for analyzing unreplicated factorial designs[J]. Journal of Quality Technology, 2001, 33(2): 140-152.

      [34]趙麗,朱學(xué)軍,白雪萍,等. 杏鮑菇栽培環(huán)境濕度建模與控制器設(shè)計(jì)及仿真[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2016,37(6):79-83. Zhao Li, Zhu Xuejun, Bai Xueping, et al. Build model for humidity of the pleurotus eryngii cultivation environment and controller design and simulation[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(6): 79-83. (in Chinese with English abstract)

      Effects of water stress on dynamic development quality of Agaricus bisporus and water efficiency in greenhouse

      Ji Jiangtao1,2, Zhao Xiangpeng1, Wang Rongxian3, Zhao Kaixuan1, Ma Hao1, Jin Xin1

      (1.,,471003,; 2.,471003,; 3.,,471023,)

      This study aims to examine the effect of matrix water on the expansion of mushroom shape, thereby determining the efficient water application of Agaricus bisporus in a greenhouse. A matrix water stress test of Abisporus bisporus during the whole growth period was conducted in the greenhouse in Henan University of Science and Technology of China in August 2020. The “Aoji No. 1” variety was taken as experimental material. An environmental control system was developed to adjust the temperature, air humidity, and CO2concentration in the greenhouse. Four groups of matrix moistures were set at the saturated water holding rate of 80%-90% (full water treatment, T1), 70%-80% (light stress, T2), 60%-70% (moderate stress, T3), and 50%-60% (severe stress, T4). A sensor of soil moisture RS485 was selected to monitor the water content of substrate soil. The key parameters were determined, including the development morphological index, single mushroom quality, regional mushroom quality, yield, and water use efficiency of Agaricus bisporus during the fruiting period. The results showed that: 1) The thickness of mushroom cover and the stalk diameter were evidently reduced with the increase of soil water stress. There was no significant influence of soil water stress on the height of mushrooms. The maximum thickness of mushroom cover and stalk diameter decreased by 26.1% and 24.9% under severe stress of soil water. The harvest time was delayed by 16.5 h, when the size of mushroom cover was used as the index of fruiting, compared with full water treatment (< 0.05). 2) The gradual, rapid, and slow growth stages were included in the development of cover thickness, stalk diameter, and mushroom height. Soil water stress reduced the peak of growth rate for the thickness of mushroom cover. The peak growth rate of mushroom stalk and cover were gradually advanced, whereas, the rapid growth time was prolonged significantly with the aggravation of soil water stress. Compared with full water treatment, the rapid growth time for the thickness of mushroom cover under light stress, moderate stress, and severe stress delayed by 4.1, 5.4, and 10.6 h, respectively, whereas, the rapid growth time of stalk diameter delayed by 10, 4.2, and 7.6 h, respectively, (<0.05). 3) The overall quality, yield, and water use efficiency of Agaricus bisporus reduced with the increase of soil water stress. The number of diseased spots and malformed mushrooms increased sharply under moderate and severe water stress, resulting in the decrease of high-quality mushroom yield. The yield of Agaricus bisporus under the mild, moderate, and severe soil water stress decreased by 5.5%, 26.3%, and 39.1%, respectively, (< 0.05), compared with full water treatment. Water use efficiency and the number of Agaricus bisporus reached the highest under the mild water stress, increasing by 2.3%, and 9.2%, respectively, compared with full water treatment (< 0.05). Fruiting- and high-quality mushroom ratio under the mild water stress were slightly lower than those of full water treatment. 4) The soil water stress during the whole growth period of Agaricus bisporus led to the changes of fruiting body and texture of monomer, as well as the reduction of yield and high-quality ratio. Appropriate soil water stress prolonged the period of rapid growth stage without affecting the quality of Agaricus bisporus. Mild water stress can be carried out in the gradual growth stage (0-40 h), and slow growth stage of mushroom to increase water use efficiency. The sufficient water content of the substrate should be maintained during the rapid development period (40 h-100 h). Water deficit treatment should not be carried out to improve the development rate and quality of Agaricus bisporus. This finding can offer an efficient application of water control in fungi substrate suitable for the precise management of water in Agaricus bisporus production.

      water content; greenhouse; water stress; agaricus bisporus; dynamic development; water use efficiency

      姬江濤,趙向鵬,王榮先,等. 水分脅迫對(duì)溫室雙孢菇動(dòng)態(tài)發(fā)育品質(zhì)及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(6):205-213.doi:10.11975/j.issn.1002-6819.2021.06.025 http://www.tcsae.org

      Ji Jiangtao, Zhao Xiangpeng, Wang Rongxian, et al. Effects of water stress on dynamic development quality of Agaricus bisporus and water efficiency in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 205-213. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.025 http://www.tcsae.org

      2020-11-25

      2021-01-31

      國(guó)家自然科學(xué)基金面上項(xiàng)目(51975186);國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFE0125100)。

      姬江濤,博士,教授,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)智能化技術(shù)與裝備、食用菌工廠化生產(chǎn)技術(shù)與裝備。Email:jjt0907@163.com

      10.11975/j.issn.1002-6819.2021.06.025

      S274.3

      A

      1002-6819(2021)-06-0205-09

      猜你喜歡
      雙孢菇出菇實(shí)體
      杏鮑菇出菇實(shí)踐操作技術(shù)淺析
      前海自貿(mào)區(qū):金融服務(wù)實(shí)體
      香菇白棒出菇的原因及預(yù)防措施
      棉柴覆土栽培雙孢菇高產(chǎn)技術(shù)
      實(shí)體的可感部分與實(shí)體——兼論亞里士多德分析實(shí)體的兩種模式
      兩會(huì)進(jìn)行時(shí):緊扣實(shí)體經(jīng)濟(jì)“釘釘子”
      振興實(shí)體經(jīng)濟(jì)地方如何“釘釘子”
      趕著時(shí)間賣的雙孢菇
      郯城雙孢菇豐收
      雙孢菇出菇過程的疑難問題及解決辦法
      安仁县| 武邑县| 商洛市| 乌兰察布市| 南部县| 财经| 宁安市| 兰西县| 淮南市| 宜春市| 吉首市| 广南县| 皮山县| 文化| 商水县| 许昌市| 罗田县| 鄂托克旗| 桐庐县| 临江市| 洪洞县| 女性| 新疆| 翁源县| 祁阳县| 林西县| 宽城| 咸阳市| 越西县| 宜都市| 松原市| 深圳市| 准格尔旗| 台湾省| 荔波县| 大田县| 邯郸市| 衡东县| 大厂| 林西县| 三门县|