• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison between fluctuation of floating potential gradient and velocity of blob structure on HL-2A tokamak

    2021-05-22 07:01:06ChenyuWANG王晨宇LinNIE聶林GuixinTANG唐圭新MinXU許敏RuiKE柯銳YihangCHEN陳逸航HuajieWANG王華杰ZhanhuiWANG王占輝ShilinHU胡世林TingWU吳婷TingLONG龍婷YuxuanZHU朱宇軒HaoLIU劉灝ShaoboGONG龔少博JinbangYUAN袁金榜andLongwenYAN嚴(yán)龍文
    Plasma Science and Technology 2021年5期
    關(guān)鍵詞:龍文

    Chenyu WANG (王晨宇), Lin NIE (聶林), Guixin TANG (唐圭新),Min XU (許敏), Rui KE (柯銳), Yihang CHEN (陳逸航),Huajie WANG (王華杰), Zhanhui WANG (王占輝), Shilin HU (胡世林), Ting WU (吳婷),Ting LONG(龍婷),Yuxuan ZHU(朱宇軒),Hao LIU(劉灝),3,Shaobo GONG(龔少博), Jinbang YUAN (袁金榜) and Longwen YAN (嚴(yán)龍文)

    1 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China

    2 Harbin Institute of Technology, Harbin 150001, People’s Republic of China

    3 University of Science and Technology of China, Hefei 230026, People’s Republic of China

    Abstract Several results based on the Langmuir probes’data on the HL-2A tokamak are presented.The blob structures’radial and poloidal drift velocities,estimated by the gradient of floating potential and by time delay evaluation, are compared in different line-averaged density and electron cyclotron resonance heating conditions.A positive correlation is observed in the comparison between blobs’radial velocity estimated by the two methods mentioned above, regardless of the situation differences mentioned above.Correlation is also observed in the comparison between the blobs’poloidal velocity estimated by the two methods in different situations, while a shift due to the different line-averaged density is observed.These results imply that the radial gradient of floating potential may have some value as a reference during data analysis in low-parameter discharge.

    Keywords: Langmuir probe, blob structure, scrape-off layer

    1.Introduction

    In Langmuir probe diagnostics, the gradient of plasma potential is calculated by:

    The first term on the right of equation (1) is the floating potential term,and the second one is the electron temperature term.In many experimental cases, due to reasons like the design or arrangement of the probes or the electrons’ bi-Maxwellian distribution [1, 2], it can be hard to obtain the electron temperature term of equation(1).A common solution is to use the floating potential term to estimate the gradient of plasma potential.Considering that the probe array normally provides the radial and poloidal message only, the approximation can be written as:

    While the radial component of equation (2) is barely used due to the radial temperature gradient,which cannot be ignored,the poloidal component of equation (2) is widely used in many experimental data analysis cases.On HL-2A, the gradient of floating potential was used to estimate the blob’s radial velocity and further estimate the radial scale of the blob structure[3].On TEXTOR,the gradient of floating potential was used to estimate the radial velocity of the burst events and to evaluate the motion of these events[4].On T-10,the gradient was also used to define the poloidal field and to calculate the radial velocity; the radial velocity result showed that the blob structure on the device would move directly to the first wall[5].On ASDEX-U,the gradient of floating potential was used to estimate the electric field and to calculate the particle flux; it was found that during the ELM period, the outward flux would increase sharply [6].However,due to the arrangement of the probe array or for other reasons,there are still many cases in which the radial component of equation(2)needs to be used,such as estimating the shearing rate[7], calculating the Reynolds stress [8], or eddy measurement.

    In order to determine whether the radial component of equation (2) could be used in some cases, the blob structure[9–16], which is generated in the edge of main plasma and driven by E×B drift, is studied.A fixed mid-plane probe array [17, 18] and a moving probe array is used to measure the radial and poloidal motions of blob structure during the low-parameter discharging of HL-2A.Based on the data of the probe arrays mentioned above, we try to compare the blob-induced fluctuation of floating potential gradient with the blob velocity measured by time delay evaluation (TDE).

    In the next section, we show the experimental setup including the HL-2A discharging parameters, the scheme of probe array and the velocity calculation method.The results of data analysis are given in section 3, and finally, the conclusion and further discussion of the results are given in section 4.

    2.Experimental setup

    HL-2A is a medium-sized tokamak with major radiusR=1.65 m and minor radiusr=0.4 m [19].The current direction in HL-2A is counterclockwise while that of the toroidal magnetic field is clockwise.The probe diagnostic system on HL-2A[19]is located on the midplane of the tokamak,as shown in figure 1.The insertion speed is 1 m s?1while the extracting speed is about 0.5 m s?1.The probe can detect the plasma 3–4 cm inside the last closed flux surface (LCFS) under ohmic and L-mode discharges,and about 1 cm inside the LCFS under H mode.The sampling frequency is 1 MHz.

    The experiment first uses a fixed 3×3 probe array,arranged as in figure 2(e),the radial position of which is fixed at 0.5 cm inside the LCFS on the midplane.This probe array is able to provide both the radial and poloidal velocity of the blob structures.The comparison of the radial velocity estimated by the poloidal gradient of floating potential and that estimated by the TDE method is regarded as a reference graph for the poloidal ones, since it is a consensus that the gradient estimation on poloidal direction is qualitatively right[20].For this reason, it can be predicted that the graph of these two radial velocities will be positively correlated.Besides, the comparison of poloidal velocity between the gradient estimation and TDE provides a large number of data points at the same radial position.

    Second, a moving 3×3 probe array, arranged as in figure 2(f), is used.The approaching period of the Langmuir probe is about 80 ms.The data of this period are analyzed to compare the velocity estimated by the radial gradient of floating potential and TDE method at different radial positions.Since the blob structure is mainly observed and further developed in the scrape-off layer (SOL), only the results of different radial positions in the SOL are stated in this paper.

    Figure 1.Arrangement of probe diagnostic system on HL-2A.

    These 3×3 probe arrays are designed to comprise a three-stair array,as shown in figures 2(a)–(d).The stair height of the probe arraysdrbetween two adjacent probes, which is also the radial distance, is 2.5 mm, and the poloidal distancedθbetween two adjacent probes is 5 mm.The arrangement of the fixed probe is shown in figure 2(e)and the arrangement of the moving probe is shown in figure 2(f).

    In figure 2(e), probesIs1–Is4are used to measure the ion saturation current at different radial/poloidal positions to estimate the blob velocity in the TDE method;Vf1–Vf4are used to measure the floating potential at different radial/poloidal positions to calculate the floating potential gradient in both the radial and poloidal directions.In the case of the fixed probe,the gradient of floating potential is calculated as:

    Terms ?‐rVfand ?‐pVfare the values of the negative radial/poloidal gradient of floating potential inside the blob.

    In figure 2(f), probesIs5andIs6are used to estimate the blob’s poloidal velocity by TDE,while probesVf5andVf6are used to measure the floating potential at different radial positions and to calculate the gradient of floating potential.In the moving probe case, term ?‐rVfbecomes:

    3.Experimental results

    3.1.Discharging parameter

    Figure 2.Arrangement of the three-stair probe array.(a)–(d)Design and basic parameters of the three-stair probe array,(e)probe arrangement for the fixed probe, and (f) probe arrangement for the moving probe.

    Figure 3.Discharging parameter evolutions of (a) the plasma current, (b) the toroidal magnetic field, (c) the line-averaged electron density,(d) the power of ECRH, and (e) the plasma horizontal displacement.

    Both experiments were carried out under similar discharging parameters.Figure 3 shows the time evolution of typical parameters for a low-parameter discharge.From the top to the bottom are:(a)the plasma currentIP=150 kA;(b)the toroidal magnetic feildBT=1.34 T;(c) the line-averaged electron densityne~1.0 ×1019m?3; (d) the power of electron cyclotron resonance heating(ECRH)PECRH=0.5 MW;(e)the plasma horizontal displacementdh~0 cm.

    Figure 4.Profiles of electron density (a) and temperature (b).

    The profiles of electron density and temperature during low-parameter discharging are shown in figure 4, measured by a typical midplane reciprocating triple probe.From 65 mm outside the LCFS to ~15 mm inside the LCFS, the density and temperature slowly increase from ~0.5 ×1018m?3and 10 eV at 25 mm to ~4×1018m?3and 40 eV; the maximum gradient of density is ~5×1019m?4,and the maximum gradient of electron temperature is ~1000 eV m?1.

    The effect of the discharging parameter—to be specific,the line-averaged density and the ECRH condition—on the blob’s drift velocity is observed in the experimental results,and demonstrated in section 3.3.

    3.2.Velocity calculation

    The fixed probe experiment measured the blobs in the midplane,the radial position of which is ~5 mm inside the LCFS,while the moving probe experiment measured the blobs in the midplane with different radial positions in the SOL.The characteristic signals were obtained by the condition average(CA)method[21–24].This method can extract structure from turbulence based on a preset amplitude thresholdδnedefined as the perturbation of electron densityne,which is calculated byne?〈ne〉 ,where the brackets〈...〉 denote the time average.In the fixed probe experiment, the threshold was preset asδne=2.5σwhereσis the standard deviation ofne.A previous study [3] showed that with thresholdδne/σ=2.5the statistical characterizations of the blobs’ radial size and poloidal size were ~20 mm, which is larger than the radial distance(dr=5 mm)and poloidal distance(dθ=10 mm)of the 3×3 probes.In the moving probe experiment, the threshold was set toδne=1.5σin order to obtain more blob cases.The size of the blob estimated by the TDE method was still about 15–20 mm,which is also larger than both the radial and poloidal distances.Combined with the CA method, the radial/poloidal velocities and floating potential gradients of the blobs can be calculated.

    Based on the CA result shown in figure 5 and the parameter provided by the figure, the velocity can be estimated.For the fixed probe,the radial velocity can be estimated by the following equation:

    vr‐TDEandvr‐gradin equation (5) are the radial velocity estimated by TDE and the radial velocity estimated by the gradient of floating potential, respectively.Termstr1andtr2are the times when the CA results of(Is1+Is2)/2and(Is3+Is4)/2reach the peak values, and term ?‐pVfhere r epresents the peak value of(Vf3?Vf2)/dθ.

    Similarly, for both the fixed and moving probes, the poloidal velocity can be estimated as:

    vp‐TDEandvp‐gradin equation (6) are the poloidal velocity estimated by TDE and the poloidal velocity estimated by the gradient of floating potential, respectively.Termstp1andtp2are the time when the CA results of(Is2+Is4)/2and(Is1+Is3)/2for the fixed probe, andIs5andIs6for moving probe reach the peak values in sequence.The term ?‐rVfhere denotes the peak value of(Vf4?Vf1) /drfor the fixed probe and(Vf5?Vf6)/drfor the moving probe.

    Based on the two velocity estimation methods, the error bar of the estimating value is given below.The error bar of the velocity estimated by the gradient of floating potential is given as

    Termσ‐?Vf/Bis the standard deviation of all the single blobs’velocities in the selected time period, and termNrepresents the number of blobs in the selected time period, which is normally about 40–70 blobs in this paper.

    In the TDE method, the time resolution of time delay Δtr/p=tr/p2?tr/p1is dependent on the sampling frequency of the diagnostic system; since the sampling frequency of the probe is 1 MHz, the time resolution is 10?6s.Thus,the error range of the time delay is± 10?6ms,and the upper and lower error bars of the velocity estimated by the TDE method aredr/p[ 1(Δtr/p?10?6)?1(Δtr/p)]anddr/p[ 1(Δtr/p) ?1(Δtr/p+10?6)], respectively, in units of m s?1.

    3.3.Result comp arison

    Figure 5.Velocity estimation:(a)radial velocity estimated by TDE,(b)radial velocity estimated by the negative gradient of floating potential,(c) poloidal velocity estimated by TDE, and (d) poloidal velocity estimated by the negative gradient of floating potential.

    Figure 6.Radial velocity comparison results under different discharging conditions at the radial position of 0.5 cm inside the LCFS.

    As mentioned in section 2, the comparison of the radial velocity is given first as a reference graph for the following poloidal velocity comparison graphs.The radial velocity comparison result based on the analysis of the fixed probe is shown in figure 6.Thexaxis represents the TDE-estimated velocity while theyaxis represents the floating potential gradient-estimated velocity.As predicted before,the gradientestimated radial velocity and the TDE-estimated radial velocity are positively correlated.Based on a brief linear fit,the slope of figure 6 is around 1 and the linear fit result passes point(0,0).In addition,in figure 6,the data are marked with different tokens by their discharging parameters.As shown in figure 6, data under the same discharging condition are congregated in very similar areas: the group marked by red crosses with line-averaged density1.5 ×1019m?3and 0.5 MW ECRH is congregated in the bottom left part of the figure,while the group marked by green diamonds,which has the same line-averaged density as red cross group but the ECRH removed, is congregated in the center of the figure.Thus, it can be concluded that, under the same discharging conditions other than the ECRH, the absence of ECRH leads to an increase in the drift velocity estimated by both methods,which is a predicted result as well.Finally,the group marked by blue circles, for which the line-averaged density is 1.0 ×1019m?3and the power of ECRH is 0.5 MW, is congregated in the top right part of the figure.It can be observed in figure 6 that the overall data,as well as the data inside each separated group, are all linearly correlated, and the slope of these overall data seems to be very similar to the slope of each individual group.

    At the same radial position, the graphs of the velocity estimated by the two different methods are somehow different to figure 6.As shown in figure 7, though the velocity estimated by the two methods is still linearly correlated inside the three independent groups, and all three groups seem to share the same slope of about 1.2,a shift caused by the difference in line-averaged density can be observed.Moreover, while the two groups with line-averaged density of 1.5 ×1019m?3are distributed along the same straight line with a slope of 1.2,these two groups are clearly separated from each other,just as in figure 6.The group with 0.5 MW ECRH is congregated in the bottom left part of the figure and the group without ECRH is congregated in the top right part.This means that when the ECRH is absent, the velocity estimated by both methods is increased dramatically, which gives us indirect support of stating the reference value of estimating the radial gradient of plasma potential by the gradient of floating potential.A possible explanation for the difference between the graphs in figures 6 and 7 is related to the characteristic of the blob structure itself.In the radial–poloidal section, the structure is ambipolar due to the charge separation in the poloidal direction, which is caused by the curvature of the magnetic field.Thus,when estimating the internal poloidal field by two separate probes, the result is close to the one given by the TDE method.For the same reason,when estimating the radial component of the internal electric field, the two separated probes are in a direction almost perpendicular to the internal electric field, so an erroneous result is given, and that is the reason why there is a large discrepancy between the velocity estimated by the gradient of floating potential and the velocity estimated by the TDE method.Besides,the local electric field is very sensitive to the local charge fluctuation, and thus an increased density may lead to an increase in the error, which could explain the shift that occurs in figure 7.

    Figure 7.Comparison of poloidal velocity under different discharging conditions at the position 0.5 cm inside the LCFS.

    In addition, by analyzing the data from the movable probes,the poloidal velocity estimated by the two methods at different radial positions is exhibited in figure 8.It is observed that in different radial positions in the SOL, from 5–6 cm outside the LCFS to 1–2 cm outside the LCFS, the gradientestimated velocity and TDE-estimated velocity show a positive correlation in the graph.Moreover, the amplitude of the velocity does not vary a lot from position to position, which implies that the blob’s velocity does not change much in the SOL.Compared with figure 7, though the fitting function of figure 8 is still a linear function, the slope of the fitted function is notably lower than 1 at only about 0.1.The reason for the slope difference might be the radial position, since figure 7 is based on the data inside the LCFS, while figure 8 shows the data outside the LCFS,and thus the slope could be different due to the different plasma environment.Just as mentioned before,even in the SOL,the two separated probes lie on a line that is almost perpendicular to the local electric field, so there is an error.In addition, the density difference between the edge plasma and SOL plasma is significant.

    Figure 8.Poloidal velocity in different radial positions in the SOL.

    Therefore, this might be an explanation why the slope changed a lot and why the velocity estimated by the gradient of floating potential decreased a lot.

    4.Conclusion and discussion

    The poloidal velocity graphs of both the fixed probe (see figure 7)and the moving probe(figure 8)showed similarity to the reference graph (figure 6), which is the graph of radial velocity estimated by the two methods.It can be implied that under low-parameter discharging, in the edge and SOL regions,using the gradient of floating potential to estimate the plasma potential ones is qualitatively accurate.

    To discuss why this estimation is qualitatively right, some reasons are given.Figure 9 gives the CA result of the radial gradient of floating potential and the radial gradient of electron temperature, which are the two parts of the gradient of plasma potential,with different preset thresholds fromσ2 toσ3.5 at the relative radial position inside LCFS ~0.5 cm,very similar to the fixed probe’s radial position.It is observed that though there is a phase difference between the results in figures 9(a) and (b), as the threshold becomes higher,both the amplitude of the gradient of floating potential and the gradient of electron temperature increase.This could provide a possible explanation for the results in figures 7 and 8: as the radial gradient of plasma goes up, the radial gradients of floating potential and electron temperature go up.In this situation,though the effect of the electron temperature term in equation (1) cannot be ignored, as the poloidal gradient estimation usually assumes,the radial gradients of floating potential and electron temperature are still positively correlated.

    Further support is given by the comparison of the CA results of the radial gradients of floating potential and electron temperature.The reference signal is the ion saturation current,and the preset threshold is 2.5σ.The graph is given in figure 9(c).As shown in figure 9(c), the peak values of the radial gradients of floating potential and plasma potential are positively correlated.Thus, in some cases, the effect of the temperature term in equation (1) can be neglected.

    Figure 9.(a)CA result of radial gradient of floating potential with different thresholds,(b)electron temperature with different thresholds,and(c) comparison of the peak values of CA results.

    Acknowledgments

    This research is supported by the National Key Research and Development Program of China (Nos.2017YFE0300500,2017YFE0300501) and No.2018YFE0309100 and National Natural Science Foundation of China (Nos.11705052,11875124, 11905050, 11875020 and U1867222).

    ORCID iDs

    Chenyu WANG (王晨宇) https://orcid.org/0000-0001-5318-7380

    猜你喜歡
    龍文
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    Free-boundary plasma equilibria with toroidal plasma flows
    Non-Hermitian quasicrystal in dimerized lattices?
    典故逸事龍文鞭影
    Experimental study of sheath potential coefficient in the J-TEXT tokamak
    Effect of edge turbulent transport on scrapeoff layer width on HL-2A tokamak
    勤上光電收購標(biāo)的經(jīng)營亂象
    向北 向北 再向北
    明成祖朱棣:成就大業(yè)不忘恩師
    龍文未駕 鞭影猶存
    對聯(lián)(2011年24期)2011-09-19 06:40:28
    亚洲欧美一区二区三区黑人| 99热国产这里只有精品6| 日韩一区二区三区影片| 中国美女看黄片| 久久精品国产a三级三级三级| 精品国产乱码久久久久久小说| 丁香六月天网| 少妇人妻久久综合中文| 国产亚洲精品第一综合不卡| 国产精品免费大片| 欧美激情极品国产一区二区三区| 大片免费播放器 马上看| 伊人亚洲综合成人网| 国产无遮挡羞羞视频在线观看| 在线av久久热| 在线精品无人区一区二区三| 欧美中文综合在线视频| 成年动漫av网址| 一本综合久久免费| 如日韩欧美国产精品一区二区三区| 国产日韩欧美在线精品| 91精品国产国语对白视频| 免费观看av网站的网址| 欧美日韩亚洲高清精品| 男女国产视频网站| 国产免费福利视频在线观看| 十八禁高潮呻吟视频| 亚洲自偷自拍图片 自拍| 日韩一卡2卡3卡4卡2021年| 一个人免费看片子| 亚洲国产精品一区三区| 啦啦啦 在线观看视频| 在线十欧美十亚洲十日本专区| 亚洲色图 男人天堂 中文字幕| 日韩视频在线欧美| 美女福利国产在线| 如日韩欧美国产精品一区二区三区| 真人做人爱边吃奶动态| 日本91视频免费播放| 青青草视频在线视频观看| 国产精品久久久久久人妻精品电影 | 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 欧美日韩av久久| 两人在一起打扑克的视频| 性高湖久久久久久久久免费观看| 日韩制服丝袜自拍偷拍| 午夜91福利影院| 女警被强在线播放| 国产精品九九99| 伊人久久大香线蕉亚洲五| 久久综合国产亚洲精品| 波多野结衣一区麻豆| videosex国产| 天天躁狠狠躁夜夜躁狠狠躁| 精品卡一卡二卡四卡免费| 国产精品亚洲av一区麻豆| 肉色欧美久久久久久久蜜桃| 日本欧美视频一区| 免费在线观看视频国产中文字幕亚洲 | 国产男女超爽视频在线观看| 纯流量卡能插随身wifi吗| 亚洲av片天天在线观看| 爱豆传媒免费全集在线观看| 纵有疾风起免费观看全集完整版| 国产亚洲精品第一综合不卡| 精品一区二区三区av网在线观看 | 亚洲av成人一区二区三| 19禁男女啪啪无遮挡网站| 一二三四在线观看免费中文在| 欧美黄色淫秽网站| 51午夜福利影视在线观看| 自线自在国产av| 久久精品国产综合久久久| 中文字幕色久视频| 精品久久久久久久毛片微露脸 | 亚洲全国av大片| 亚洲第一欧美日韩一区二区三区 | 亚洲自偷自拍图片 自拍| 黄色片一级片一级黄色片| 女人高潮潮喷娇喘18禁视频| 午夜老司机福利片| 国产一卡二卡三卡精品| 欧美激情 高清一区二区三区| 亚洲av日韩在线播放| 三上悠亚av全集在线观看| 亚洲成人手机| 视频区图区小说| 老鸭窝网址在线观看| 捣出白浆h1v1| 久久狼人影院| 妹子高潮喷水视频| 脱女人内裤的视频| 精品久久蜜臀av无| 啪啪无遮挡十八禁网站| 黄片小视频在线播放| 十八禁网站网址无遮挡| 亚洲欧美色中文字幕在线| 在线 av 中文字幕| 成人18禁高潮啪啪吃奶动态图| 欧美日韩视频精品一区| 日韩,欧美,国产一区二区三区| 嫩草影视91久久| 水蜜桃什么品种好| 黄片播放在线免费| 亚洲伊人久久精品综合| 免费看十八禁软件| 国产有黄有色有爽视频| 日本wwww免费看| 精品人妻熟女毛片av久久网站| 男人舔女人的私密视频| 亚洲欧美精品综合一区二区三区| 黑人操中国人逼视频| av天堂久久9| 欧美人与性动交α欧美精品济南到| 欧美精品人与动牲交sv欧美| 19禁男女啪啪无遮挡网站| 欧美97在线视频| 人人妻,人人澡人人爽秒播| 久久久久久免费高清国产稀缺| 精品少妇一区二区三区视频日本电影| 国产免费一区二区三区四区乱码| 午夜久久久在线观看| 老司机午夜十八禁免费视频| 久久九九热精品免费| 这个男人来自地球电影免费观看| av网站免费在线观看视频| 精品国产乱码久久久久久男人| 日本黄色日本黄色录像| 精品视频人人做人人爽| 乱人伦中国视频| 狠狠精品人妻久久久久久综合| 国产精品国产三级国产专区5o| 精品卡一卡二卡四卡免费| 久久 成人 亚洲| 精品第一国产精品| 首页视频小说图片口味搜索| 久久这里只有精品19| 亚洲av电影在线进入| 欧美97在线视频| 欧美av亚洲av综合av国产av| 久久国产精品影院| 亚洲av成人一区二区三| 亚洲国产精品一区三区| 老司机午夜福利在线观看视频 | 国产精品1区2区在线观看. | 一边摸一边抽搐一进一出视频| 国产成人av激情在线播放| 日韩大片免费观看网站| 少妇人妻久久综合中文| 人人妻人人澡人人看| 又大又爽又粗| 免费看十八禁软件| 久久人妻福利社区极品人妻图片| 国产av一区二区精品久久| 日韩电影二区| 国产日韩欧美亚洲二区| 午夜免费鲁丝| 亚洲欧美成人综合另类久久久| 性色av乱码一区二区三区2| 久热这里只有精品99| 日韩 亚洲 欧美在线| av天堂久久9| 麻豆国产av国片精品| 国产亚洲精品久久久久5区| 久久中文看片网| 国产日韩欧美在线精品| 亚洲精品第二区| 日日爽夜夜爽网站| 日本撒尿小便嘘嘘汇集6| 黄色视频,在线免费观看| 十八禁高潮呻吟视频| 不卡av一区二区三区| 国产高清videossex| 高清视频免费观看一区二区| 丁香六月天网| 亚洲欧美精品综合一区二区三区| 日日摸夜夜添夜夜添小说| 我的亚洲天堂| 熟女少妇亚洲综合色aaa.| 夜夜夜夜夜久久久久| 99精品久久久久人妻精品| 欧美另类亚洲清纯唯美| 亚洲精品国产色婷婷电影| 色婷婷av一区二区三区视频| 色精品久久人妻99蜜桃| 免费观看人在逋| 女人久久www免费人成看片| 老汉色av国产亚洲站长工具| 一区福利在线观看| 亚洲国产成人一精品久久久| 一二三四在线观看免费中文在| 女性被躁到高潮视频| 99九九在线精品视频| av天堂久久9| 午夜成年电影在线免费观看| 日韩,欧美,国产一区二区三区| 少妇被粗大的猛进出69影院| 午夜福利视频在线观看免费| 狠狠精品人妻久久久久久综合| 亚洲精品第二区| 少妇猛男粗大的猛烈进出视频| 国产片内射在线| 99热国产这里只有精品6| 免费高清在线观看日韩| 欧美老熟妇乱子伦牲交| 考比视频在线观看| 久热这里只有精品99| 欧美精品高潮呻吟av久久| 伊人久久大香线蕉亚洲五| 亚洲精品在线美女| 97精品久久久久久久久久精品| 日韩免费高清中文字幕av| av在线播放精品| 成人影院久久| 一级片'在线观看视频| 免费在线观看黄色视频的| 两性夫妻黄色片| 欧美日韩成人在线一区二区| 成在线人永久免费视频| 午夜福利免费观看在线| 色94色欧美一区二区| 国产91精品成人一区二区三区 | 亚洲 欧美一区二区三区| 精品国产一区二区久久| 中文欧美无线码| 国产又爽黄色视频| 久久久久久免费高清国产稀缺| 搡老乐熟女国产| 欧美另类一区| 亚洲国产中文字幕在线视频| www.精华液| 老司机福利观看| 99久久国产精品久久久| 国产伦人伦偷精品视频| 老汉色av国产亚洲站长工具| 欧美激情 高清一区二区三区| 精品一区二区三卡| 巨乳人妻的诱惑在线观看| 精品亚洲乱码少妇综合久久| 美女视频免费永久观看网站| 五月天丁香电影| 欧美 亚洲 国产 日韩一| 老司机亚洲免费影院| 精品卡一卡二卡四卡免费| 美女福利国产在线| 看免费av毛片| av天堂久久9| 亚洲 欧美一区二区三区| 国产成人精品久久二区二区免费| 两个人看的免费小视频| www.熟女人妻精品国产| 日本撒尿小便嘘嘘汇集6| 国产成人一区二区三区免费视频网站| 操出白浆在线播放| 视频区图区小说| 国产精品成人在线| 久久国产精品大桥未久av| 丝袜美腿诱惑在线| 国产亚洲欧美在线一区二区| 亚洲国产日韩一区二区| 精品国产乱码久久久久久男人| 捣出白浆h1v1| 久久毛片免费看一区二区三区| 精品国产一区二区三区四区第35| 啦啦啦免费观看视频1| 18禁观看日本| 久久久精品区二区三区| 国产高清视频在线播放一区 | 一个人免费在线观看的高清视频 | 一区二区日韩欧美中文字幕| 久久亚洲精品不卡| 十八禁网站免费在线| 国产成人精品在线电影| 国产91精品成人一区二区三区 | 9色porny在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产av精品麻豆| 少妇精品久久久久久久| 五月天丁香电影| 国产高清videossex| 99香蕉大伊视频| 国产免费现黄频在线看| 免费在线观看影片大全网站| 丁香六月欧美| 超色免费av| kizo精华| 丝袜脚勾引网站| 久久中文字幕一级| 精品久久久久久电影网| 欧美性长视频在线观看| 精品福利永久在线观看| 热99国产精品久久久久久7| 久久天躁狠狠躁夜夜2o2o| 国产一区二区三区在线臀色熟女 | 亚洲国产看品久久| 日韩欧美一区二区三区在线观看 | 久久久国产精品麻豆| 亚洲久久久国产精品| 国产男女超爽视频在线观看| 亚洲一码二码三码区别大吗| 18在线观看网站| 亚洲熟女精品中文字幕| 亚洲欧美成人综合另类久久久| 亚洲免费av在线视频| 久久ye,这里只有精品| 久久青草综合色| 亚洲精品久久午夜乱码| netflix在线观看网站| 久久人人爽人人片av| 国产一区有黄有色的免费视频| 久久久水蜜桃国产精品网| 国产免费福利视频在线观看| 成人黄色视频免费在线看| 国产麻豆69| 欧美另类一区| 国产成人免费无遮挡视频| 成年人午夜在线观看视频| 亚洲欧美日韩另类电影网站| 国产在线一区二区三区精| 欧美av亚洲av综合av国产av| 久久久精品免费免费高清| 国产91精品成人一区二区三区 | 丝袜在线中文字幕| 极品少妇高潮喷水抽搐| 热re99久久精品国产66热6| 午夜激情av网站| 亚洲中文字幕日韩| 少妇粗大呻吟视频| 啦啦啦免费观看视频1| 中文字幕人妻丝袜一区二区| 视频区欧美日本亚洲| 69av精品久久久久久 | 国产亚洲欧美精品永久| 五月天丁香电影| 亚洲精品久久久久久婷婷小说| 少妇精品久久久久久久| 欧美另类亚洲清纯唯美| 亚洲精品粉嫩美女一区| 亚洲精品国产av蜜桃| 中国国产av一级| 国产色视频综合| 蜜桃在线观看..| 美国免费a级毛片| 美女福利国产在线| 一边摸一边做爽爽视频免费| 亚洲国产精品成人久久小说| 亚洲精品国产色婷婷电影| 精品国产一区二区久久| 国产极品粉嫩免费观看在线| 如日韩欧美国产精品一区二区三区| 91字幕亚洲| 黄色 视频免费看| 亚洲欧美激情在线| 韩国高清视频一区二区三区| 性色av一级| 黑人巨大精品欧美一区二区mp4| 亚洲专区字幕在线| 99九九在线精品视频| 成人免费观看视频高清| 丝袜人妻中文字幕| 成人黄色视频免费在线看| 99精品久久久久人妻精品| 亚洲免费av在线视频| 夫妻午夜视频| 久久综合国产亚洲精品| 亚洲欧美日韩高清在线视频 | 日本a在线网址| 亚洲中文av在线| 90打野战视频偷拍视频| 免费女性裸体啪啪无遮挡网站| 欧美人与性动交α欧美精品济南到| 中文字幕人妻熟女乱码| 桃花免费在线播放| 两人在一起打扑克的视频| 午夜久久久在线观看| 日日摸夜夜添夜夜添小说| 啦啦啦中文免费视频观看日本| 午夜福利影视在线免费观看| 精品少妇一区二区三区视频日本电影| 激情视频va一区二区三区| 热99久久久久精品小说推荐| 成人亚洲精品一区在线观看| 最近中文字幕2019免费版| 亚洲一区二区三区欧美精品| 精品一区二区三区四区五区乱码| 成人黄色视频免费在线看| 在线av久久热| 操美女的视频在线观看| 精品欧美一区二区三区在线| 人人妻人人添人人爽欧美一区卜| 91精品国产国语对白视频| av电影中文网址| 夜夜骑夜夜射夜夜干| 日韩 亚洲 欧美在线| 午夜两性在线视频| 99九九在线精品视频| 欧美精品亚洲一区二区| 丝袜喷水一区| 日韩欧美一区二区三区在线观看 | a级毛片黄视频| 欧美精品亚洲一区二区| 老熟妇仑乱视频hdxx| 午夜福利视频在线观看免费| 99re6热这里在线精品视频| tocl精华| 欧美人与性动交α欧美精品济南到| 国产欧美日韩一区二区精品| 18禁黄网站禁片午夜丰满| 欧美少妇被猛烈插入视频| 久久国产精品人妻蜜桃| 午夜福利视频精品| 欧美精品亚洲一区二区| 亚洲全国av大片| 80岁老熟妇乱子伦牲交| 大型av网站在线播放| 日本av免费视频播放| 人妻久久中文字幕网| www日本在线高清视频| 国产亚洲av片在线观看秒播厂| 叶爱在线成人免费视频播放| 十分钟在线观看高清视频www| 91老司机精品| 丝瓜视频免费看黄片| 久久精品亚洲熟妇少妇任你| 欧美av亚洲av综合av国产av| 亚洲九九香蕉| 亚洲国产中文字幕在线视频| 少妇 在线观看| 国产精品久久久人人做人人爽| 满18在线观看网站| 欧美黄色淫秽网站| 亚洲中文日韩欧美视频| 国产精品影院久久| 亚洲国产精品一区二区三区在线| 亚洲天堂av无毛| 啦啦啦中文免费视频观看日本| 999久久久精品免费观看国产| 91精品三级在线观看| 免费不卡黄色视频| 欧美激情久久久久久爽电影 | 美女高潮到喷水免费观看| 日本91视频免费播放| 国产老妇伦熟女老妇高清| av福利片在线| 欧美黄色片欧美黄色片| 亚洲第一av免费看| 男女无遮挡免费网站观看| 黄色视频,在线免费观看| 日本vs欧美在线观看视频| videosex国产| 汤姆久久久久久久影院中文字幕| 免费不卡黄色视频| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 久久人妻福利社区极品人妻图片| 2018国产大陆天天弄谢| 九色亚洲精品在线播放| 黄片小视频在线播放| 制服诱惑二区| 高潮久久久久久久久久久不卡| 成人av一区二区三区在线看 | 亚洲少妇的诱惑av| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 亚洲欧洲日产国产| 一边摸一边抽搐一进一出视频| 午夜视频精品福利| 精品少妇黑人巨大在线播放| 欧美精品人与动牲交sv欧美| 丰满人妻熟妇乱又伦精品不卡| 中文字幕高清在线视频| www.自偷自拍.com| 大陆偷拍与自拍| 久久九九热精品免费| av在线播放精品| 亚洲精品国产av蜜桃| 国产成人精品无人区| 亚洲国产精品一区三区| 欧美日韩黄片免| 亚洲性夜色夜夜综合| 欧美精品av麻豆av| 一级黄色大片毛片| 女人久久www免费人成看片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产色婷婷电影| 国产亚洲一区二区精品| www.av在线官网国产| 久久久久久亚洲精品国产蜜桃av| 精品卡一卡二卡四卡免费| 亚洲精品在线美女| av有码第一页| 欧美中文综合在线视频| 韩国高清视频一区二区三区| 久久女婷五月综合色啪小说| 亚洲色图 男人天堂 中文字幕| 一区二区三区乱码不卡18| 日本91视频免费播放| 亚洲久久久国产精品| 午夜老司机福利片| 老司机亚洲免费影院| 久久亚洲国产成人精品v| 在线观看免费午夜福利视频| 黑人操中国人逼视频| 无遮挡黄片免费观看| 午夜福利免费观看在线| 最新在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 国产精品香港三级国产av潘金莲| 肉色欧美久久久久久久蜜桃| 亚洲国产中文字幕在线视频| 老司机深夜福利视频在线观看 | 女人爽到高潮嗷嗷叫在线视频| 国产野战对白在线观看| 超色免费av| 啦啦啦视频在线资源免费观看| 一区福利在线观看| av超薄肉色丝袜交足视频| 欧美性长视频在线观看| 丝袜喷水一区| 女警被强在线播放| 99久久综合免费| 巨乳人妻的诱惑在线观看| 成人黄色视频免费在线看| 国产免费一区二区三区四区乱码| 日韩欧美一区视频在线观看| 国产成人影院久久av| 淫妇啪啪啪对白视频 | 午夜两性在线视频| 国产精品av久久久久免费| 十分钟在线观看高清视频www| 一级黄色大片毛片| 国产免费现黄频在线看| 高清在线国产一区| 亚洲精品在线美女| a级毛片在线看网站| 欧美精品啪啪一区二区三区 | www.熟女人妻精品国产| 在线观看免费视频网站a站| 亚洲欧洲日产国产| 人妻 亚洲 视频| 久久久久精品国产欧美久久久 | 十八禁人妻一区二区| 国产无遮挡羞羞视频在线观看| 男女边摸边吃奶| 久久人人爽人人片av| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| 免费高清在线观看视频在线观看| 一边摸一边做爽爽视频免费| 国产精品成人在线| 成人av一区二区三区在线看 | 中文字幕制服av| 久久这里只有精品19| 国产野战对白在线观看| 欧美xxⅹ黑人| 亚洲午夜精品一区,二区,三区| 电影成人av| 日韩一区二区三区影片| 日本av免费视频播放| 国产欧美日韩一区二区三区在线| av福利片在线| 国产精品影院久久| 日本vs欧美在线观看视频| 无遮挡黄片免费观看| 中文字幕色久视频| 国产精品香港三级国产av潘金莲| 日韩有码中文字幕| 99热全是精品| 亚洲精品久久久久久婷婷小说| 国产精品一区二区精品视频观看| 精品一区二区三区四区五区乱码| 久久久欧美国产精品| 美国免费a级毛片| 欧美成狂野欧美在线观看| 国产又爽黄色视频| 免费一级毛片在线播放高清视频 | 一本—道久久a久久精品蜜桃钙片| 国产一卡二卡三卡精品| 91九色精品人成在线观看| 久久性视频一级片| 久久国产精品男人的天堂亚洲| 一级毛片精品| 老鸭窝网址在线观看| 人人妻,人人澡人人爽秒播| 亚洲国产精品一区三区| 久久人妻熟女aⅴ| 婷婷色av中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 日本黄色日本黄色录像| 色老头精品视频在线观看| 国产成人一区二区三区免费视频网站| 亚洲视频免费观看视频| 一区二区三区乱码不卡18| 久久久久国内视频| 少妇粗大呻吟视频| 法律面前人人平等表现在哪些方面 | 亚洲av日韩精品久久久久久密| 色播在线永久视频| 国产精品成人在线| 日韩电影二区| 国产片内射在线| 免费观看av网站的网址| 久久久久久久大尺度免费视频| 一级毛片电影观看| 大香蕉久久网| 午夜两性在线视频| 色综合欧美亚洲国产小说| 国产精品九九99| av电影中文网址| av福利片在线| 亚洲视频免费观看视频| 亚洲中文日韩欧美视频| 国产色视频综合| 欧美黑人精品巨大|