王 峰,繆麗娟,張明月,應(yīng)雨璀,張承業(yè),王依凡,張煒文,朱維琴
牛糞礦物混合蚯蚓堆肥中堆制物Pb和Cd吸附性能變化
王 峰,繆麗娟,張明月,應(yīng)雨璀,張承業(yè),王依凡,張煒文,朱維琴※
(杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,杭州市生態(tài)系統(tǒng)保護(hù)與恢復(fù)重點(diǎn)實(shí)驗(yàn)室,杭州 311121)
為促進(jìn)畜糞和礦物資源的生態(tài)循環(huán)利用和Pb、Cd污染土壤的原位穩(wěn)定化治理,以尋求具有良好重金屬吸附性能的原位穩(wěn)定化修復(fù)材料為目標(biāo),該研究以高鈣鎂系礦物和海泡石添加下牛糞礦物混合蚯蚓堆肥為研究對(duì)象,分析堆制物性狀變化及其對(duì)Pb2+、Cd2+的吸附性能差異。結(jié)果表明,高鈣鎂系礦物及海泡石添加下蚯蚓均可較好生長(zhǎng),蚯蚓處理可使堆制物pH值、C/N比和有機(jī)質(zhì)含量降低,而使其陽離子交換量和比表面積提高;高鈣鎂系礦物和海泡石添加則均可提高堆制物pH值、陽離子交換量和比表面積。傅里葉紅外光譜分析表明,蚯蚓處理后堆制物中醇或羧酸類物質(zhì)和芳香類物質(zhì)增多,而脂類和多糖類物質(zhì)含量減少,且高鈣鎂系礦物添加使堆制物含有更多的Me-O基團(tuán)。X射線衍射分析表明,蚯蚓處理后堆制物中含有更多的硅酸鹽和可溶性鹽;高鈣鎂系礦物添加則增加了堆制物中的硅酸鹽含量及CaO、MgO等組分,而海泡石添加使堆制物中增加了硅酸鹽含量及MgO等組分。吸附試驗(yàn)表明,蚯蚓處理后堆制物對(duì)Pb2+、Cd2+具有更大吸附量和吸持能力,且以牛糞和高鈣鎂系礦物混合蚯蚓堆肥中的堆制物對(duì)Pb2+和Cd2+吸附效果最好,其吸附率分別為77.8%、59.7%。因此,利用牛糞和高鈣鎂系礦物混合蚯蚓堆肥生產(chǎn)具有良好Pb2+、Cd2+吸附性能的堆制物具有一定可行性。
重金屬;礦物;蚯蚓堆肥;堆制物;吸附;Pb2+;Cd2+
近年來,中國(guó)畜牧業(yè)發(fā)展導(dǎo)致大量的畜禽糞便產(chǎn)生并帶來環(huán)境壓力[1]。據(jù)報(bào)道,中國(guó)每年畜禽糞便產(chǎn)生量高達(dá)38億t,但綜合利用率卻不足60%[2]。其中,全國(guó)奶牛養(yǎng)殖業(yè)規(guī)?;?、集約化的迅速發(fā)展亦帶來了巨量的牛糞亟待處理,2017年全國(guó)奶牛存欄量約 1.08億頭,牛糞年產(chǎn)生量約14億t[3]。因此,對(duì)畜禽糞便進(jìn)行資源化、無害化處理迫在眉睫。同時(shí),隨著城市化、工業(yè)化進(jìn)程加快,各種工業(yè)污染物排放、農(nóng)業(yè)灌溉及農(nóng)藥使用等亦引起了土壤重金屬污染問題[4]。據(jù)環(huán)保部2014年全國(guó)土壤污染狀況調(diào)查公報(bào)顯示,全國(guó)土壤總點(diǎn)位超標(biāo)率為16.4%,其中重金屬等無機(jī)污染物超標(biāo)點(diǎn)位數(shù)占全部超標(biāo)點(diǎn)位的82.8%;而全國(guó)耕地土壤的點(diǎn)位超標(biāo)率高達(dá)19.4%,重金屬亦已成為中國(guó)耕地中的主要污染物[5]。據(jù)不完全統(tǒng)計(jì),中國(guó)受Pb、Cd等重金屬污染的耕地面積近2 000萬hm2,且每年因土壤重金屬污染而損失的糧食高達(dá)0.12億t[6]。因此,實(shí)現(xiàn)Pb、Cd污染土壤修復(fù)及安全生產(chǎn)迫在眉睫。
蚯蚓堆肥是指在蚯蚓和微生物協(xié)同作用下,將固體廢物進(jìn)行好氧分解并轉(zhuǎn)化為腐殖質(zhì)的生物處理工藝[7]。相對(duì)于自然堆肥,蚯蚓堆肥處理廢物效率高,其產(chǎn)物腐熟度高、穩(wěn)定性好、肥力充足且對(duì)重金屬有較好的吸附能力[8-9]。王亞利等[10]研究發(fā)現(xiàn)蔬菜廢棄物的蚯蚓堆肥比其普通堆肥更有利于雞毛菜的生長(zhǎng)和對(duì)營(yíng)養(yǎng)元素的吸收。Wang等[8]發(fā)現(xiàn)應(yīng)用污泥源蚓糞可以顯著降低土壤中可提取態(tài)Cd的含量。因此,對(duì)牛糞進(jìn)行蚯蚓堆肥并用于土壤修復(fù)有望成為解決牛糞環(huán)境壓力過大及實(shí)現(xiàn)重金屬污染土壤安全生產(chǎn)的有效途徑。同時(shí),因無機(jī)礦物材料具有來源廣泛、價(jià)廉、重金屬吸附能力強(qiáng)等特點(diǎn)而被廣泛用于土壤重金屬的穩(wěn)定化修復(fù)。孫約兵等[11]研究表明,施用海泡石可以提高盆栽試驗(yàn)土壤pH值并顯著抑制菠菜對(duì)Cd的吸收。Radziemska等[12]研究發(fā)現(xiàn),硅藻土、白云石和高嶺土可以降低土壤中Cd、Cr、Cu、Ni、Pb、Zn的有效性,且對(duì)Cd、Zn的穩(wěn)定化效果最好。然而,單一的有機(jī)材料-蚓糞或無機(jī)礦物對(duì)土壤重金屬穩(wěn)定效果有限,有機(jī)無機(jī)復(fù)合材料被普遍認(rèn)為更適合土壤重金屬污染修復(fù)。Hamidpour等[13]通過盆栽試驗(yàn)研究發(fā)現(xiàn),蚓糞和沸石聯(lián)合施用較單一施用沸石或蚓糞更能有效地降低有效態(tài)Cd、Pb和Zn含量。Hu等[14]研究發(fā)現(xiàn),單一施用改性粉煤灰可使土壤中可提取態(tài)Cu、Pb、Cd的含量分別減少48.09%、62.73%、47.6%,而聯(lián)合施用改性粉煤灰和有機(jī)肥則使土壤中可提取態(tài)Cu、Pb、Cd的含量分別減少53.5%、67.83%、49%。然而,當(dāng)前有機(jī)無機(jī)復(fù)合材料對(duì)重金屬的穩(wěn)定化效果多為單一材料聯(lián)合施用下的研究報(bào)道,本研究的創(chuàng)新之處在于探明通過牛糞礦物混合蚯蚓堆肥的源頭生產(chǎn)方式優(yōu)化生產(chǎn)兼具蚓糞及礦物功能的堆制物的可行性,并進(jìn)一步揭示其作為一種新型有機(jī)無機(jī)復(fù)合材料用于土壤重金屬原位穩(wěn)定化修復(fù)的潛在性能。
鑒于此,本研究分別以高鈣鎂系礦物及海泡石添加進(jìn)行牛糞礦物混合蚯蚓堆肥,分析蚓體生長(zhǎng)及堆制物性狀變化規(guī)律及其對(duì)Pb2+、Cd2+的吸附性能差異,以期為有效優(yōu)化牛糞礦物混合蚯蚓堆肥生態(tài)循環(huán)處理參數(shù),促進(jìn)廢棄物資源化及重金屬污染土壤安全利用等提供參考。
供試蚯蚓為赤子愛勝蚓(),經(jīng)清腸和預(yù)培養(yǎng)后選擇質(zhì)量相近、環(huán)帶明顯的蚯蚓用于試驗(yàn)。牛糞取自海寧某養(yǎng)殖廠,經(jīng)自然風(fēng)干、粉碎、過2 mm篩后用于試驗(yàn),其基本理化性質(zhì)為:pH值為6.87,電導(dǎo)率為1.479 mS/cm,全N質(zhì)量分?jǐn)?shù)為2.1%,C質(zhì)量分?jǐn)?shù)為25.64%,總Pb為15.65g/g,總Cd為1.09g/g。高鈣鎂系礦物由上海同濟(jì)建設(shè)有限公司提供,其基本理化性質(zhì)為:pH值為9.18,電導(dǎo)率為1.79 mS/cm,全N質(zhì)量分?jǐn)?shù)為1.101%,C質(zhì)量分?jǐn)?shù)為5.585%,總Pb為31.8g/g,總Cd為0.86g/g;海泡石購(gòu)自杭州某加工廠,其基本理化性質(zhì)為:pH值為7.6,電導(dǎo)率為0.862 mS/cm,全N質(zhì)量分?jǐn)?shù)為0.102%,C質(zhì)量分?jǐn)?shù)為2.33%,總Pb為29.45g/g,總Cd未檢出。上述高鈣鎂系礦物及海泡石均過0.15 mm篩后儲(chǔ)存于干燥器中備用。
1.2.1 蚯蚓堆肥構(gòu)建
試驗(yàn)以牛糞為主料,高鈣鎂系礦物及海泡石為礦物輔料,礦物添加量占牛糞總量的2.5%,將牛糞與礦物充分混勻后用Milli-Q超純水調(diào)節(jié)含水率至70%,平衡7 d后,稱取150 g(干質(zhì)量)混合物置于內(nèi)有網(wǎng)格袋(孔徑 ≤0.15 mm)的塑料桶中(桶底直徑12 cm,桶口直徑15 cm,桶高15 cm)。試驗(yàn)設(shè)6個(gè)處理,其中,C(牛糞)、CG(牛糞+高鈣鎂系礦物)、CH(牛糞+海泡石)處理為未添加蚯蚓,作為對(duì)照組,模擬自然堆制;V(牛糞+蚯蚓)、VG(牛糞+高鈣鎂系礦物+蚯蚓)、VH(牛糞+海泡石+蚯蚓)處理每桶放入12條大小均勻、生長(zhǎng)活躍、環(huán)帶明顯的赤子愛勝蚓,并用紗網(wǎng)(孔徑為0.15 mm)封口,以防蚯蚓逃逸和利于氣體交換。然后,將各處理均置于溫度20℃,濕度為70%的人工氣候室中暗培養(yǎng)45 d,于45 d時(shí)記錄蚯蚓的存活情況。上述各處理均設(shè)3個(gè)重復(fù),每隔2 d澆一次Milli-Q超純水以保持基質(zhì)濕度基本不變。
1.2.2 分析測(cè)試方法
蚯蚓堆肥試驗(yàn)結(jié)束后,首先采集蚓體用超純水洗凈并用紙巾吸干,置于培養(yǎng)皿中清腸24 h后稱量其總質(zhì)量,并統(tǒng)計(jì)成蚓、幼蚓及蚓繭數(shù)量,每5個(gè)蚓繭折合成1尾蚯蚓,計(jì)算存活率及繁殖率;然后對(duì)堆制物質(zhì)量進(jìn)行稱量,計(jì)算基質(zhì)日均
蚯蚓存活率(%)=試驗(yàn)?zāi)球緮?shù)量/初始蚯蚓數(shù)量×100(1)
蚯蚓繁殖率(%)=(折合后蚯蚓數(shù)-初始蚯蚓數(shù))/初始蚯蚓數(shù)×100(2)
蚯蚓日增質(zhì)量(g/d)=(試驗(yàn)?zāi)球举|(zhì)量-初始蚯蚓質(zhì)量)/培養(yǎng)時(shí)間(3)
基質(zhì)日消耗量(g/d)=(初始基質(zhì)干質(zhì)量-試驗(yàn)?zāi)┗|(zhì)干質(zhì)量)/培養(yǎng)時(shí)間(4)
采集堆制物樣品置于室內(nèi)自然風(fēng)干、研磨、過篩后備用。堆制物pH值、陽離子交換量、有機(jī)質(zhì)含量等參照鮑士旦的方法測(cè)定[15];總養(yǎng)分含量以N、P2O5和K2O的質(zhì)量分?jǐn)?shù)之和表示;比表面積、均孔尺寸均采用比表面積分析儀(Autosorb-1 C,Quantachrome,America)測(cè)定;采用掃描電鏡(HitachiSU1210,Japan)觀察樣品的表面特征,分析其孔隙結(jié)構(gòu)。采用X-射線衍射儀(D8 Advance,Bruker,German)測(cè)定樣品中的無機(jī)礦物組成;采用元素分析儀(EUROEA3000,Italy)測(cè)定樣品的C、N含量并計(jì)算C/N比;采用傅立葉變換紅外光譜儀(Thermo Scientific Nicolet-Is10,USA)測(cè)定樣品的紅外光譜特性,波數(shù)范圍為400~4 000 cm-1。
稱取各堆制物樣品于10 mL聚丙烯離心管中,按4 g/L固液比使固相中的Pb2+的加入量為1 000 mg/L,Cd2+的加入量為400 mg/L,Pb源為Pb(NO3)2,Cd源為Cd(NO3)2,pH值為5.0±0.05,以0.01 mol/L NaNO3作為背景溶液,每個(gè)處理設(shè)3個(gè)平行,各樣品放于恒溫振蕩箱中以25℃,200 r/min下振蕩24 h后取出進(jìn)行離心過濾,采用火焰原子吸收分光光度計(jì)(Shimadzu AA-6800,Japan)進(jìn)行測(cè)定,計(jì)算吸附平衡后的吸附量和吸附率。進(jìn)一步在含殘余固相的離心管中分別加入8 mL 0.01 mol/L NaNO3溶液,并于25 ℃恒溫振蕩箱中振蕩24 h進(jìn)行解吸試驗(yàn),然后離心,過濾,測(cè)定濾液中重金屬的含量,并計(jì)算其解吸量和解吸率。吸附量和吸附率計(jì)算式為
e=(0-e/(5)
AR=(0-e/0×100%(6)
式中e為吸附量(mg/kg),AR為吸附率(%),為吸附液體積(8 mL),0為重金屬離子的初始濃度(mg/L),e為平衡溶液中重金屬濃度(mg/L),為吸附劑質(zhì)量(g)。
解吸量和解吸率計(jì)算式為
e=?e/(7)
DR=e/e×100%(8)
式中e為解吸量(mg/kg),DR為解吸率(%),為解吸液體積(8 mL),為解吸液中重金屬離子的平衡濃度(mg/L),為吸附劑質(zhì)量(g)。
采用DPS進(jìn)行數(shù)據(jù)分析,用Tukey法檢驗(yàn)差異顯著性,采用Origin 2018軟件作圖。
蚯蚓生長(zhǎng)狀況是決定蚯蚓堆肥能否成功的先決條件,如表1所示,各處理蚓體存活率和繁殖率大小順序均為VH、VG、V,且蚓體存活率和繁殖率在VH和V之間的差異均達(dá)顯著水平;蚓體日增質(zhì)量大小順序?yàn)閂G、VH、V,且VG顯著高于V和VH。因此,高鈣鎂系礦物和海泡石添加一定程度上均促進(jìn)了蚯蚓生長(zhǎng)?;|(zhì)消耗量可反映堆肥過程中蚯蚓及微生物對(duì)有機(jī)質(zhì)的分解能力,也可反應(yīng)堆肥的腐殖化程度。如表 1所示,各蚯蚓處理(V、VG和VH)基質(zhì)日消耗量顯著高于其相應(yīng)無蚯蚓處理(C、CG和CH),而VG、VH基質(zhì)日消耗量與V處理間的差異未達(dá)顯著水平,說明在牛糞-礦物蚯蚓反應(yīng)器中蚯蚓可正常促進(jìn)基質(zhì)的消耗性降解。Zhou等[16]報(bào)道認(rèn)為牛糞稻草混合蚯蚓堆肥時(shí)添加生物炭可促進(jìn)其分解并增加飼口性而促進(jìn)蚯蚓生長(zhǎng)。另有研究則表明,納米碳添加至牛糞中后,因基質(zhì)適口性降低和堿性增加等而抑制蚯蚓生長(zhǎng)[17]。因此,選擇適宜添加劑是蚯蚓堆肥能否成功的關(guān)鍵因素,本研究中高鈣鎂系礦物及海泡石添加下蚯蚓可以較好適應(yīng)生長(zhǎng)環(huán)境,于牛糞中添加無機(jī)礦物并進(jìn)行蚯蚓堆肥具有可行性。
注:不同小寫字母表示處理間差異顯著(< 0.05),下同。
Note: Different small letters indicate significant differences among all treatments (< 0.05), the same below.
pH值和陽離子交換量是影響吸附材料對(duì)重金屬吸附能力的重要因素。由表2可見,各處理堆制物pH值和陽離子交換量范圍分別為7.22~7.56和380.97~446.5 cmol/kg。相同基質(zhì)下,蚯蚓處理(V、VG和VH)各堆制物中pH值均顯著低于無蚯蚓處理(C、CG和CH),而其陽離子交換量則顯著高于無蚯蚓處理(C、CG和CH),且VG處理堆制物中的pH值和陽離子交換量均顯著高于V和VH處理。研究表明,蚯蚓處理可以促進(jìn)豆渣和樹葉混合基質(zhì)降解并產(chǎn)生更多的有機(jī)/無機(jī)酸[18],這可能是本研究中蚯蚓處理后堆制物pH值顯著下降的原因;其中,VG處理堆制物中pH值相對(duì)更高可能是由于高鈣鎂系礦物本身較高的pH值(9.18)帶來的“石灰效應(yīng)”,而其堆制物中陽離子交換量顯著上升則可能歸因于其pH值提高導(dǎo)致其可變負(fù)電荷增加[17]。有研究表明,pH值為7左右的中性環(huán)境最有利于蚯蚓的生長(zhǎng)繁殖[19];而pH值為7~9時(shí)微生物活性最高且相對(duì)更利于微生物對(duì)廢棄物的降解[20]。堆制物中陽離子交換量大小可作為評(píng)價(jià)其保肥能力的重要指標(biāo)。Zhang等[21]指出陽離子交換量可用以衡量堆體物料中羧基官能團(tuán)的數(shù)量,陽離子交換量越高,其保肥能力越好;亦研究認(rèn)為陽離子交換量可反映其吸附重金屬的能力,其通常隨著有機(jī)物的分解而逐漸增加[22]。因此,本研究牛糞礦物混合蚯蚓堆肥中pH值均可以滿足蚯蚓生長(zhǎng)繁殖和微生物活動(dòng)需求,且蚯蚓活動(dòng)可有效提高牛糞礦物混合蚯蚓堆肥中堆制物中陽離子交換量而降低其pH值,而高鈣鎂系礦物添加下所獲堆制物pH值和陽離子交換量相對(duì)更高,其可能對(duì)重金屬具有更高的吸附潛力及保肥能力。
C/N是反映堆制物腐熟度和穩(wěn)定度的重要指標(biāo)[23]。通常來說,堆制物C/N<20則認(rèn)為其具有較好的腐熟度,適合于農(nóng)業(yè)應(yīng)用[24]。由表2可知,C、CG和CH的C/N分別為24.24、24.17、24.47,均大于20,而V、VG和VH的C/N分別為18.17、17.77、17.67,均小于20,可見蚯蚓處理后堆制物具有更好的腐熟度和穩(wěn)定度,并適合于農(nóng)業(yè)應(yīng)用。Boruah等[25]亦發(fā)現(xiàn)甘蔗渣與造紙廠污泥混合物蚯蚓堆肥C/N較自然堆肥相對(duì)更低。蚯蚓堆肥過程中C/N的下降可能與礦化和呼吸作用所致CO2損失,以及蚯蚓黏液和含氮產(chǎn)物排泄增加了堆制物氮含量有關(guān)[26]。此外,相較于V,VG和VH的C/N略有下降,但處理間差異未達(dá)到顯著水平,說明高鈣鎂系礦物和海泡石添加對(duì)堆制物C/N變化無顯著影響。
相對(duì)于無蚯蚓處理(C、CG和CH),蚯蚓處理各堆制物中總養(yǎng)分含量顯著增加,而其有機(jī)質(zhì)含量顯著降低,且VG、VH處理有機(jī)質(zhì)及總養(yǎng)分含量與V處理間的差異未達(dá)顯著水平,說明蚯蚓活動(dòng)有利于堆制物中營(yíng)養(yǎng)元素的釋放及有機(jī)質(zhì)的降解,但礦物添加對(duì)堆制物有機(jī)質(zhì)含量及養(yǎng)分含量的變化無顯著影響。有機(jī)質(zhì)含量的降低是由于堆肥過程中基質(zhì)的分解,本研究中,蚯蚓處理中有機(jī)質(zhì)的含量更低,這亦與前述基質(zhì)消耗量的變化具有一致性。另有研究表明,堆制物總養(yǎng)分的增加是由于有機(jī)質(zhì)礦化過程中堆制物氮、磷、鉀含量的增加[27];其中,氮含量的增加與蚯蚓的排泄產(chǎn)物和腐爛組織有關(guān),而磷鉀含量的增加可能與蚯蚓腸道中的相關(guān)微生物有關(guān)[25],這是蚯蚓活動(dòng)促進(jìn)堆制物中總養(yǎng)分增加的原因。
綜上,與無蚯蚓處理(C、CG和CH)相比,蚯蚓處理(V、VG和VH)堆制物具有更低的pH值、C/N和有機(jī)質(zhì)含量以及更高的陽離子交換量、總養(yǎng)分。高鈣鎂系礦物以及海泡石的添加均可以提高堆制物的pH值和陽離子交換量。
注:有機(jī)質(zhì)及總養(yǎng)分以質(zhì)量分?jǐn)?shù)表示。
Note: Organic matter and total nutrients present as mass fraction.
掃描電鏡分析可直觀地提供堆制物樣品表面形貌信息,由圖1可見,無蚯蚓處理(C、CG和CH)堆制物表面呈現(xiàn)粗糙且具有相對(duì)較大的孔徑,而蚯蚓處理(V、VG和VH)堆制物則是表面光滑結(jié)構(gòu)緊密,且出現(xiàn)不規(guī)則的相對(duì)較小孔徑,說明蚯蚓活動(dòng)促進(jìn)了堆制物中小孔徑的形成。同時(shí),相對(duì)于V而言,VG和VH處理堆制物表面呈現(xiàn)了不規(guī)則分散的網(wǎng)狀結(jié)構(gòu)。進(jìn)一步分析發(fā)現(xiàn),相同基質(zhì)下,相較于無蚯蚓處理(C、CG和CH),蚯蚓處理(V、VG和VH)堆制物具有更大的比表面積和較小的孔徑,說明蚯蚓活動(dòng)促進(jìn)了堆制物比面積的增加,這可能與基質(zhì)經(jīng)過蚯蚓腸道消化破碎后質(zhì)地變細(xì)導(dǎo)致比表面積更大有關(guān)[28]。有研究表明,堆肥的腐熟度與其比表面積呈正相關(guān),說明蚯蚓處理可促進(jìn)堆制物的腐熟[29]。各蚯蚓處理(V、VG和VH)堆制物比表面積大小分別為3.41、4.60、4.12 m2/g,說明添加高鈣鎂系礦物和海泡石均可增加堆制物的比表面積,且以添加高鈣鎂系礦物的增加效應(yīng)更加明顯。然而,V、VG和VH堆制物的孔徑大小相近,分別為121.1、122.7和120.2 nm,說明礦物添加對(duì)其蚯蚓堆制物的孔徑影響甚小??梢?,蚯蚓處理后堆制物具有更小的孔徑及更大的比表面積,礦物添加可提高其堆制物的比表面積,且以高鈣鎂系礦物添加的效果更加明顯,這亦提高了其對(duì)重金屬吸附固定的潛力。
傅里葉紅外光譜圖可反映樣品中所含官能團(tuán)的種類[30],如圖2所示,各處理堆制物的紅外譜圖的出峰位置大致相似,但在峰強(qiáng)度上存在一定差異。波數(shù)3 500~3 300 cm-1處出現(xiàn)的峰為醇或羧酸基團(tuán)所含O-H的伸縮振動(dòng)吸收峰[31]。相同基質(zhì)下,相對(duì)于無蚯蚓處理(C、CG和CH),蚯蚓處理(V、VG和VH)在此處的峰強(qiáng)度有所增加,且吸收峰位置向高波數(shù)移動(dòng)。相較于V,高鈣鎂系礦物添加處理(VG)在此處的峰強(qiáng)度有所增加,海泡石添加處理(VH)的峰強(qiáng)度無明顯變化。波數(shù)為2 926~2 853 cm-1的峰,可以歸因于脂肪族C-H的拉伸,它可以反映出脂類和碳水化合物的含量[32]。波數(shù)為1 450~1 400 cm-1處出現(xiàn)的峰為-CH3和-CH2所含的C-H 變形震動(dòng)吸收峰[33]。相同基質(zhì)下,相對(duì)于無蚯蚓處理(C、CG和CH),蚯蚓處理(V、VG和VH)在此兩處的吸收峰位置均向低波數(shù)移動(dòng),說明蚯蚓活動(dòng)促進(jìn)了基質(zhì)的分解,減少了堆制物中的脂類和碳水化合物的含量。波數(shù)為1 659 cm-1左右的峰是芳香基團(tuán)所含的C=C振動(dòng)吸收峰,可反映堆制物中芳香族化合物的含量[31]。相同基質(zhì)下,相對(duì)于無蚯蚓處理(C、CG和CH),蚯蚓處理(V、VG和VH)堆制物在此處的峰強(qiáng)度略微有所增加,且吸收峰位置向高波數(shù)移動(dòng),表明蚯蚓處理堆制物中芳香結(jié)構(gòu)的富集程度及腐殖化程度更高。波數(shù)約為1 042 cm-1的峰為多糖類物質(zhì)C-O伸縮振動(dòng)吸收峰[31],蚯蚓處理(V、VG和VH)在此處的峰強(qiáng)度小于無蚯蚓處理(C、CG和CH),且吸收峰向低波數(shù)移動(dòng),表明蚯蚓活動(dòng)有助于堆制物中多糖類物質(zhì)的降解。波數(shù)為875 cm-1的峰可歸因于碳酸鹽的C-O面外彎曲振動(dòng)峰或金屬氧化物中Me-O的伸縮振動(dòng)[34],且VG處理在此處的吸收峰比較明顯,說明其堆制物中含有較多的 Me-O或碳酸根,這可能是高鈣鎂系礦物中CaO和MgO中的Ca-O和Mg-O所致,其可能為VG對(duì)Pb2 +、Cd2+具有更高的吸附潛力提供保證。
綜上,相較于無蚯蚓處理(C、CG和CH),蚯蚓處理(V、VG和VH)堆制物中含有更多的醇或羧酸類物質(zhì)和芳香類物質(zhì),且含有更少的脂類和多糖類物質(zhì)。添加高鈣鎂系礦物使蚯蚓堆制物含有更多的Me-O基團(tuán)。
通過X射線衍射分析可以了解樣品的無機(jī)組成[30],如圖3所示,各處理在2=26.6°處均出現(xiàn)一個(gè)較強(qiáng)的SiO2特征衍射峰[35],且蚯蚓處理(V、VG和VH)在此處的峰強(qiáng)均大于無蚯蚓處理(C、CG和CH),分析其原因,可能是蚯蚓活動(dòng)促進(jìn)了堆制物中有機(jī)物的分解,導(dǎo)致硅酸鹽類物質(zhì)含量增高所致。此外,VG、VH在此處的峰強(qiáng)度均大于V,說明高鈣鎂系礦物和海泡石添加均增加了堆制物中硅酸鹽含量。與此峰相一致,各處理在2=20.8°和2=50°左右均存在較弱的SiO2衍射峰[36]。此外,2=27°左右為鈉鹽的特征峰[36],各處理在此處均存在特征峰,且蚯蚓處理(V、VG和VH)的峰強(qiáng)度均略高于無蚯蚓處理(C、CG和CH),這可能與蚯蚓處理促進(jìn)有機(jī)物分解并釋放可溶性鹽有關(guān)。另據(jù)報(bào)道,2=29.4°為CaCO3的特征峰[37],其中添加高鈣鎂系礦物處理(CG、VG)在此處的峰強(qiáng)度最高,說明高鈣鎂系礦物中含有CaCO3或CaO化合形成了CaCO3。2=36.26°處為CaO的特征峰[38],僅存在于CG、VG處理,說明高鈣鎂系礦物中含有CaO這一組分。=18°為Ca(OH)2的特征峰[38],CG和VG處理在此處含有特征峰,其可能是高鈣鎂系礦物中的CaO暴露在空氣吸收了水分,從而生成了Ca(OH)2。2=42.92°為MgO的特征峰[38],僅存在于CG、VG、CH和VH處理,說明高鈣鎂系礦物和海泡石的添加增加了堆制物MgO這一成分。因此,各處理堆制物的礦物組成存在差異性,相較于無蚯蚓處理(C、CG和CH),蚯蚓處理(V、VG和VH)堆制物含有更多的硅酸類物質(zhì)和可溶性鹽;添加高鈣鎂系礦物的堆制物中增加了CaO、MgO組分,添加海泡石使堆制物中增加了MgO組分。另有研究表明,沉淀是吸附劑固定重金屬的重要機(jī)制之一,吸附劑中的礦物元素可提供額外的吸附位點(diǎn)[39];本研究中,VG中富含CaCO3、CaO、MgO等礦物元素,這可能有利于其對(duì)Pb2+、Cd2+的吸附。
圖3 不同處理下各堆制物X射線衍射分析
如圖4所示,各處理對(duì)Pb2+、Cd2+的吸附率均相對(duì)高于C處理,且其吸附態(tài)Pb2+、Cd2+的解吸率均顯著低于C處理。VG處理對(duì)Pb2+、Cd2+的吸附率最高,分別為77.8%,59.7%,其吸附態(tài)Pb2+、Cd2+的解吸率最低,分別為0.02%,6.66%。Zhu等[40]報(bào)道表明,牛糞源蚓糞對(duì)Pb2+、Cd2+的吸附率分別為69.43%和32.47%,明顯低于本研究中的VG處理所獲堆制物。此外,相同基質(zhì)下,相較于無蚯蚓處理(C、CG和CH),蚯蚓處理(V、VG和VH)對(duì)Pb2+、Cd2+的吸附率更高,且其吸附態(tài)Pb2+、Cd2+的解吸率更低。吸附材料對(duì)重金屬的吸附機(jī)理包括物理吸附、離子交換、靜電吸附、沉淀、絡(luò)合等[41-42],其對(duì)重金屬的吸附能力主要取決于其比表面積、陽離子交換量、表面活性官能團(tuán)數(shù)量和礦物成分。例如,Sun等[43]通過紅外光譜分析證明了玉米秸稈生物炭表面的羥基、羧基通過絡(luò)合作用參與了其對(duì)Cd2+的有效去除。另有研究表明,水溶液中pH值提高有利于碳酸鹽沉淀(CdCO3、PbCO3)及氫氧化物沉淀的生成[43]。分析VG對(duì)Pb2+、Cd2+的吸附性能相對(duì)最優(yōu)的原因,可能與上述分析中VG處理堆制物具有較高的pH值、陽離子交換量、比表面積及較為豐富的含氧官能團(tuán)及礦物組分有關(guān)。因此,于牛糞中添加適量的高鈣鎂系礦物獲得提升Pb2+、Cd2+吸附性能的堆制物具有可行性。
1)高鈣鎂系礦物及海泡石添加下蚯蚓可以較好適應(yīng)生長(zhǎng)環(huán)境,于牛糞中添加適宜無機(jī)礦物并進(jìn)行蚯蚓堆肥具有可行性。
2)蚯蚓處理使堆制物pH值、C/N、有機(jī)質(zhì)含量及脂類和多糖類物質(zhì)含量降低,其陽離子交換量、總養(yǎng)分、比表面積、醇或羧酸類物質(zhì)、芳香類物質(zhì)、硅酸鹽類物質(zhì)和可溶性鹽含量增加。
3)高鈣鎂系礦物以及海泡石的添加均可提高堆制物的pH值、陽離子交換量和比表面積,且高鈣鎂系礦物添加使其增加了Me-O基團(tuán)以及CaO、MgO等礦物組分。
4)牛糞-高鈣鎂系礦物混合蚯蚓堆肥中所獲堆制物(VG)對(duì)Pb2+、Cd2+的吸附性能相對(duì)最優(yōu),其對(duì)Pb2+、Cd2+吸附率分別為77.8%、59.7%,其較高的pH值、陽離子交換量、比表面積及較為豐富的含氧官能團(tuán)及礦物組分為其良好的Pb2+、Cd2+吸附性能提供了保證。
[1]姚升,王光宇. 基于分區(qū)視角的畜禽養(yǎng)殖糞便農(nóng)田負(fù)荷量估算及預(yù)警分析[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2016(1):72-84. Yao Sheng, Wang Guangyu. Study on estimation and warning of farmland load of livestock and poultry-based on zoning perspective[J]. Journal of Huazhong Agricultural University, 2016(1): 72-84. (in Chinese with English abstract)
[2]吳浩瑋,孫小淇,梁博文,等. 我國(guó)畜禽糞便污染現(xiàn)狀及處理與資源化利用分析[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2020,39(6):1168-1176. Wu Haowei, Sun Xiaoqi, Liang Bowen, et al. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization[J]. Journal of Agro-Environment Science, 2020, 39(6): 1168-1176. (in Chinese with English abstract)
[3]Li X Z, Yan C Y, Zan L S. Current situation and future prospects for beef production in China - A review[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(7): 984-991.
[4]Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.
[5]陳能場(chǎng),鄭煜基,何曉峰,等. 全國(guó)土壤污染狀況調(diào)查公報(bào)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(9):1689-1692. Chen Nengchang, Zheng Yuji, He Xiaofeng, et al. The report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. (in Chinese with English abstract)
[6]Teng Y G, Ni S J, Wang J S, et al. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China[J]. Journal of Geochemical Exploration, 2010, 104(3): 118-127.
[7]張志劍,劉萌,朱軍. 蚯蚓堆肥及蠅蛆生物轉(zhuǎn)化技術(shù)在有機(jī)廢棄物處理應(yīng)用中的研究進(jìn)展[J]. 環(huán)境科學(xué),2013,34(5):1679-1686. Zhang Zhijian, Liu Meng, Zhu Jun. Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective[J]. Environmental Science, 2013, 34(5): 1679-1686. (in Chinese with English abstract)
[8]Wang Y, Xu Y, Li D, et al. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress[J]. Science of the Total Environment, 2017, 621: 1057.
[9]周波,唐晶磊,代金君,等. 蚯蚓作用下污泥重金屬形態(tài)變化及其與化學(xué)生物學(xué)性質(zhì)變化的關(guān)系[J]. 生態(tài)學(xué)報(bào),2015,35(19):6269-6279. Zhou Bo, Tang Jinglei, Dai Jingjun, et al. Remediating effluent sludge with earthworms: Changes in heavy metal speciation and associated chemical and biological properties[J]. Acta Ecologica Sinica, 2015, 35(19): 6269-6279. (in Chinese with English abstract)
[10]王亞利,楊光,熊才耘,等. 蔬菜廢棄物蚯蚓堆肥對(duì)雞毛菜生長(zhǎng)的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(10):2129-2135. Wang Yali, Yang Guang, Xiong Caiyun, et al. Effect of vegetable waste vermicompost on the growth of brassica chinensis[J]. Journal of Agro-Environment Science, 2017, 36(10): 2129-2135. (in Chinese with English abstract)
[11]孫約兵,徐應(yīng)明,史新,等. 海泡石對(duì)鎘污染紅壤的鈍化修復(fù)效應(yīng)研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2012,32(6):1465-1472. Sun Yuebing, Xu Yingming, Shi Xin, et al. The effects of sepiolite on immobilization remediation of Cd contaminated red soil[J]. Acta Scientiae Circumstantiae, 2012, 32(6): 1465-1472. (in Chinese with English abstract)
[12]Radziemska A, B?? A, Zygmunt M, et al. Assisted phytostabilization of soil from a former military area with mineral amendments[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109934.
[13]Hamidpour M, Akbari L, Shirani H. Effects of co-application of zeolites and vermicompost on speciation and phytoavailability of cadmium, lead, and zinc in a contaminated soil[J]. Communications in Soil Science and Plant Analysis, 2017, 48(3): 262-273.
[14]Hu X, Huang X, Zhao H, et al. Possibility of using modified fly ash and organic fertilizers for remediation of heavy-metal-contaminated soils[J]. Journal of Cleaner Production, 2020, 284(7): 124713.
[15]鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2005.
[16]Zhou G X, Xu X F, Qiu X W, et al. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure[J]. Bioresource Technology, 2019, 272: 10-18.
[17]Cao Y, Tian Y Q, Wu Q B, et al. Vermicomposting of livestock manure as affected by carbon-rich additives (straw, biochar and nanocarbon): A comprehensive evaluation of earthworm performance, microbial activities, metabolic functions and vermicompost quality[J]. Bioresource Technology, 2021, 320: 124404.
[18]Wong J W C, Mak K F, Chan N W, et al. Co-composting of soybean residues and leaves in Hong Kong[J]. Bioresource Technology, 2001, 76: 99-106.
[19]張尊昊. 蚯蚓堆制處理花生殼的技術(shù)方法研究[D]. 長(zhǎng)春:吉林大學(xué),2018. Zhang Zunhao. Stabilization of Peanut Shells by the Vermicomposting[D]. Changchun: Jilin University, 2018. (in Chinese with English abstract)
[20]朱欣潔,孫先鋒,周秋丹,等. 好氧堆肥與蚯蚓堆肥對(duì)污泥處理污泥效果比較研究[J]. 環(huán)境科學(xué)與技術(shù),2015,38(4):79-83. Zhu Xinjie, Sun Xianfeng, Zhou Qiudan, et al. Comparative study on influence of aerobic composting and earthworm composting on sludge treatment[J]. Environmental Science & Technology, 2015, 38(4): 79-83. (in Chinese with English abstract)
[21]Zhang L, Sun X. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar[J]. Bioresource Technology, 2014, 171: 274-284.
[22]劉恩璽,高橋輝昌,劉彩霞. 樹木剪枝堆肥與傳統(tǒng)堆肥對(duì)土壤化學(xué)性質(zhì)的影響[J]. 林業(yè)與環(huán)境科學(xué),2016,32(2):68-72. Liu Enxi, Takahashi Terumasa, Liu Caixia. The effect of compost made from pruning materials and traditional compost on soil chemical properties[J]. Forestry and Environmental Science, 2016, 32(2): 68-72. (in Chinese with English abstract)
[23]王海候,何胥,陶玥玥,等. 添加不同粒徑炭基輔料改善豬糞好氧堆肥質(zhì)量的效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(9):224-232. Wang Haihou, He Xu, Tao Yueyue, et al. Improving pig manure aerobic composting quality by using carbonaceous amendment with different particle sizes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 224-232. (in Chinese with English abstract)
[24]Edwards C A, Bohlen P J. Biology and Ecology of Earthworms[J]. Agriculture Ecosystems & Environment, 1996, 64(1): 426.
[25]Boruah T, Barman A, Kalita P, et al. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida[J]. Bioresource Technology, 2019, 294: 122147.
[26]Lv B, Zhang D, Cui, Y, et al. Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge[J]. Bioresource Technology, 2018, 268: 408-414.
[27]Suthar S. Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate[J]. Ecological Engineering, 2009, 35(5): 914-920.
[28]Wu T Y, Lim S L, Lim P N, et al. Biotransformation of biodegradable solid wastes into organic fertilizers using composting or/and vermicomposting[J]. Chemical Engineering Transactions, 2014, 39: 1579-1584.
[29]Lim S L, Wu T Y. Characterization of matured vermicompost derived from valorization of palm oil mill byproduct[J]. Journal of Agricultural and Food Chemistry, 2016, 64(8): 1761-1769.
[30]Bhat S A, Singh J, Vig A P. Instrumental characterization of organic wastes for evaluation of vermicompost maturity[J]. Journal of Analytical Science and Technology, 2017, 8(1): 1-12.
[31]閆翠俠,賈宏濤,孫濤,等. 雞糞生物炭表征及其對(duì)水和土壤鎘鉛的修復(fù)效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(13):225-233. Yan Cuixia, Jia Hongtao, Sun Tao, et al. Characteristics of chicken manure biochars and its effect on Cd and Pb remediation in water and soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 225-233. (in Chinese with English abstract)
[32]Fernández-Gómez M J, Nogales R, Plante A, et al. Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting[J]. Waste Management, 2015, 35: 81-88.
[33]Soobhany N, Gunasee S, Rago Y P, et al. Spectroscopic, thermogravimetric and structural characterization analyses for comparing municipal solid waste composts and vermicomposts stability and maturity[J]. Bioresource Technology, 2017, 236: 11-19.
[34]朱維琴,張志,加紫薇,等. 不同填埋污泥對(duì)Cu2+、Zn2+吸附特性差異研究[J]. 環(huán)境科學(xué),2010,31(7):1575-1582. Zhu Weiqin, Zhang Zhi, Jia Ziwei, et al. Comparative studies on the characteristics for Cu2+or Zn2+adsorption onto different landfilled sludge[J]. Environmental Science, 2010, 31(7): 1575-1582. (in Chinese with English abstract)
[35]陳廣銀,鄭正,鄒星星,等. 蚓糞與玉米秸混合厭氧消化實(shí)驗(yàn)[J]. 環(huán)境科學(xué),2010,31(2):520-525. Chen Guangyin, Zheng Zheng, Zou Xingxing, et al. Anaerobic Co-digestion of corn stalk and vermicompost[J]. Environmental Science, 2010, 31(2): 520-525. (in Chinese with English abstract)
[36]蔣正武. 生物質(zhì)燃料的燃燒過程及其焚燒灰特性研究[J]. 材料導(dǎo)報(bào),2010,24(4):66-68. Jiang Zhengwu. Study on combustion process of biomass fuels and charicteristics of their ashes[J]. Materials Reports, 2010, 24(4): 66-68. (in Chinese with English abstract)
[37]Komnitsas K, Zaharaki D, Pyliotis I, et al. Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals[J]. Waste Biomass Valorization, 2015, 6(5): 805-816.
[38]許珊珊,林存旺,丁亞磊,等. MgO/活性炭催化臭氧化降解有機(jī)物的作用機(jī)制[J]. 環(huán)境科學(xué),2018,39(2):838-843. Xu Sansan, Lin Cunwang, Ding Yalei, et al. Mechanism of MgO/GAC catalyzed ozonation of organic compounds[J]. Environmental Science, 2018, 39(2): 838-843. (in Chinese with English abstract)
[39]Inyang M I, Gao B, Yao Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2015, 46: 406-433.
[40]Zhu W Q, Du W H, Shen X Y, et al. Comparative adsorption of Pb2+and Cd2+by cow manure and its vermicompost[J]. Environmental Pollution, 2017, 227: 89-97.
[41]Qiu B B, Tao X D, Wang H, et al. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155(11): 105081.
[42]崔紅標(biāo),王昱茗,葉回春,等. 不同內(nèi)源重金屬生物炭對(duì)Cu和Cd吸附及其對(duì)老化作用的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):203-210. Cui Hongbiao, Wang Yuming, Ye Huichun, et al. Adsorption of Cu and Cd by biochars with various contents of endogenous heavy metals and their responses to aging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 203-210. (in Chinese with English abstract)
[43]Sun J K, Lian F, Liu Z Q, et al. Biochars derived from various crop straws: Characterization and Cd(II) removal potential[J]. Ecotoxicology and Environmental Safety, 2014, 106: 226-231.
Adsorption property of Pb and Cd by substrate residues after vermicomposting of cow dung mixed with minerals
Wang Feng, Miao Lijuan, Zhang Mingyue, Ying Yucui, Zhang Chengye, Wang Yifan, Zhang Weiwen, Zhu Weiqin※
(,,,311121,)
High concentrations of heavy metals lead (Pb) and cadmium (Cd) in soil have triggered a serious threat to plant growth, animal health, and ecological environment for human survival. Non-biodegradable Pb and Cd contamination in soil can be easily transferred to agricultural crops through the soil-plant-food chain, easy to endanger human body health. Alternatively, in situ stabilization is an effective technology to reduce the toxicity of such heavy metals. However, it is particularly important to choose the cost-effective materials with significant stability effects in soil. This study aims to seek in situ stabilized remediation materials with a high adsorption efficiency of heavy metal. A vermicomposting experiment of cow dung mixed with high calcium and magnesium minerals or sepiolite was conducted to analyze the variation of substrate residues properties and the adsorption characteristics of Pb2+and Cd2+. Firstly, the growth indexes of earthworms were selected for the feasibility of vermicomposting cow dung mixed with minerals. Then, the substrate residues were characterized, including pH value, cation exchange capacity, morphology under a Scanning Electron Microscopy (SEM), mineral components under X-Ray Diffraction (XRD), and surface functional groups under a Fourier Transform Infrared Spectroscopy (FTIR). Finally, batch adsorption experiments were carried out to evaluate the adsorption efficiency of Pb2+and Cd2+from aqueous solution. The results demonstrated that the earthworms survived well with high calcium and magnesium minerals or sepiolite addition. The earthworm treatment reduced pH value, C/N, and organic content, while, increased the cation exchange capacity, and the specific surface area of substrate residues. High calcium and magnesium minerals or sepiolite addition both increased the pH value, cation exchange capacity, and specific surface area of substrate residues. FTIR analysis showed that the earthworm treatment had more alcohol or carboxylic acids and aromatic substance, while, less lipid material and polysaccharide substance in substrate residues, compared with the untreatment. The addition of high calcium and magnesium mineral also produced more Me-O groups in substrate residues. XRD analysis showed that more silicate and soluble salts were found in the earthworm treatment, compared with the untreatment. The addition of high calcium and magnesium mineral produced silicate, CaO and MgO components, whereas, the sepiolite addition produced silicate and MgO components in substrate residues. The batch adsorption experiment showed that the earthworm treatment had better adsorption capacity of Pb2+and Cd2+in aqueous solution. The adsorption efficiency of Pb2+and Cd2+was the best for the substrate residues rom the vermicomposting process of cow dung mixed with high calcium and magnesium minerals. The adsorption rates of Pb2 +and Cd2 +were 77.8% and 59.7%, respectively, whereas, the desorption rate of adsorption states Pb2+and Cd2+were 0.02% and 6.66%, respectively. It infers that the adsorption mechanism of VG for Pb2+and Cd2+involved in the physical adsorption, ion exchange, electrostatic adsorption, precipitation, and complexation. A high adsorption efficiency of Pb2+and Cd2+from aqueous solution was achieved under the higher pH value, cation exchange capacity and specific surface area, abundant functional groups and mineral components in VG. Therefore, it is feasible to produce substrate residues with high Pb2+and Cd2+adsorption capacity via adding high calcium and magnesium mineral into cow dung for vermicomposting. The findings can provide an insightful theoretical basis to effectively optimize key parameters for the vermicomposting of cow dung mixed with minerals, and thereby to promote the recycling efficiency of organic solid wastes and the safe utilization of heavy-metal contaminated soil.
heavy metals; minerals; vermicomposting; substrate residues; adsorption; Pb2+; Cd2+
王峰,繆麗娟,張明月,等. 牛糞礦物混合蚯蚓堆肥中堆制物Pb和Cd吸附性能變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(6):197-204.doi:10.11975/j.issn.1002-6819.2021.06.024 http://www.tcsae.org
Wang Feng, Miao Lijuan, Zhang Mingyue, et al. Adsorption property of Pb and Cd by substrate residues after vermicomposting of cow dung mixed with minerals[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 197-204. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.024 http://www.tcsae.org
2020-10-15
2021-03-10
杭州市農(nóng)業(yè)科研攻關(guān)項(xiàng)目(20180432B08);浙江省自然科學(xué)基金項(xiàng)目(LY17B070004);浙江省大學(xué)生新苗人才項(xiàng)目(2020R427035);杭州師范大學(xué)本科生創(chuàng)新能力提升工程項(xiàng)目(CX2020124);2020年杭州師范大學(xué)“星光計(jì)劃”大學(xué)生創(chuàng)新創(chuàng)業(yè)項(xiàng)目
王峰,研究方向?yàn)橹亟饘傥廴究刂萍肮腆w廢棄物資源化。Email:15067604516@163.com
朱維琴,教授,研究方向?yàn)楣腆w廢物資源化處理及重金屬污染控制化學(xué)。Email:zhwq@hznu.edu.cn
10.11975/j.issn.1002-6819.2021.06.024
S216;X505
A
1002-6819(2021)-06-0197-08