李 天,何雄奎,王志翀,黃 戰(zhàn),韓 冷
基于LIDAR技術(shù)的噴霧量三維空間分布測試方法
李 天1,2,何雄奎1,2※,王志翀1,3,黃 戰(zhàn)1,2,韓 冷1,2
(1. 中國農(nóng)業(yè)大學(xué)藥械與施藥技術(shù)研究中心,北京 100193;2. 中國農(nóng)業(yè)大學(xué)理學(xué)院,北京 100193;3. 霍恩海姆大學(xué)熱帶與亞熱帶農(nóng)業(yè)工程研究所,斯圖加特,70599)
為解決噴霧量分布測試中耗時長、工序繁瑣、無法進行實時動態(tài)三維空間分布測量的問題,該研究開發(fā)了一種基于激光雷達探測技術(shù)的噴霧量三維空間分布的測試方法。針對植保作業(yè)過程中常用的空心圓錐霧、防飄空心圓錐霧、扇形霧和防飄扇形霧4類共7種噴頭,采用噴霧量實測方法對距離噴頭50 cm處霧流區(qū)截面的霧量分布進行測試;利用十六線激光雷達對霧流區(qū)進行三維探測,實時獲取噴霧量點云數(shù)據(jù)信息,通過數(shù)據(jù)包解析、仿射矩陣空間轉(zhuǎn)換、坐標系解算獲取點云坐標及密度,并利用神經(jīng)網(wǎng)絡(luò)將噴霧量實測結(jié)果與激光雷達測試結(jié)果進行擬合。結(jié)果顯示,7種噴頭訓(xùn)練集擬合相關(guān)系數(shù)≥0.995,驗證集≥0.935,測試集≥0.877,扇形霧噴頭總體擬合相關(guān)系數(shù)≥0.990,證明激光雷達探測是一種可行且準確的噴霧量分布測試方法;進一步對各噴頭噴霧量點云數(shù)據(jù)進行分層網(wǎng)格化計算得到霧流區(qū)三維空間霧滴分布特征,結(jié)果表明3種圓錐霧噴頭空心段長度大小依次為ITR、TR和HCI噴頭,IDK噴頭等距離噴霧截面積均大于LU噴頭。該方法可準確地完成三維空間噴霧量化分析,同時也可為噴霧設(shè)備霧化質(zhì)量檢測、室內(nèi)和田間霧滴飄移測量、植保機械田間快速調(diào)校及作業(yè)質(zhì)量在線監(jiān)測提供一種新思路。
噴頭;噴霧區(qū);激光雷達;三維空間探測;霧量分布
植保作業(yè)過程中噴頭是進行噴霧作業(yè)、保障防治效果的核心部件[1],其噴霧霧化機理、霧滴運動參數(shù)以及霧量三維空間分布狀態(tài)與霧化質(zhì)量息息相關(guān)[2-3],同時也會影響到農(nóng)藥霧滴的飄失和沉積行為[4]。農(nóng)藥飄失和沉積分布不均勻不僅會降低農(nóng)藥利用率及防效[5-6],還會造成大量的農(nóng)藥浪費以及嚴重的環(huán)境污染[7]。隨著中國綠色發(fā)展戰(zhàn)略的逐步實施,農(nóng)藥減量施用、增效控害作為其中的重要環(huán)節(jié)越來越受到研究者們的關(guān)注[8-9]。邱白晶等[10]等利用高速攝影結(jié)合數(shù)字圖像處理技術(shù),對霧流區(qū)霧滴特征參數(shù)進行了檢測統(tǒng)計并進一步完成了霧滴分布圖像的二維重建,實現(xiàn)了對霧滴分布特征的快速準確檢測;Gary等[11]利用高速攝影及粒子圖像測速技術(shù)(PIV,Particle Image Velocimetry)對8種噴頭霧滴初速度進行測量,結(jié)合由激光粒徑儀獲取的霧滴粒徑分析了霧滴初速度與粒徑及噴霧壓力間的關(guān)系;呂曉蘭等[12]等利用相位多普勒粒子分析儀(PDPA,Phase Doppler Particle Analyzer)對標準扇形霧噴頭的霧滴粒徑和速度空間分布進行了測量,并對霧滴尺寸空間分布和霧滴運動特征進行分析,確定了飄失區(qū)域在霧流區(qū)中的位置;Nuyttens[13]等同樣利用PDPA對32種噴頭進行了霧滴粒徑和速度的測試,明確了噴頭種類和型號對霧滴粒徑和速度的影響;而Cock[14]等則分別利用高速攝影與粒子圖像測速技術(shù)結(jié)合法以及PDPA,對不同霧化等級的噴頭進行了霧滴粒徑和速度測試,對比分析了2種測試結(jié)果的差異;謝晨等[15]利用霧滴圖像分析儀(PDIA,Particle Droplets Image Analysis)對標準扇形霧噴頭與防飄噴頭的霧化過程進行了可視化圖像分析,并比較了噴頭類型、噴頭孔徑與壓力對噴頭霧流區(qū)的影響;時玲等[16]使用霧量分布試驗臺測定并分析了噴霧壓力、噴霧高度和噴頭間隔對4種扇形霧噴頭霧量分布的影響規(guī)律,并確定了每種噴頭的最佳噴霧使用高度。使用高速攝影儀、PDIA、PDPA等儀器可對噴霧霧化過程以及霧滴運動參數(shù)進行準確測試,但高速攝影儀測試視場范圍僅有5 mm×5 mm,PDIA和PDPA則為3 mm×3 mm,為取得霧流區(qū)完整探測結(jié)果需將儀器測試視場在霧流區(qū)范圍內(nèi)移動數(shù)10次,并將多個點位的探測結(jié)果拼接,難以對霧流區(qū)進行一次性整體實時測量;利用霧量分布試驗臺進行的噴頭測試操作繁瑣、耗時長、效率低,且無法獲得整個霧流區(qū)的三維空間霧量分布。
激光雷達探測技術(shù)(Light detection and ranging,LIDAR)是一種利用激光束對目標進行空間位置精確探測的非接觸式測量技術(shù),目前已廣泛應(yīng)用于城市建模、大氣監(jiān)測、無人導(dǎo)航以及果樹和林木探測等領(lǐng)域[17-21]。早在1989年,Hoff等[22]就利用氣象快速捕獲激光雷達(Atmospheric Environment Service Rapid Acquisition LIDAR)對有人駕駛噴霧飛機的翼尖霧場渦流進行探測;隨后Stoughton等[23]以及Miller等[24]利用激光雷達針對林業(yè)農(nóng)藥噴霧作業(yè)過程中樹冠頂部的霧流場運動進行了探測分析;近年來,Gil等[25-27]使用激光雷達測量果園植保作業(yè)過程中的噴霧飄移并實現(xiàn)了飄移量的量化計算。激光雷達可對空氣中的霧滴直接進行探測,其激光探測范圍大、操作便捷,且無需在噴霧液中添加示蹤劑以及使用霧滴接收材料,但上述研究中采用的激光雷達均只能發(fā)射單束探測激光,僅能對霧流區(qū)進行沿激光線或截面探測而無法同時獲取整體的三維空間分布狀態(tài)。
為解決難以對噴霧區(qū)進行實時整體探測、一次性獲取三維空間霧量分布的問題,進一步提升測試效率、簡化測試流程和減少人力物力消耗,本文利用十六線激光雷達傳感器,對目前國內(nèi)外植保作業(yè)中常用的4類7種噴頭進行噴霧實時探測,將探測結(jié)果與實際噴霧測試結(jié)果進行神經(jīng)網(wǎng)絡(luò)擬合驗證激光雷達探測方法的準確性,進而使用Matlab進行點云數(shù)據(jù)分層和網(wǎng)格化計算,得到整個霧流區(qū)霧量的真三維空間分布,最終建立一種基于LIDAR技術(shù)的噴霧量三維空間分布測試方法。
為研究不同霧化效果下的探測精度,選用7種國內(nèi)外植保作業(yè)中常用的噴頭進行測試。噴霧流量測量采用稱重法,噴霧液為自來水,使用量筒于噴頭下方接取噴霧液,計時1 min后停止接取并使用天秤稱量,進行3次重復(fù)測量求平均值得到噴頭流量;霧滴體積中值粒徑、霧化等級及霧滴平均速度均依據(jù)ISO 5682-1: 2017[28],使用PDIA霧滴圖像分析儀(VisiSize P15,Oxford Lasers)在室溫25 ℃條件下,距離噴頭出口正下方50 cm處進行測量所得,具體霧化參數(shù)如表1所示。
單個噴頭實際霧量沉積分布測試采用矩陣式霧滴收集裝置進行[30]。為避免噴霧過程中地效對霧滴接收產(chǎn)生影響,利用角鋼及1 m×1 m方孔鐵絲網(wǎng)架搭建霧滴收集平臺,如圖1所示,平臺尺寸為1 m×1 m×0.5 m,網(wǎng)架方孔尺寸為3 cm×3 cm,在平臺特定位點插入用于霧滴收集的50 mL聚乙烯(PE)塑料離心管,離心管口徑3 cm,裝置間隔為6 cm×6 cm。噴頭固定于霧滴收集平臺正上方0.5 m處,利用線激光將噴頭水平定位至平臺正中心;噴霧系統(tǒng)接入穩(wěn)壓器用于穩(wěn)定噴霧壓力。
本測試在中國農(nóng)業(yè)大學(xué)藥械與施藥技術(shù)研究中心噴霧系統(tǒng)實驗室進行,測試時間為2020年9月17-18日。測試開始前,將離心管安插入網(wǎng)架固定位置中,各離心管橫豎間隔均為1網(wǎng)格:圓錐霧噴頭測試網(wǎng)格中離心管采用9×9矩陣安插,實際測試范圍54 cm×54 cm;扇形霧噴頭測試網(wǎng)格中離心管采用5×15矩陣安插,實際測試范圍30 cm×90 cm。噴霧液選用自來水,開啟噴霧待壓力穩(wěn)定至0.3 MPa后開始接收霧滴,為保證全部離心管均能接收到足夠量的霧滴并減少稱量誤差,霧滴接收計時3 min;噴霧結(jié)束后,利用分析天秤稱量每根離心管中的噴霧液質(zhì)量并記錄;共計測試7種噴頭,每種噴頭重復(fù)測試3次。測試期間室內(nèi)溫度27.8 ~28.4 ℃,相對濕度50%~56%。
表1 噴頭型號及測試參數(shù)
注:霧化等級的劃分依照國際標準委員會制定的噴頭霧化分級標準ISO 25358[29]進行。
Note: The classification of spray droplet is according to nozzle spray classification standard ISO 25358 made by International Organization for Standardization.
1.2.1 點云數(shù)據(jù)獲取
基于激光雷達的噴霧探測系統(tǒng)如圖2所示,采用由北京北科天繪科技有限公司生產(chǎn)的R-Fans-16型激光雷達,可發(fā)射16條探測激光,激光波長905 nm,激光等級Class1,激光點頻率320 kHz;激光掃描線角間隔2°,垂直視場角30°(-15°~15°),水平視場角360°;防水等級IP65,使用Ethernet通信接口。激光雷達測試分辨率隨探測距離增大而減小,而如果激光雷達側(cè)壁被飛濺的霧滴附著同樣會影響激光回波的接收。因此本文將激光雷達放置于噴霧區(qū)上方緊貼噴頭體的位置,激光雷達側(cè)壁與噴頭出口處于同一高度,此時激光雷達與噴頭水平間距為5 cm,與噴頭出口垂直間距5 cm。理論上當激光雷達垂直放置(垂直傾角0°)于噴霧區(qū)正上方時,其視場覆蓋范圍最大,但為避免噴頭遮擋采用5°傾角進行安裝,并利用傾角測量器Bevelbox確保安裝準確。開啟噴霧和激光雷達,調(diào)節(jié)噴霧壓力穩(wěn)定至0.3 MPa,激光轉(zhuǎn)速設(shè)置為5 Hz,水平角分辨率0.36°,利用計算機端R-Fans-Ctrlview程序采集數(shù)據(jù),采集時間60 s,每個噴頭重復(fù)測試采集3次;采集結(jié)束后保存原始數(shù)據(jù),用于后續(xù)解算及點云數(shù)據(jù)處理。本測試在中國農(nóng)業(yè)大學(xué)藥械與施藥技術(shù)研究中心噴霧系統(tǒng)實驗室進行,測試時間為2020年9月19-20日。測試期間室內(nèi)溫度28.1~28.7 ℃,相對濕度47%~51%。
1.2.2 點云數(shù)據(jù)處理方法
激光雷達工作時使用用戶數(shù)據(jù)包協(xié)議(UDP,User Datagram Protocol)向計算機接收端口推送點云數(shù)據(jù)包,數(shù)據(jù)包內(nèi)包含探測點的垂直角度、水平角度、探測距離及反射率等數(shù)據(jù)。點云數(shù)據(jù)處理基于Matlab2019b進行,由于激光雷達與水平面存在安裝角度,使用仿射矩陣進行空間變換(式1)。其中是激光雷達激光發(fā)射中軸面與水平面夾角,由于在本試驗中激光雷達為垂直5°傾角裝置,因此該值為85°。
將經(jīng)過空間轉(zhuǎn)換的的點云數(shù)據(jù)由極坐標系解算為空間直角坐標系(圖3),可得到每個探測點的直角空間坐標(,,),所有有效探測點共同構(gòu)成噴霧場直角坐標系三維點云。將距離噴頭50 cm處正負0.5 cm高度內(nèi)的霧滴點作為計算范圍,對該平面進行網(wǎng)格劃分,各噴頭探測結(jié)果的網(wǎng)格劃分方法與同種噴頭的噴霧實測方法相同,計算并輸出各個網(wǎng)格橫縱坐標、有效霧滴點個數(shù)及平均反射率。
注:為激光雷達掃描范圍內(nèi)的任意一點;,,分別是點對應(yīng)的三維坐標值;為激光雷達到掃描點的距離,m;為點相對平面的垂直角度,(°);為激光線掃描水平角度值,(°);=coscos,=cossin,=sin
Note:is any point within the scanning range of LIDAR;,andare the three-dimensional coordinate values of point;is the distance from LIDAR sensor to scanning point, m;is the vertical angle of pointrelative toplane,is the scanning angle of laser line;=coscos,=cossin,=sin
圖3 極坐標系轉(zhuǎn)換為直角空間坐標系示意圖
Fig.3 Schematic diagram of transformation from polar to rectangular coordinates
1.2.3 LIDAR探測結(jié)果與噴霧實測結(jié)果神經(jīng)網(wǎng)絡(luò)擬合方法
為量化2種測試結(jié)果之間的相關(guān)關(guān)系,驗證激光雷達探測方法的準確性,經(jīng)激光雷達探測并解算后所得結(jié)果與噴霧實測結(jié)果采用神經(jīng)網(wǎng)絡(luò)擬合法進行擬合[31]。神經(jīng)網(wǎng)絡(luò)擬合基于Matlab 2019b運行,具備2層前饋神經(jīng)網(wǎng)絡(luò),并利用Deep Learning Toolbox 13.0搭建訓(xùn)練框架?;诩す饫走_探測結(jié)果中距離噴頭出口50 cm處網(wǎng)格化計算所得結(jié)果,該神經(jīng)網(wǎng)絡(luò)(圖4)提取4項輸入值作為自變量:網(wǎng)格的橫坐標和縱坐標、網(wǎng)格內(nèi)有效霧滴點數(shù)量和平均反射率,實測霧量真值作為因變量;激活函數(shù)為Sigmiod函數(shù)。擬合訓(xùn)練采用Levenberg-Marquardt(L-M)算法,設(shè)置訓(xùn)練集(Training)、驗證集(Validation)和測試集(Test)比例為70∶15∶15;輸出層采用線性擬合,輸出結(jié)果包括訓(xùn)練集、驗證集和測試集的相關(guān)系數(shù)Correlation coefficient()及均方誤差Mean Square Error(MSE);
將解算后的三維點云沿噴頭噴霧方向進行分層處理,由于噴頭的實際應(yīng)用中主要使用噴霧區(qū)后段,因此處理區(qū)間設(shè)置為距離噴頭25~50 cm的噴霧區(qū),每層厚度為1 cm,共26層;將分層后的點云數(shù)據(jù)繼續(xù)逐層進行網(wǎng)格化處理,網(wǎng)格尺寸為6 cm×6 cm;假定噴霧場中逐一計算每層每個網(wǎng)格空間中全部有效探測點數(shù)量,結(jié)合網(wǎng)格空間坐標即可對噴霧霧場進行逐層量化輸出。
對比7種噴頭50 cm處噴霧場截面分布的實測結(jié)果與激光雷達探測結(jié)果(圖5),2種結(jié)果的噴霧區(qū)截面形態(tài)呈現(xiàn)較好的一致性。各訓(xùn)練樣本集的樣本數(shù)、經(jīng)神經(jīng)網(wǎng)絡(luò)擬合所得結(jié)果MSE值和值如表2所示。各型號噴頭測試結(jié)果在單獨訓(xùn)練的情況下,訓(xùn)練集、驗證集和測試集均取得了較好的擬合結(jié)果,訓(xùn)練集擬合相關(guān)系數(shù)≥0.995,驗證集≥0.935,測試集≥0.877,其中4種扇形霧噴頭單獨擬合結(jié)果最好(≥0.990);進一步將7種噴頭根據(jù)霧型劃分為圓錐霧噴頭和扇形霧噴頭2個樣本集分別進行擬合,其中扇形霧噴頭擬合結(jié)果依然較好,訓(xùn)練集、驗證集和測試集擬合相關(guān)系數(shù)≥0.974,而圓錐霧噴頭擬合精度較差;分別利用圓錐霧和扇形霧噴頭2個樣本集使用的神經(jīng)網(wǎng)絡(luò)對各樣本集下的噴頭進行霧量分布預(yù)測,結(jié)果顯示扇形霧噴頭噴霧量分布預(yù)測結(jié)果與實測結(jié)果有較高的一致性,而圓錐霧噴頭則顯示出與實測結(jié)果相差較大,其原因為3種圓錐霧噴頭間霧型差距較大,難以用同一模型完成擬合和預(yù)測。由上述結(jié)果可知,該神經(jīng)網(wǎng)絡(luò)可針對4種扇形霧噴頭的激光雷達探測結(jié)果與實測結(jié)果完成高精度的擬合并作出準確的預(yù)測,盡管3種圓錐霧因彼此間霧型差距較大而無法兼容于同一神經(jīng)網(wǎng)絡(luò)模型,但在獨立訓(xùn)練的前提下仍可獲得較好的擬合精度,由此可以證明,激光雷達探測是一種可行且準確的霧量三維空間分布分析方法。
表2 各訓(xùn)練樣本集擬合結(jié)果
注:樣本集中圓錐霧噴頭與扇形霧噴頭的分類依據(jù)表1中噴頭霧型劃分。
Note: The classification of cone nozzle and flat fan nozzle in the samples is according to the spray shape in table 1.
根據(jù)激光雷達掃描25~50 cm霧場所得點云數(shù)據(jù)的分層處理結(jié)果如圖6所示,為體現(xiàn)噴霧場變化過程,在該范圍內(nèi)間隔5 cm選取截面圖。HCI、TR、ITR 3種空心圓錐霧噴頭的噴霧場形態(tài)均呈現(xiàn)為空心圓錐型,但空心區(qū)出現(xiàn)的范圍不同:HCI噴頭自35 cm之后出現(xiàn)實心截面,TR噴頭自25 cm之后出現(xiàn)實心截面,而ITR噴頭全程均為空心截面,本文將空心圓錐霧噴頭噴霧場變化的不同階段分別定義為空心段及實心段,3種噴頭噴霧場變化過程如表3所示。對比3種空心圓錐霧噴頭,空心段距離大小依次為ITR、TR和HCI噴頭,根據(jù)表1所示 ITR噴頭所產(chǎn)生的霧滴DV50遠高于其余2種噴頭,其霧滴慣性大,比表面積小,受環(huán)境相對氣流阻力影響小,更易沿噴霧初始方向運動從而形成整體的空心圓錐霧場;其余2種噴頭霧滴慣性小,受環(huán)境氣流相對阻力影響較大,在遠離噴頭出口后運動狀態(tài)逐漸轉(zhuǎn)變?yōu)榻频淖杂陕潴w,因此噴霧場在經(jīng)歷空心段后最終都形成了實心狀態(tài)。
LU90、LU120、IDK90、IDK120 4種扇形霧噴頭的噴霧場形態(tài)均呈現(xiàn)為扇型,在相同噴霧角前提下,截面積隨噴霧距離增加而增大,且IDK噴頭截面寬度大于LU噴頭。IDK噴頭所產(chǎn)生的霧滴粒徑大于LU噴頭,因此IDK噴頭產(chǎn)生的霧滴具備更大的運動慣性和更小的比表面積,IDK噴頭所產(chǎn)生的噴霧場截面霧場截面寬度大于LU噴頭。
表3 3種空心圓錐霧噴頭噴霧場變化過程
基于LIDAR的噴霧場三維探測方法相比實測方法,主要具有3個方面的優(yōu)點:1)可實時、一次性獲取噴霧場霧滴數(shù)量三維空間分布結(jié)果。激光雷達可對噴霧場進行整體掃描探測,實時獲取點云數(shù)據(jù)后進行數(shù)據(jù)解算、分層和網(wǎng)格化計算而得到整個噴霧場的三維霧滴分布狀態(tài),而傳統(tǒng)實測方法僅能獲得固定高度噴霧場截面的二維沉積分布狀態(tài)。2)測試結(jié)果準確性高。激光雷達在噴霧過程中實時采集點云數(shù)據(jù),保證了點云數(shù)據(jù)與噴霧狀態(tài)的一致性;測試過程中全程使用計算機及電路開關(guān)控制,無需利用霧滴接收裝置進行測量,避免了接收裝置對霧滴運動狀態(tài)的影響;探測結(jié)果由計算機程序解算得出,無需進行樣品的采集與檢測,避免了人為取樣過程中可能的樣品損耗,以及檢測過程中的人為誤差。3)測試方法便捷高效。進行噴霧場探測的過程中只需在固定位置架設(shè)激光雷達進行數(shù)據(jù)采集,無需使用接收材料及指示劑,減少了布樣、收樣和測樣過程,完成一次測試僅需3 min,而實測方法進行一次測試則需要近30 min;探測數(shù)據(jù)的解算與量化分析全部由計算機完成,可實現(xiàn)無人批處理,直接輸出噴霧場三維量化分析結(jié)果。本文在激光雷達測試方法的研究過程中,將噴頭霧滴粒徑假定為大小均勻以便于方法的建立,盡管目前研究結(jié)果顯示該假定前提下的擬合結(jié)果較好,可以印證方法的可行性,后續(xù)仍將針對霧滴粒徑對該方法測試精度的影響進行進一步研究。
目前針對植保機械及噴頭的噴霧檢測主要分為室內(nèi)試驗和田間試驗,前者包含霧量分布測試和噴霧飄移風洞測試,后者包含田間噴霧沉積和飄移檢測,此前研究人員依照相關(guān)測試標準如 ISO 9898:2000、ISO 5682-1:2017、ISO 22856:2008、ISO 22866:2005等,開展了大量的噴霧量分布、飄移測試[32-34],然而這些測試主要利用霧滴收集裝置對噴灑出的液體進行收集,進而對收集到的霧滴進行定量分析,測試過程會耗費大量的人力物力且效率較低,同時這類方法難以做到對噴霧場的實時探測。盡管已有研究報道了LIDAR探測技術(shù)應(yīng)用于果園噴霧機的田間噴霧飄移測量,但選用的激光雷達僅能進行單線或截面上的霧滴探測,依舊無法完成三維空間中霧滴分布的總體探測。計算流體動力學(xué)(Computational Fluid Dynamics,CFD)模擬可以對噴霧裝置產(chǎn)生的噴霧場進行條件推演和模型預(yù)測[35-36],但環(huán)境氣流、溫濕度等因素對噴霧場的影響相對復(fù)雜,所得模型預(yù)測結(jié)果的準確性仍需要大量相同條件的實測結(jié)果進行驗證。王志翀等[37]開發(fā)了一種基于激光成像技術(shù)的農(nóng)藥霧滴飄移評價方法,該方法可利用激光成像技術(shù)結(jié)合計算機圖像批處理進行風洞中噴霧飄移的測量,快速準確地獲取飄移率、飄移特征高度和飄移潛力指數(shù),但由于激光成像受光照亮度限制難以應(yīng)用于田間測量過程。本文開發(fā)的基于LIDAR探測的噴霧場霧量三維空間分布測試方法,既可以調(diào)整激光雷達的安裝位置進行不同范圍大小的噴霧場探測,又可以改變分層網(wǎng)格化的密度進行不同空間分辨率的霧量計算,更重要的是,該方法實現(xiàn)了噴霧場實時動態(tài)探測和一次性三維空間分布量化分析。因此該方法可以為噴霧設(shè)備霧化質(zhì)量檢測、實驗室和田間飄移檢測、植保機械噴霧系統(tǒng)的田間快速調(diào)校和作業(yè)質(zhì)量的在線監(jiān)測提供一種新思路。
本文提出了一種基于LIDAR技術(shù)的噴霧量三維空間分布測試方法,利用十六線激光雷達傳感器,在實驗室內(nèi)條件下針對7種不同型號噴頭的噴霧場進行了三維空間探測,同時利用神經(jīng)網(wǎng)絡(luò)擬合法將探測結(jié)果與噴霧實測結(jié)果進行擬合,驗證了該方法的準確性,并進一步對各噴頭噴霧區(qū)進行了逐層量化分析,得到以下結(jié)論:
1)對7種噴頭噴霧場截面霧量分布與探測結(jié)果進行獨立的神經(jīng)網(wǎng)絡(luò)擬合訓(xùn)練,訓(xùn)練集擬合相關(guān)系數(shù)≥0.995,驗證集≥0.935,測試集≥0.877,其中4種扇形霧噴頭單獨擬合結(jié)果最好(≥0.990)
2)對4種扇形霧噴頭數(shù)據(jù)樣本集進行合并作為總體進行擬合,相關(guān)系數(shù)≥0.972,但3種圓錐霧噴頭因相互間霧型差別較大,總體的擬合結(jié)果并不理想。
3)3種圓錐霧噴頭噴霧場均存在空心圓錐部分,ITR8002噴頭表現(xiàn)出全程空心圓錐狀態(tài),而HCI4002噴頭與TR8002噴頭噴霧場空心段分別為0~36 cm和0~28 cm;4種扇形霧噴頭噴霧場均呈現(xiàn)為截面逐漸增大的扇型,IDK噴頭噴霧場截面寬度大于具有相同噴霧角的LU噴頭。
目前該方法主要針對實驗室內(nèi)單噴頭噴霧進行測試,對于各類噴霧機多噴頭噴霧的探測效果有待進一步研究。
[1]楊希娃,周繼中,何雄奎,等. 噴頭類型對藥液沉積和麥蚜防效的影響[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(7):46-50. Yang Xiwa, Zhou Jizhong, He Xiongkui, et al. Influences of nozzle types on pesticide deposition and insecticidal effect to wheat aphids[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 46-50. (in Chinese with English abstract)
[2]張京,宋堅利,何雄奎,等. 扇形霧噴頭霧化過程中霧滴運動特性[J]. 農(nóng)業(yè)機械學(xué)報,2011,42(4):66-69. Zhang Jing, Song Jianli, He Xiongkui, et al. Droplets Movement characteristics in atomization process of flat fan nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 66-69. (in Chinese with English abstract)
[3]宋堅利,劉亞佳,張京,等. 扇形霧噴頭霧滴飄失機理[J]. 農(nóng)業(yè)機械學(xué)報,2011,42(6):63-69. Song Jianli, Liu Yajia, Zhang Jing, et al. Drift mechanism of flat fan nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 63-69. (in Chinese with English abstract)
[4]王瀟楠,何雄奎,Andreas. Herbst,等. 噴桿式噴霧機霧滴飄移測試系統(tǒng)研制及性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(18):55-62. Wang Xiaonan, He Xiongkui, Andreas Herbst, et al. Development and performance test of spray drift test system for sprayer with bar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 55-62. (in Chinese with English abstract)
[5]Otto S, Loddo D, Baldoin C, et al. Spray drift reduction techniques for vineyards in fragmented landscapes[J]. Journal of Environmental Management, 2015, 162(1): 290-298.
[6]王昌陵,宋堅利,何雄奎,等. 植保無人機飛行參數(shù)對施藥霧滴沉積分布特性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(23):109-116. Wang Changling, Song Jianli, He Xiongkui, et al. Effect of flight parameters on distribution characteristics of pesticide spraying droplets deposition of plant-protection unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 109-116. (in Chinese with English abstract)
[7]何雄奎. 改變我國植保機械和施藥技術(shù)嚴重落后的現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報,2004,20(1):13-15. He Xiongkui. Improving severe draggling actuality of plant protection machinery and its application techniques[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(1): 13-15. (in Chinese with English abstract)
[8]農(nóng)業(yè)農(nóng)村部、國家發(fā)展改革委、科技部、財政部、商務(wù)部、國家市場監(jiān)督管理總局、國家糧食和物資儲備局:國家質(zhì)量興農(nóng)戰(zhàn)略規(guī)劃(2018—2022年)[EB/OL]. 2019-02-11[2019-02-20]. http: //www. moa. gov. cn/nybgb/2019/201902/201905/t20190517_6309469. htm
[9]何雄奎. 中國精準施藥技術(shù)和裝備研究現(xiàn)狀及發(fā)展建議[J]. 智慧農(nóng)業(yè),2020,2(1):133-146. He Xiongkui. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1): 133-146. (in Chinese with English abstract)
[10]邱白晶,史春建,吳春篤,等. 植保機械霧化場霧滴特征分析與二維重建[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(11):7-10. Qiu Baijing, Shi Chunjian, Wu Chundu, et al. Analysis of droplet characteristics in spray field for plant protection machinery and reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(11): 7-10. (in Chinese with English abstract)
[11]Gary J, Andrew J, Steve W, et al. A comparison of initial spray characteristics produced by agricultural nozzles[J]. Crop Protection, 2013(53): 109-117
[12]呂曉蘭,何雄奎,宋堅利,等. 標準扇形霧噴頭霧化過程測試分析[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(9):95-100. Lv Xiaolan, He Xiongkui, Song Jianli, et al. Analysis of spray process produced by agriculture flat-fan nozzles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 95-100. (in Chinese with English abstract)
[13]Nuyttens D, Baetens K, De Schampheleire M, et al. Effect of nozzle type, size and pressure on spray droplet characteristics[J]. Biosystems Engineering, 2007, 97(3): 333-345.
[14]Cock N D, Massinon M, Nuyttens D, et al. Measurements of reference ISO nozzles by high-speed imaging[J]. Crop Protection, 2016(89): 105-115.
[15]謝晨,何雄奎,宋堅利,等. 兩類扇形霧噴頭霧化過程比較研究[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(5):25-30. Xie Chen, He Xiongkui, Song Jianli, et al. Comparative research of two kinds of flat fan nozzle atomization process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 25-30. (in Chinese with English abstract)
[16]時玲,張霞,吳紅生,等. 扇形噴頭霧量分布均勻性的試驗研究[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報,2011,26(3):389-394. Shi Ling, Zhang Xia, Wu Hongsheng, et al. Experimental reaserch on spray distribution uniformity of fan nozzles[J]. Journal of Yunnan Agricultural University, 2011, 26(3): 389-394. (in Chinese with English abstract)
[17]Wang R, Peethambaran J, Chen D. LIDAR point clouds to 3-D urban models: A review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 606-627.
[18]Simone L, Fabio M, Marco R, et al. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects[J]. Atmospheric Measurement Techniques, 2018, 11(3): 1639-1651.
[19]Weon I S, Lee S G, Ryu J K. Object recognition based interpolation with 3D LIDAR and vision for autonomous driving of an intelligent vehicle[J]. IEEE Access, 2020(8): 65599 - 65608.
[20]Yue S, Destaw A, Hui L, et al. A LIDAR-based tree canopy characterization under simulated uneven road condition: Advance in tree orchard canopy profile measurement[J]. Journal of Sensors, 2017:8367979.
[21]Underwood J P, Hung C, Whelan B, et al. Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors[J]. Computers and Electronics in Agriculture, 2016(130): 83-96.
[22]Hoff R M, Mickle R E, Froude F A. A rapid acquisition LIDAR system for aerial spray diagnostics[J]. Transactions of the ASAE, 1989, 32(5): 1523-1528.
[23]Stoughton T E, Miller D R, Yang X, et al. A comparison of spray drift predictions to LIDAR data[J]. Agricultural & Forest Meteorology, 1997, 88(1-4): 15-26.
[24]Miller D R, Salyani M, Hiscox A B. Remote measurement of spray drift from orchard sprayers using LIDAR[C]. ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 2003: 031093.
[25]Gil E, Llorens J, Llop J, et al. Use of a Terrestrial LIDAR sensor for drift detection in vineyard spraying[J]. Sensors, 2013, 13(1): 516-534.
[26]Gregorio E, Rocadenbosch F, Sanz R, et al. Eye-safe LIDAR system for pesticide spray drift measurement[J]. Sensors, 2015, 15(2): 3650-3670.
[27]Gregorio E, Rosell-Polo R, Sanz R, et al. LIDAR as an alternative to passive collectors to measure pesticide spray drift[J]. Atmospheric Environment, 2014(82): 83-93.
[28]Equipment for crop protection—Spraying equipment—Part 1: Test methods for sprayer nozzles[S]: ISO 5682-1. Paris: ISO Copyright Office, 2017.
[29]Crop protection equipment—Droplet-size spectra from atomizers—Measurement and classification[S]: ISO 25358. Paris: ISO Copyright Office, 2018.
[30]魏新華,于達志,白敬,等. 脈寬調(diào)制間歇噴霧變量噴施系統(tǒng)的靜態(tài)霧量分布特性[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(5):19-24. Wei Xinhua, Yu Dazhi, Bai Jing, et al. Static spray deposition distribution characteristics of PWM-based intermittently spraying system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 19-24. (in Chinese with English abstract)
[31]Shin J, Chang Y K, Heung B, et al. Effect of directional augmentation using supervised machine learning technologies: A case study of strawberry powdery mildew detection[J]. Biosystems Engineering, 2020(194): 49-60.
[32]董祥,楊學(xué)軍,嚴荷榮. 果園噴霧機噴霧量垂直分布測試系統(tǒng)[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(4):59-63. Dong Xiang, Yang Xuejun, Yan Herong. Test system of vertical spray distribution on orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 59-63. (in Chinese with English abstract)
[33]王瀟楠,何雄奎,宋堅利,等. 助劑類型及濃度對不同噴頭霧滴飄移的影響[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(22):49-55. Wang Xiaonan, He Xiongkui, Song Jianli, et al. Effect of adjuvant types and concentration on spray drift potential of different nozzles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 49-55. (in Chinese with English abstract)
[34]Nuyttens D, Zwertvaegher I K A, Dekeyser D. Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment methods[J]. Biosystems Engineering, 2017(154): 14-24.
[35]Hong S W, Zhao L, Zhu H. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses[J]. Atmospheric Environment, 2018(175): 109-119.
[36]Zhang B, Tang Q, Chen L P, et al. Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach[J]. Biosystems Engineering, 2018(166): 184-199.
[37]王志翀,何雄奎,李天,等. 基于激光成像技術(shù)的農(nóng)藥霧滴飄移評價方法研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):73-79. Wang Zhichong, He Xiongkui, Li Tian, et al. Evaluation method of pesticide droplet drift based on laser imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 73-79. (in Chinese with English abstract)
Method for measuring the 3D spatial distribution of spray volume based on LIDAR
Li Tian1,2, He Xiongkui1,2※, Wang Zhichong1,3, Huang Zhan1,2, Han Leng1,2
(1.,,100193,;2.,,100193,; 3.,,,,70599,)
Spray volume distribution in the three-dimensional (3D) space of nozzles is an essential interfering factor on spray drift and deposition of pesticide application, particularly on the atomization quality. Uniform distribution of spray can contribute to an obvious enhancement of pesticide efficacy, while reducing overuse and serious environmental contamination. However, the accurate measurement is still lacking in the real-time dynamic 3D distribution of spray volume, due mainly to long time consumption, and cumbersome procedure at present. In this study, a novel measurement for 3D spray volume distribution was developed using light detection and ranging (LIDAR) technology. Seven types of nozzles were tested, including the commonly-used nozzle of hollow cone, anti-drift hollow cone, flat fan, and anti-drift flat fan (HCI4002, TR8002, ITR8002, LU9002, IDK9002, LU12002, and IDK12002) in plant protection. The spray area of the nozzle was scanned using a 16-line laser LIDAR with the laser (Class 1) wavelength of 905 nm and the scanning range was -15°-15°. Specifically, the angular speed of horizontal rotation was 5 Hz, and the emission frequency was 320 Hz. The scanning lasted for 60 s, and all nozzles were tested with 3 replicates. The point cloud data was transferred to the laptop in form of packets in real time. MATLAB 2019b software was used to run the affine matrix and coordinate system transformation after data packet analysis for the droplet coordinates and spatial density. Meanwhile, the real value of spray volume distribution was measured in the spray section of 50 cm below the nozzle. Polyethylene (PE) centrifugal tubes with a volume of 50ml were arranged in a matrix to collect the droplets. Four kinds of fan nozzles were tested by a 5×15 collector matrix, and three kinds of hollow cone nozzles were tested by a 9×9 collector matrix. All nozzles were measured three times, and all tests lasted for 3 min, in order to collect enough droplets for a small weighing error. A neural network with 1 hidden layer (100 hidden neurons) and 1 output layer was used to fit the relationship between the traditional measurement and LIDAR scanning. The ratio between training, validation, and testing set was 70:15:15. The results showed that a high fitting precision was achieved in all seven kinds of nozzles for the correlation coefficient in the training set≥0.995, validation set≥0.935, testing set≥0.877, and the correlation coefficient≥0.990 for the flat fan nozzles. It proves that the LIDAR scanning can accurately and quantitatively analyze the spray volume distribution. The 3D spatial distribution of spray volume for all 7 nozzles was obtained after the spray area was layered and meshed, then to calculate the droplet density in each grid. A faster and easier procedure was made for the real-time 3D spray volume distribution, compared with the conventional one. The LIDAR technique can also be expected to provide an alternative way for atomization quality detection of sprayers, indoor and field test of spray drift, particularly on a rapid adjustment and online monitoring of operation quality in plant protection machinery in the field.
nozzles; spray area; LIDAR; 3D spatial detection; spray volume distribution
李天,何雄奎,王志翀,等. 基于LIDAR技術(shù)的噴霧量三維空間分布測試方法[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(6):42-49.doi:10.11975/j.issn.1002-6819.2021.06.006 http://www.tcsae.org
Li Tian, He Xiongkui, Wang Zhichong, et al. Method for measuring the 3D spatial distribution of spray volume based on LIDAR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 42-49. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.006 http://www.tcsae.org
2020-12-23
2020-02-23
國家自然科學(xué)基金(31761133019);國家重點研發(fā)計劃(2017YFD0700903);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-28-20)
李天,博士生,主要研究方向為植保機械與施藥技術(shù)。Email:406491500@qq.com
何雄奎,教授,博士生導(dǎo)師,主要研究方向為植保機械與施藥技術(shù)。Email:xiongkui@cau.edu.cn
10.11975/j.issn.1002-6819.2021.06.006
S24:S123
A
1002-6819(2021)-06-0042-08