李永磊,萬里鵬程,徐澤昕,袁 昊,陳海軍,宋建農(nóng)
批次式種子清選機(jī)自動(dòng)控制系統(tǒng)設(shè)計(jì)
李永磊1,萬里鵬程1,徐澤昕1,袁 昊1,陳海軍2,3※,宋建農(nóng)1
(1. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;2. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院,北京 100125;3. 農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品產(chǎn)后處理重點(diǎn)實(shí)驗(yàn)室,北京 100125)
批次式種子清選機(jī)是為滿足試驗(yàn)小區(qū)種子特殊加工要求而研制的專用裝備。為解決種子批次處理過程中操作工序多、勞動(dòng)強(qiáng)度大、作業(yè)效率低等問題,該研究基于ARM(Advanced RISC Machine)嵌入式系統(tǒng)設(shè)計(jì)了批次式種子清選機(jī)自動(dòng)控制系統(tǒng)。該系統(tǒng)由給料余量監(jiān)測(cè)、篩面變頻振動(dòng)、激振清篩控制、篩面傾角調(diào)節(jié)等功能模塊組成,以物料位置和狀態(tài)信息為主要控制條件,采用優(yōu)先控制策略及變頻控制優(yōu)化模型,明確了給料速度、振動(dòng)頻率、激振頻率、篩面傾角的控制方法,實(shí)現(xiàn)物料位置特征信息精準(zhǔn)提取、工作參數(shù)動(dòng)態(tài)調(diào)整、作業(yè)過程自動(dòng)控制及篩面高效清理。控制系統(tǒng)運(yùn)行準(zhǔn)確性試驗(yàn)結(jié)果表明,篩面傾角、給料速度、振動(dòng)頻率變異系數(shù)均小于3.19%,滿足使用要求。在前期研究基礎(chǔ)上開展批次式清選機(jī)作業(yè)性能試驗(yàn),綜合考察清選機(jī)自動(dòng)控制下的作業(yè)質(zhì)量。試驗(yàn)結(jié)果表明:設(shè)定工況下自動(dòng)控制系統(tǒng)運(yùn)行正常、工作可靠,凈度、種子獲選率、批次作業(yè)時(shí)長(zhǎng)、作業(yè)效率變異系數(shù)分別為0.15%、0.26% 、2.2%和2.19%,實(shí)現(xiàn)了批次式種子清選機(jī)的自動(dòng)化作業(yè)。研究結(jié)果可為種子及其他顆粒物料的批次處理裝備自動(dòng)化設(shè)計(jì)提供參考,為智能裝備的研發(fā)奠定基礎(chǔ)。
試驗(yàn);設(shè)計(jì);小區(qū);種子清選;自動(dòng)控制;變頻振動(dòng)
農(nóng)作物品種選育田間試驗(yàn)是現(xiàn)代種業(yè)的重要內(nèi)容,是新品種選育及推廣應(yīng)用的基礎(chǔ)和關(guān)鍵。田間試驗(yàn)通常以試驗(yàn)小區(qū)為基本種植單位[1-3],其種植農(nóng)藝和試驗(yàn)要求具有種植品種多、單品面積小、間隔種植、重復(fù)試驗(yàn)、同步試驗(yàn)等特殊性,田間試驗(yàn)機(jī)械化已發(fā)展成為相對(duì)獨(dú)立的、特殊的機(jī)械化技術(shù)體系。中國(guó)田間試驗(yàn)機(jī)械研究起步較晚,投放市場(chǎng)的適用技術(shù)裝備缺乏,田間試驗(yàn)機(jī)械化已成為種業(yè)機(jī)械化發(fā)展的瓶頸[4-6]。
隨著現(xiàn)代商業(yè)化育種體系建立和發(fā)展,國(guó)內(nèi)外種業(yè)公司新品種選育試驗(yàn)規(guī)模不斷增大,品種選育田間試驗(yàn)安排數(shù)百上千乃至上萬個(gè)試驗(yàn)小區(qū)已成常態(tài)。試驗(yàn)小區(qū)面積多為5~20 m2,收獲種子約5~15 kg,甚至更少[7-10]。通常人工或機(jī)械收獲后的種子中含有碎秸稈、不成熟粒、不完善粒及灰塵等雜質(zhì)(含雜率約為4%~10%),需進(jìn)行基本清選處理后方可入庫存儲(chǔ)或開展后續(xù)試驗(yàn)研究[11-13]。為避免混雜,每個(gè)小區(qū)收獲后的種子采用尼龍網(wǎng)袋獨(dú)立包裝并做好標(biāo)記。目前,試驗(yàn)小區(qū)種子處理多用簡(jiǎn)易工具輔助清選或采用小型通用篩選機(jī)或風(fēng)篩清選機(jī)簡(jiǎn)單清選,普遍存在勞動(dòng)強(qiáng)度大、作業(yè)效率低,通用設(shè)備種子易殘留及清機(jī)不便耗時(shí)長(zhǎng)等問題[14-16],迫切需要研發(fā)適用于試驗(yàn)小區(qū)種子處理的專用裝備。陸榮等[17]為滿足試驗(yàn)小區(qū)花生脫殼與清選作業(yè)需要研制了立錐式小區(qū)花生脫殼機(jī)及三通道橫流氣吸清選裝置;王升升等[18]設(shè)計(jì)了用于大白菜種子收獲的由內(nèi)流式圓筒篩、橫流吸雜風(fēng)機(jī)等組成的分離清選裝置。針對(duì)試驗(yàn)小區(qū)種子品種數(shù)量多、每份種子質(zhì)量少、分批次非連續(xù)作業(yè)、種子不能混雜及作業(yè)效率較高等特殊需求,作者團(tuán)隊(duì)研制了批次式種子清選裝置[19],系統(tǒng)集成了批次供種、風(fēng)選除雜、篩選分級(jí)、篩面清理等作業(yè)工序,基本實(shí)現(xiàn)了試驗(yàn)小區(qū)種子批次處理作業(yè)。但是該裝置采用簡(jiǎn)易電控系統(tǒng)和手動(dòng)操作作業(yè)方式,存在操作工序多、勞動(dòng)強(qiáng)度大、作業(yè)效率低等問題,亟需提高作業(yè)自動(dòng)化程度。
近年來,嵌入式系統(tǒng)[20-22]、光電傳感[23-27]等現(xiàn)代信息技術(shù)在農(nóng)業(yè)裝備領(lǐng)域得到廣泛應(yīng)用[28-31]。針對(duì)批次式種子清選機(jī)工作特性與自動(dòng)化控制要求,本文基于ARM(Advanced RISC Machine)嵌入式系統(tǒng)研發(fā)了自動(dòng)控制系統(tǒng),具有物料狀態(tài)信息精準(zhǔn)獲取、工作參數(shù)動(dòng)態(tài)調(diào)整、篩面高效清理和作業(yè)過程穩(wěn)定控制等功能,并進(jìn)行樣機(jī)試驗(yàn),以實(shí)現(xiàn)清選機(jī)作業(yè)過程自動(dòng)化。
清選機(jī)結(jié)構(gòu)如圖1所示,由機(jī)架、供料系統(tǒng)、風(fēng)選系統(tǒng)、篩分裝置、驅(qū)動(dòng)裝置及控制系統(tǒng)等組成。
供料系統(tǒng)、篩分裝置、驅(qū)動(dòng)裝置安裝在機(jī)架上,供料系統(tǒng)采用直線電磁振動(dòng)給料器供料;驅(qū)動(dòng)裝置采用變頻電機(jī)驅(qū)動(dòng)偏心軸連桿裝置提供動(dòng)力;篩分裝置采用開放式框架結(jié)構(gòu)和雙層組合篩片,在驅(qū)動(dòng)裝置帶動(dòng)下近似往復(fù)直線運(yùn)動(dòng)完成篩選作業(yè);風(fēng)選系統(tǒng)由清選風(fēng)道和旋風(fēng)分離器組成,清選風(fēng)道安裝在供料系統(tǒng)與篩分裝置之間,旋風(fēng)分離器安裝在可移動(dòng)支架上??刂葡到y(tǒng)包括STM32主控制系統(tǒng)、終端顯示模塊、給料余量監(jiān)測(cè)模塊、篩面傾角調(diào)節(jié)模塊、篩面變頻振動(dòng)模塊、激振清篩控制模塊、適配電源模塊等功能模塊,完成清選機(jī)工作參數(shù)監(jiān)測(cè)與作業(yè)過程控制。
批次式種子清選機(jī)主要通過風(fēng)選、篩選完成試驗(yàn)小區(qū)種子的基本清選除雜和尺寸分級(jí),其清選作業(yè)過程主要包括參數(shù)設(shè)置、供料篩分、振動(dòng)清機(jī)、工況復(fù)位4個(gè)步驟。參數(shù)設(shè)置:在終端顯示模塊中選擇種子類型,確認(rèn)篩片規(guī)格尺寸,設(shè)定適用給料速度、振動(dòng)頻率、篩面傾角、風(fēng)選風(fēng)速等工作參數(shù),啟動(dòng)自動(dòng)運(yùn)行程序。供料篩分:人工放入料斗的一個(gè)批次種子(1個(gè)試驗(yàn)小區(qū)種子)通過供料系統(tǒng)直線電磁振動(dòng)給料器向清選風(fēng)道均勻供料,物料在清選風(fēng)道中完成風(fēng)選除雜后進(jìn)入篩分裝置,篩分裝置根據(jù)外形尺寸將物料篩分為大雜、合格種子、小雜3級(jí),并由各層出口流入收集器中。振動(dòng)清機(jī):篩分后期適度增加篩面振動(dòng)頻率并適時(shí)啟動(dòng)激振清篩電機(jī),通過提高篩面拋擲強(qiáng)度和額外增加高頻激振力,提高篩面清理效率和清篩效果;及時(shí)檢查篩面,防止篩孔卡種和種子殘留。工況復(fù)位:每批次種子清選作業(yè)完成后,將相關(guān)工作參數(shù)恢復(fù)至初始設(shè)定值,準(zhǔn)備進(jìn)行后續(xù)作業(yè)。批次式種子清選機(jī)作業(yè)過程相較于通用型風(fēng)篩清選機(jī)作業(yè)的特殊性在于采用物料狀態(tài)監(jiān)測(cè)和各變頻振動(dòng)清機(jī)等技術(shù)措施,確保篩面無種子殘留,防止批次間種子混雜。
控制系統(tǒng)結(jié)構(gòu)如圖2所示。控制系統(tǒng)以STM32(型號(hào)為F407ZGT6)微控制器為處理核心,完成傳感信號(hào)的及時(shí)處理及作業(yè)過程控制;終端顯示模塊采用DGUS串口屏(型號(hào)為DMT80600T104),在DGUS ToolV5.04環(huán)境下開發(fā)軟件實(shí)現(xiàn)人機(jī)交互界面與微處理器數(shù)據(jù)雙向、高效傳輸;給料余量監(jiān)測(cè)模塊采用的1號(hào)對(duì)射型光電傳感器獲得料斗物料料位信息,根據(jù)控制策略動(dòng)態(tài)調(diào)整料速度;篩面變頻振動(dòng)模塊采用2號(hào)、3號(hào)兩組對(duì)射光電傳感器獲得下層篩片前端和末端物料狀態(tài)信息,根據(jù)控制策略調(diào)整篩面驅(qū)動(dòng)電機(jī)轉(zhuǎn)速,從而實(shí)現(xiàn)振動(dòng)頻率動(dòng)態(tài)調(diào)整;激振清篩控制模塊,基于2號(hào)、3號(hào)傳感器返回信號(hào),采用間斷觸發(fā)方式啟動(dòng)驅(qū)動(dòng)清篩振動(dòng)電機(jī)(型號(hào)為PUTA30)產(chǎn)生間歇高頻激振力輔助完成篩面清理作業(yè)。篩面傾角調(diào)節(jié)模塊采動(dòng)態(tài)傾角傳感器(型號(hào)為BW-VG227)獲取篩面傾角實(shí)時(shí)數(shù)據(jù),驅(qū)動(dòng)步進(jìn)電機(jī)(型號(hào)為57HS22)帶動(dòng)傾角調(diào)節(jié)裝置實(shí)現(xiàn)篩面傾角精準(zhǔn)調(diào)控;適配電源模塊分別提供AC220 V、DC24 V、DC12 V、DC5 V電源。采用角度傳感器傾角信息反饋和輔助位移限位開關(guān)實(shí)現(xiàn)篩分裝置安全限位和系統(tǒng)復(fù)位。
表1 清選機(jī)工作狀態(tài)與控制策略
以STM32F407ZGT6微控制器為處理核心,以迪文DGUS串口屏為顯示終端,采用TTL串口通訊/RS485通訊,通過采集光電傳感器通斷信號(hào)、傾角傳感器角度信息并執(zhí)行系統(tǒng)控制策略,完成電磁振動(dòng)給料器、篩面驅(qū)動(dòng)電機(jī)、清篩振動(dòng)電機(jī)、傾角調(diào)節(jié)電機(jī)、風(fēng)選風(fēng)機(jī)等部件的運(yùn)動(dòng)控制,實(shí)現(xiàn)振動(dòng)給料、物料篩分、變頻振動(dòng)清機(jī)、高頻振動(dòng)清篩、篩面傾角調(diào)整功能??刂葡到y(tǒng)硬件組成如圖3所示。
STM32F407ZGT6微控制器具有12個(gè)16位定時(shí)器、2個(gè)32位定時(shí)器、2個(gè)DMA 控制器、3個(gè)IIC、6個(gè)串口、2個(gè)USB、2個(gè)CAN、3個(gè)12位ADC、2個(gè)12位DAC以及112個(gè)通用IO口等,能夠滿足系統(tǒng)搭建需求。
自動(dòng)控制系統(tǒng)主體電路如圖4所示,PF9為控制篩面振動(dòng)頻率的PWM1脈沖輸出端口,通過MOS管放大作用控制交流電機(jī)轉(zhuǎn)速;PF6為控制篩面傾角的PWM2脈沖輸出端口,改變定時(shí)器使能與非使能模式控制傾角調(diào)節(jié)電機(jī)啟停,PF2端口置1時(shí)正轉(zhuǎn)、置0時(shí)反轉(zhuǎn);PF7為控制電磁振動(dòng)給料器的PWM3脈沖輸出端口,通過MOS管連接到數(shù)字變壓調(diào)速器上,通過改變給料器輸入電壓實(shí)時(shí)調(diào)節(jié)給料速度。
終端顯示模塊選用迪文DGUS串口電阻觸摸屏,能夠搭建豐富的GUI解決方案,滿足控制系統(tǒng)人機(jī)交互設(shè)計(jì)需求。串口屏10.4寸面板,485通訊數(shù)據(jù)傳輸,工作電壓5~15 V,工作溫度-20~70 ℃。
光電傳感器工作電壓DC12~24 V,響應(yīng)時(shí)間25s~2 ms、最大環(huán)境亮度30 000 lux、耐受振頻10~55 Hz。SDVC31-M型調(diào)速器,最大輸出功率660 W,許用電壓范圍AC85~260 V;SKD140型電磁振動(dòng)給料器振幅0.5~1 mm、功率25 W、適用電壓范圍170~195 V。
采用SCA-3C交流電機(jī)調(diào)速器調(diào)控篩面驅(qū)動(dòng)電機(jī)轉(zhuǎn)速實(shí)現(xiàn)振動(dòng)頻率調(diào)整。篩面驅(qū)動(dòng)電機(jī)工作電壓220 V,最大轉(zhuǎn)速500 r/min。
篩面傾角是影響物料篩分質(zhì)量和效率的重要因素。本文采用動(dòng)態(tài)傾角傳感器實(shí)時(shí)獲取篩面傾角數(shù)值,采用DM542驅(qū)動(dòng)器根據(jù)控制要求驅(qū)動(dòng)傾角調(diào)節(jié)電機(jī)正反轉(zhuǎn),帶動(dòng)X型支架升起或降落,進(jìn)而實(shí)現(xiàn)傾角精準(zhǔn)調(diào)控(4°~7°)。
傾角調(diào)節(jié)電機(jī)扭矩2.3 N·m,許用電流1~4.2 A,驅(qū)動(dòng)器支持3.3、5和24 V脈沖信號(hào)。動(dòng)態(tài)傾角傳感器工作電壓DC12 V,動(dòng)態(tài)測(cè)量精度1°,系統(tǒng)啟動(dòng)時(shí)間<50 ms,俯仰角讀取范圍為±90°,抗沖擊性能優(yōu)良。
為解決順序作業(yè)流程中3組光電傳感器信號(hào)的時(shí)序沖突、意外信號(hào)干擾等問題,調(diào)用外部中斷資源,根據(jù)控制需要設(shè)置4個(gè)不同優(yōu)先級(jí)的標(biāo)志位,1級(jí)為最高優(yōu)先等級(jí),當(dāng)多個(gè)標(biāo)志位同時(shí)啟用時(shí)執(zhí)行高優(yōu)先級(jí)。通過設(shè)定許用和禁用功能進(jìn)一步提高控制系統(tǒng)穩(wěn)定性。標(biāo)志位優(yōu)先級(jí)及功能設(shè)置如表2所示。
表2 標(biāo)志位優(yōu)先級(jí)及功能設(shè)置
控制系統(tǒng)以Keil uVision5軟件為開發(fā)環(huán)境,根據(jù)控制要求,控制器接收串口顯示屏交互數(shù)據(jù),解析傳感器信息,判定清選機(jī)工作狀態(tài),然后依據(jù)制定的控制策略執(zhí)行相應(yīng)的控制動(dòng)作??刂葡到y(tǒng)工作流程如圖5所示。
控制系統(tǒng)基于迪文DGUS串口屏開發(fā)人機(jī)交互界面。人機(jī)交互界面包括入口頁面、菜單頁面、參數(shù)設(shè)置界面(匹配玉米、水稻、小麥等不同作物種子),具備系統(tǒng)操作信息、工作參數(shù)設(shè)置、篩片規(guī)格提示信息等功能。
控制器采用TTL串口通信與人機(jī)交互界面進(jìn)行雙向、高效數(shù)據(jù)傳輸。參數(shù)設(shè)置模塊支持工作參數(shù)實(shí)時(shí)輸入,各主要參數(shù)調(diào)節(jié)范圍及步長(zhǎng)分別設(shè)置為:風(fēng)速3.5~8.5 m/s,步長(zhǎng)0.1 m/s;給料速度34~68 g/s,步長(zhǎng)1 g/s;振動(dòng)頻率5.5~8.3 Hz,步長(zhǎng)0.1 Hz;篩面傾角4°~7°,步長(zhǎng)0.1°,修改后的參數(shù)自動(dòng)存儲(chǔ)并置為系統(tǒng)初始值。
清選機(jī)采用SKD140型直線電磁振動(dòng)給料器進(jìn)行批次供料,給料速度通過調(diào)整配套SDVC31-M型數(shù)字變壓調(diào)速器輸出電壓調(diào)控。
控制器調(diào)用TIM11通道1的PWM(Pulse-Width Modulation)波,通過調(diào)整比較捕獲寄存器賦值改變PWM波占空比,在PF7端口輸出可調(diào)節(jié)電壓值。PF7端口輸出電壓值與比較捕獲寄存器賦值之間關(guān)系如式1所示。
PF7端口電壓值經(jīng)過MOS管(MOSFET)電壓放大后輸入SDVC31-M調(diào)速器驅(qū)動(dòng)電磁振動(dòng)給料器給料。受機(jī)械結(jié)構(gòu)、工作負(fù)載等影響,PF7端口輸出電壓與給料器給料速度呈現(xiàn)非線性關(guān)系。PF7端口電壓與給料速度對(duì)應(yīng)關(guān)系如表3所示。
PF7端口電壓與給料速度二次多項(xiàng)式擬合方程如式(2)所示。
表3 PF7端口電壓與給料速度對(duì)應(yīng)關(guān)系
篩分裝置在篩面驅(qū)動(dòng)電機(jī)、偏心軸連桿裝置帶動(dòng)下近似往復(fù)直線運(yùn)動(dòng),振動(dòng)頻率通過改變篩面驅(qū)動(dòng)電機(jī)轉(zhuǎn)速進(jìn)行調(diào)節(jié)。
STM32調(diào)用定時(shí)器TIM10通道1產(chǎn)生的PWM波,通過調(diào)整比較捕獲寄存器賦值改變PWM波占空比,在PF9端口輸出可調(diào)節(jié)電壓值。PF9端口電壓經(jīng)MOS管放大后形成控制電壓,接入SCA-3C交流電機(jī)調(diào)速器電壓輸入端口后調(diào)控6GU3K-C15交流電機(jī)轉(zhuǎn)速。MOS管輸出電壓由式(3)計(jì)算。
由于電路存在電壓損失,對(duì)振動(dòng)頻率與比較捕獲寄存器賦值進(jìn)行標(biāo)定。根據(jù)前期研究結(jié)果[19],選擇振動(dòng)篩分適用頻率為6.12~7.4 Hz,最高振動(dòng)頻率8.3 Hz,TIM10比較捕獲寄存器賦值分別為105~150,92。標(biāo)定數(shù)據(jù)詳見表4。
清篩振動(dòng)電機(jī)高頻間歇振動(dòng)(時(shí)長(zhǎng)約3 s、間隔1 s)3~5次能夠有效清除篩孔卡種和篩面殘留種子。
清篩振動(dòng)電機(jī)PUTA30輸入電壓為0~24 V,可以通過繼電器通斷直接控制電機(jī)啟停,根據(jù)前期試驗(yàn)選擇適用電壓值為20 V。控制器設(shè)置PF0推挽輸出模式,由PF0端口輸出電平控制繼電器常開開關(guān)的開閉;通過設(shè)置高低電平輸出時(shí)序能夠控制清篩振動(dòng)電機(jī)間歇啟停。
表4 振動(dòng)頻率-TIM10賦值標(biāo)定數(shù)據(jù)
注:1~8為標(biāo)定點(diǎn)。
Note: 1-8 calibration points.
傾角調(diào)節(jié)裝置以BWD-VG227動(dòng)態(tài)傾角傳感器角度返回值為控制信號(hào)通過DM542驅(qū)動(dòng)器驅(qū)動(dòng)傾角調(diào)節(jié)電機(jī),進(jìn)而帶動(dòng)X型支架升起或降落實(shí)現(xiàn)篩面傾角調(diào)節(jié)。
控制器采用RS485通訊方式實(shí)時(shí)讀取傾角傳感器返回值并與設(shè)置的角度閾值進(jìn)行比較,達(dá)到設(shè)置值后關(guān)閉定時(shí)器,傾角調(diào)節(jié)電機(jī)停止工作??刂破髡{(diào)用TIM14通道1的PWM波,驅(qū)動(dòng)器驅(qū)動(dòng)步進(jìn)電機(jī)轉(zhuǎn)動(dòng);PF2端口與驅(qū)動(dòng)器DIR+輸入口相連,通過高低電平控制傾角調(diào)節(jié)電機(jī)正反轉(zhuǎn)。
采用BB-180A型角度傳感器測(cè)量篩面傾角實(shí)際角度值并與系統(tǒng)設(shè)定值相較計(jì)算其變異系數(shù),傾角調(diào)節(jié)范圍4°~7°,調(diào)節(jié)步長(zhǎng)0.5°,每組試驗(yàn)重復(fù)5次。試驗(yàn)指標(biāo)變異系數(shù)CV由式(5)計(jì)算。
試驗(yàn)結(jié)果如表5所示,各角度實(shí)測(cè)值與設(shè)定值的最大誤差為0.11°~0.18°,變異系數(shù)為1.58%~2.74%。
表5 傾角控制準(zhǔn)確性試驗(yàn)結(jié)果
以3 kg玉米種子為對(duì)象測(cè)定給料速度準(zhǔn)確性,根據(jù)振動(dòng)給料器輸送能力選取40、45、50、55、60、65 g/s共6個(gè)水平,使用ULTRAK-DT459計(jì)時(shí)器記錄批次給料時(shí)長(zhǎng),每組試驗(yàn)重復(fù)5次,計(jì)算給料速度變異系數(shù)。
試驗(yàn)結(jié)果如表6所示,各工況給料速度最大誤差為1.2~2.2 g/s,變異系數(shù)為1.61%~3.19%,均滿足使用要求。
表6 給料速度控制準(zhǔn)確性試驗(yàn)結(jié)果
使用UT372非接觸電機(jī)轉(zhuǎn)速測(cè)速儀采集篩面驅(qū)動(dòng)電機(jī)轉(zhuǎn)速并轉(zhuǎn)換為振動(dòng)頻率。根據(jù)種子篩分所需振動(dòng)頻率選取5.5、6、6.5、7、7.5、8 Hz共6個(gè)水平,每組試驗(yàn)重復(fù)5次,由式(5)計(jì)算變異系數(shù)。
試驗(yàn)結(jié)果如表7所示,各工況振動(dòng)頻率最大誤差為0.14~0.23 Hz,變異系數(shù)為1.38%~2.55%,均滿足使用要求。
表7 振動(dòng)頻率控制準(zhǔn)確性試驗(yàn)結(jié)果
為了驗(yàn)證自動(dòng)控制系統(tǒng)穩(wěn)定性和可靠性,評(píng)估控制系統(tǒng)的作業(yè)效果,在批次式種子清選機(jī)試驗(yàn)樣機(jī)上加裝研制的自動(dòng)控制系統(tǒng),開展樣機(jī)性能試驗(yàn)。
5.1.1 試驗(yàn)條件
根據(jù)前期試驗(yàn)結(jié)果[19],確定清選機(jī)控制系統(tǒng)存儲(chǔ)優(yōu)選工作參數(shù)為風(fēng)選風(fēng)速4.2 m/s、篩面傾角5.6°、給料速度52 g/s、振動(dòng)頻率6.4 Hz、振幅5 mm;在該參數(shù)條件下進(jìn)行10次重復(fù)試驗(yàn)。試驗(yàn)裝置如圖6所示。
5.1.2 試驗(yàn)方法
將3 kg玉米種子倒入供料系統(tǒng)后,啟動(dòng)自動(dòng)控制程序開始清選作業(yè)。采用秒表統(tǒng)計(jì)作業(yè)時(shí)間,包括供料篩分時(shí)長(zhǎng)、振動(dòng)清機(jī)時(shí)長(zhǎng)、工況復(fù)位時(shí)長(zhǎng);采用電子秤分別稱量合格種子質(zhì)量、合格種子中雜質(zhì)質(zhì)量,進(jìn)行10次重復(fù)。
5.1.3 試驗(yàn)指標(biāo)
試驗(yàn)過程中自動(dòng)控制系統(tǒng)運(yùn)行正常,每批次的清選作業(yè)過程順暢、無故障或意外停機(jī)。
表8 性能試驗(yàn)結(jié)果表
采用上述玉米種子試驗(yàn)方法和試驗(yàn)指標(biāo)開展水稻、小麥、白菜種子清選加工適應(yīng)性試驗(yàn)。試驗(yàn)場(chǎng)景如圖7所示,清選作業(yè)后水稻種子凈度99.3%,種子獲選率98.8%,作業(yè)效率41.7 g/s;小麥種子凈度99.5%,種子獲選率99.3%,作業(yè)效率52.5 g/s;白菜種子凈度98.5%,種子獲選率98.6%,作業(yè)效率33.4 g/s。試驗(yàn)結(jié)果表明,批次式清選機(jī)對(duì)水稻、小麥、白菜種子具有較好的適應(yīng)性,清選質(zhì)量合格。
1)設(shè)計(jì)了批次式種子清選機(jī)自動(dòng)控制系統(tǒng),包括STM32主控制系統(tǒng)、終端顯示、給料余量監(jiān)測(cè)、篩面變頻振動(dòng)、激振清篩控制、篩面傾角調(diào)節(jié)等功能模塊,具備參數(shù)設(shè)置、振動(dòng)給料、物料篩分、變頻振動(dòng)清機(jī)、高頻振動(dòng)清篩、篩面傾角調(diào)整等功能,實(shí)現(xiàn)了作業(yè)過程自動(dòng)控制。
2)自動(dòng)控制系統(tǒng)以STM32單片機(jī)為控制核心,以物料位置和狀態(tài)信息為主要控制條件,通過引入優(yōu)先標(biāo)志位優(yōu)化清選機(jī)順序作業(yè)控制流程;提出了篩面傾角、給料速度、振動(dòng)頻率等關(guān)鍵參數(shù)的控制方法,制定了作業(yè)過程優(yōu)化控制策略,實(shí)現(xiàn)了種子清選機(jī)準(zhǔn)確控制。
3)清選機(jī)試驗(yàn)樣機(jī)性能試驗(yàn)結(jié)果表明:玉米種子清選作業(yè)過程流暢、自動(dòng)控制系統(tǒng)運(yùn)行正常;在設(shè)定工況下凈度、種子獲選率、批次作業(yè)時(shí)長(zhǎng)、作業(yè)效率的變異系數(shù)分別為0.15%、0.26%、2.2%和2.19%,清選機(jī)作業(yè)質(zhì)量滿足使用要求。
[1]尚書旗,楊然兵,殷元元,等. 國(guó)際田間試驗(yàn)機(jī)械的發(fā)展現(xiàn)狀及展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(增刊1):5-8. Shang Shuqi, Yang Ranbing, Yin Yuanyuan, et al. Current situation and development trend of mechanization of field experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010(Supp. 1): 5-8. (in Chinese with English abstract)
[2]周新,王育紅,王正方,等. 2019年黃淮海區(qū)玉米品種篩選試驗(yàn)[J]. 現(xiàn)代農(nóng)業(yè)科技,2020(17):24-27. Zhou Xin, Wang Yuhong, Wang Zhengfang, et al. Maize variety screening test in the Huanghuai Sea area in 2019[J]. Modern Agricultural Science and Technology, 2020(17): 24-27. (in Chinese with English abstract)
[3]楊薇,李建東,方憲法,等. 玉米育種播種機(jī)械化國(guó)內(nèi)外現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)工程,2018,8(6):9-15. Yang Wei, Li Jiandong, Fang Xianfa, et al. Domestic and foreign current situation and developent trend of seeding mechanization in maze breeding[J]. Agricultural Engineering, 2018, 8(6): 9-15. (in Chinese with English abstract)
[4]朱明,陳海軍,李永磊. 中國(guó)種業(yè)機(jī)械化現(xiàn)狀調(diào)研與發(fā)展分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):1-7. Zhu Ming, Chen Haijun, Li Yonglei. Investigation and development analysis of seed industry mechanization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 1-7. (in Chinese with English abstract)
[5]常建國(guó),劉興博,葉彤,等. 農(nóng)業(yè)小區(qū)田間育種試驗(yàn)機(jī)械的現(xiàn)狀及發(fā)展[J]. 農(nóng)機(jī)化研究,2011,33(2):238-241. Chang Jianguo, Liu Xingbo, Ye Tong, et al. Agricultural plot field trial breeding status and development of machinery[J]. Journal of Agricultural Mechanization Research, 2011, 33(2): 238-241. (in Chinese with English abstract)
[6]王浩,唐勇偉,董振振,等. 基于小區(qū)育種路徑自對(duì)齊的小麥小區(qū)播種機(jī)改進(jìn)[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2019,31(10):1709-1716. Wang Hao, Tang Yongwei, Dong Zhenzhen, et al. Self-alignment algorithm of wheat plot breeding path based on Beidou satellite positioning[J], Acta Agriculturae Zhejiangensis, 2019, 31(10): 1709-1716. (in Chinese with English abstract)
[7]王明湖,翟婧,王淼,等. 水稻品種田間小區(qū)種植鑒定程序與技術(shù)要點(diǎn)[J]. 中國(guó)稻米,2019,25(5):105-107. Wang Minghu, Zhai Jing, Wang Miao, et al. Identification procedures and technical points of rice varieties in field plots[J]. China rice, 2019, 25(5): 105-107. (in Chinese with English abstract)
[8]中華人民共和國(guó)農(nóng)業(yè)部. 農(nóng)作物品種區(qū)域試驗(yàn)技術(shù)規(guī)程小麥:NY/T 1301-2007[S]. 北京:中國(guó)農(nóng)業(yè)出版社,2007.
[9]中華人民共和國(guó)農(nóng)業(yè)部. 農(nóng)作物品種區(qū)域試驗(yàn)技術(shù)規(guī)范水稻:NY/T 1300-2007[S]. 北京:中國(guó)農(nóng)業(yè)出版社,2007.
[10]中華人民共和國(guó)農(nóng)業(yè)部. 農(nóng)作物品種試驗(yàn)技術(shù)規(guī)程玉米:NY/T 1209-2006[S]. 北京:中國(guó)農(nóng)業(yè)出版社,2006.
[11]王家勝,王東偉,尚書旗,等. 4LZZ-1. 0型小區(qū)稻麥聯(lián)合收割機(jī)的研制及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):19-25. Wang Jiasheng, Wang Dongwei, Shang Shuqi, et al. Development and experiment on 4LZZ-1. 0 type plot grain combine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 19-25. (in Chinese with English abstract)
[12]魏麗娟,戴飛,韓正晟,等. 小區(qū)小麥育種聯(lián)合收獲機(jī)試驗(yàn)研究[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2016,28(6):1082-1088. Wei Lijuan, Dai Fei, Han Zhengsheng, et al. Experiment on plot wheat breeding combine harvester[J]. Acta Agriculturae Zhejianggensis, 2016, 28(6): 1082-1088. (in Chinese with English abstract)
[13]孫欽華,李國(guó)瑩,王勇,等. 稻麥繁育收獲機(jī)研究現(xiàn)狀及展望[J]. 農(nóng)業(yè)工程,2020,10(3):7-11. Sun Qinhua, Li Guoying, Wang Yong, et al. Research situation and prospect of rice and wheat breeding harvesters[J]. Agricultural Engineering, 2020, 10(3): 7-11. (in Chinese with English abstract)
[14]周澗楠. 種子清選機(jī)的設(shè)計(jì)與試驗(yàn)[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2017. Zhou Jiannan. Design and Experimental Study on the Seed Cleaning Machine[D]. Hefei: Anhui Agricultural University, 2017. (in Chinese with English abstract)
[15]金誠(chéng)謙,李慶倫,倪有亮,等. 小麥聯(lián)合收獲機(jī)雙出風(fēng)口多風(fēng)道清選作業(yè)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):26-34. Jin Chengqian, Li Qinglun, Ni Youliang, et al. Experimental study on double air outlet multi-ducts cleaning device of wheat combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 26-34. (in Chinese with English abstract)
[16]冷峻,栗曉宇,杜岳峰,等. 單縱軸流谷物聯(lián)合收獲機(jī)清選裝置內(nèi)部流場(chǎng)分析與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(11):39-48. Leng Jun, Li Xiaoyu, Du Yuefeng, et al. Analysis and optimization of internal flow field of cleaning device of single longtitudinal axial flow grain combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(11): 39-48. (in Chinese with English abstract)
[17]陸榮,劉志俠,高連興,等. 立錐式小區(qū)花生脫殼機(jī)氣吸清選裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):23-30. Lu Rong, Liu Zhixia, Gao Lianxing, et al. Development of air suction and cleaning device of vertical cone type peanut sheller in small area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 23-30. (in Chinese with English abstract)
[18]王升升,陳盼,盧夢(mèng)晴,等. 大白菜種子收獲分離清選裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械報(bào),2020,51(S2):181- 190. Wang Shengsheng, Chen Pan, Lu Mengqing, et al. Design and experiment of separation and cleaning device for chinese cabbage seeds harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 181-190. (in Chinese with English abstract)
[19]李永磊,萬里鵬程,陳海軍,等. 批次式種子清選裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):48-58. Li Yonglei, Wan Lipengcheng, Chen Haijun, et al. Design and experiment of batch seed cleaning device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 48-58. (in Chinese with English abstract)
[20]丁力,宋志平,徐萌萌,等. 基于STM32的嵌入式測(cè)控系統(tǒng)設(shè)計(jì)[J]. 中南大學(xué)學(xué)報(bào):自然科學(xué)版,2013,44(S1):260-265. Ding Li, Song Zhiping, Xu Mengmeng, et al. Design of embedded measurement and control system based on STM32[J]. Journal of Central South University: Natural Science Edition, 2013, 44(S1): 260-265. (in Chinese with English abstract)
[21]Letizia De Maria, Daniele Bartalesi, Roberto Luigi Brambilla, et al. Optical voltage transducer for embedded medium voltage equipment: Design and parameters optimization[J]. Proceedings, 2019, 15(1), 17.
[22]邢高勇. 小區(qū)谷物聯(lián)合收獲機(jī)的智能調(diào)控系統(tǒng)研究[D]. 鎮(zhèn)江:江蘇大學(xué),2019. Xing Gaoyong. Study on Intelligent Control System of Grain Combine Harvester in Residential Area[D]. Zhenjiang: Jiangsu University, 2019. (in Chinese with English abstract)
[23]王在滿,裴娟,何杰,等. 水稻精量穴直播機(jī)播量監(jiān)測(cè)系統(tǒng)研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):9-16. Wang Zaiman, Pei Juan, He Jie, et al. Development of rice precision hole direct seeding machine sowing monitoring system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 9-16. (in Chinese with English abstract)
[24]Lu Caiyun, Fu Weiqiang, Zhao Chunjiang et al. Design and experiment of real-time monitoring system for wheat sowing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 32-40.盧彩云,付衛(wèi)強(qiáng),趙春江,等. 小麥播種實(shí)時(shí)監(jiān)控系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):32-40. (in English with Chinese abstract)
[25]賈洪雷,路云,齊江濤,等. 光電傳感器結(jié)合旋轉(zhuǎn)編碼器檢測(cè)氣吸式排種器吸種性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):28-39. Jia Honglei, Lu Yun, Qi Jiangtao et al. Photoelectric sensors combined with rotary encoders to detect the suction performance of suction metering devices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 28-39. (in Chinese with English abstract)
[26]趙立新,張?jiān)鲚x,王成義,等. 基于變距光電傳感器的小麥精播施肥一體機(jī)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):27-34. Zhao Lixin, Zhang Zenghui, Wang Chengyi, et al. Design of integrated monitoring system for wheat precision seeding and fertilization based on variable distance photoelectric sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 27-34. (in Chinese with English abstract)
[27]安曉飛,付興蘭,孟志軍,等. 光電信號(hào)與收割機(jī)谷物產(chǎn)量數(shù)據(jù)轉(zhuǎn)換模型的構(gòu)建與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(S1):36-41. An Xiaofei, Fu Xinglan, Meng Zhijun, et al. Construction and verification of photoelectric signal and harvester grain yield data conversion model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(S1): 36-41. (in Chinese with English abstract)
[28]范傳輝,連瑞瑞,余永昌,等. 新型小區(qū)大豆脫粒機(jī)的設(shè)計(jì)[J]. 大豆科學(xué),2017,36(1):138-142. Fan Chuanhui, Lian Ruirui, Yu Yongchang, et al. Design of a new type of soybean thresher in small area[J]. Soybean Science, 2017, 36(1): 138-142. (in Chinese with English abstract)
[29]肖迎春,王霜,來旭忠. 小區(qū)收割機(jī)分離清選多桿機(jī)構(gòu)設(shè)計(jì)與分析[J]. 江蘇農(nóng)業(yè)科學(xué),2016,44(10):382-386. Xiao Yingchun, Wang Shuang, Lai Xuzhong. Design and analysis of multi-bar mechanism for separation and cleaning of plot harvesters[J]. Jiangsu Agricultural Science, 2016, 44(10 ): 382-386. (in Chinese with English abstract)
[30]魏麗娟,戴飛,韓正晟,等. 小區(qū)小麥育種聯(lián)合收獲機(jī)試驗(yàn)研究[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2016,28(6):1082-1088. Wei Lijuan, Dai Fei, Han Zhengsheng, et al. Experimental study on wheat breeding combine harvester in plot[J]. Acta Agriculturae Zhejiangensis, 2016, 28(6): 1082-1088. (in Chinese with English abstract)
[31]高愛民,戴飛,孫偉,等. 小區(qū)小麥育種收獲機(jī)錐型脫粒滾筒性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(10):22-26. Gao Aimin, Dai Fei, Sun Wei, et al. Performance test of cone-type threshing drum of wheat breeding harvester in plot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(10): 22-26. (in Chinese with English abstract)
Design of automatic control system for plot batch seed cleaning machine
Li Yonglei1, Wan Lipengcheng1, Xu Zexin1, Yuan Hao1, Chen Haijun2,3※, Song Jiannong1
(1.,,100083,; 2.,,100125,; 3.,,100125,)
Plot breeding is a very important link of seed breeding, providing for the field experimental data and breeder seed or original seed. Seed harvested from the plot is commonly processed with manual tools or cleaned by simple machines. A batch seed cleaner is a piece of special equipment to meet the specific processing of germplasm materials in the experimental area. However, there are multiple operation procedures, high labor intensity, and low efficiency in seed batch processing. Manual operation with independent electric control systems has also caused uncontrollable clean-up quality, inefficient and time consuming. This study aims to develop a novel batch seed cleaner for the specific requirements of high efficiency, no residue and easy cleaning. An automatic control system was introduced to implement automatic operation using STM32 embed programming. A variety of functional modules were included, such as feeding margin detection, variable frequency vibration, high-frequency vibration cleaning, screen tilting adjustment, and terminal display with interactive interface and STM32 main control system. Hardware and software of the control system were designed for a sequence working flow, including the feeding, winnowing, and sieving. Three groups of photoelectric sensors were installed to monitor the location and status of the seed. Specifically, the No.1 photoelectric sensor was installed in the lower part of the hopper to monitor and control the feeding and air separation system. The No.2 and the No.3 photoelectric sensors were mounted on the two ends of the lower screen to control the screening device and vibration motor. An angle sensor was used to detect the angle of the screen. The key working parameters and functions were optimized, including the feeding speed, sieving vibration frequency, clean-up vibration, and tilt angle adjustment. The priority flag bit was used to optimize the sequential operation. An optimal control strategy was achieved for a stable and reliable system. A prototype performance test was carried out for high robustness of the automatic control system, thereby systematically investigating the influence on the quality and efficiency of seed batch cleaner. The cleaning test for corn seed showed that the coefficient of variation for the seed purity, the percentage of chosen seed, batch working time and working efficiency were 0.15%, 0.26%, 2.2% and 2.19% respectively, under the set working conditions. An optimal combination was gained for the quality requirements of plot seeding, where the cleaning process was smooth, while the automatic control system operated normally, and the batch seed cleaner worked reliably. This finding can provide a sound reference for the automatic control system in the intelligent batch cleaner for seed or granular materials.
experiments; design; plots; seed cleaning; automatic control; variable-frequency vibration
李永磊,萬里鵬程,徐澤昕,等. 批次式種子清選機(jī)自動(dòng)控制系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(6):9-17.doi:10.11975/j.issn.1002-6819.2021.06.002 http://www.tcsae.org
Li Yonglei, Wan Lipengcheng, Xu Zexin, et al. Design of automatic control system for plot batch seed cleaning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 9-17. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.002 http://www.tcsae.org
2021-02-19
2021-03-12
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD070120503);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD070030202)
李永磊,副教授,博士,主要研究方向?yàn)楝F(xiàn)代農(nóng)機(jī)裝備設(shè)計(jì)及振動(dòng)利用技術(shù)。Email:liyl0393@cau.edu.cn
陳海軍,研究員,主要研究方向?yàn)榉N業(yè)裝備及工程技術(shù)。Email:chenhj118@qq.com
10.11975/j.issn.1002-6819.2021.06.002
S226.5
A
1002-6819(2021)-06-0009-9