• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of sheath potential coefficient in the J-TEXT tokamak

    2021-03-22 08:04:10WeiZHAO趙偉LinNIE聶林LongwenYAN嚴(yán)龍文MinXU許敏RuiKE柯銳JieYANG陽杰ZhipengCHEN陳志鵬ZhanhuiWANG王占輝YaliWANG王雅麗andTEXTTeam
    Plasma Science and Technology 2021年3期
    關(guān)鍵詞:龍文趙偉雅麗

    Wei ZHAO (趙偉), Lin NIE (聶林), Longwen YAN (嚴(yán)龍文), Min XU (許敏),Rui KE (柯銳), Jie YANG (陽杰), Zhipeng CHEN (陳志鵬), Zhanhui WANG(王占輝), Yali WANG (王雅麗) and J-TEXT Team

    1 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China

    2 College of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430074, People’s Republic of China

    Abstract Sheath potential coefficient α is a key parameter,which is used to estimate plasma potential(Vp)for edge plasma physics study.Recently, a series of experiments has been carried out under hydrogen plasmas in the J-TEXT tokamak with swept probe, which is employed for currentvoltage (I-V) characteristic measurement.Electron temperature is evaluated from I-V curve by three-parameter fitting method, and the electron energy probability function shows that electron distribution is Maxwellian both outside and inside of last closed flux surface (LCFS).Plasma potential is obtained by crossing point between I-V exponential fitting curve and electron saturation current extrapolating line, which is in good agreement with first derivative probe technique.The α coefficient profile in the vicinity of the LCFS is obtained,which is in the range of 2.1-3, and decreases from outside to inside of LCFS.

    Keywords: Langmuir probe, sheath potential coefficient, EEPF

    1.Introduction

    Langmuir probes have been widely applied for plasma measurement and research since its simple and efficient use.They can simultaneously measure multiple plasma parameters like electron density (ne), electron temperature (Te) and floating potential (Vf) with high spatial and temporal resolutions.An important application of Langmuir probe diagnosis is to estimate the plasma potential, which can be calculated by the formulaVp=Vf+αTewhen α coeffciient is known andVfandTeare measured.In unmagnetized plasmas the coefficient α can be reliably estimated by Langmuir probe theoretical models[1-3].In some cases of tokamak plasma, the theoretical coefficient α is used for physics research:α= 3 is used for blob and hole observation in the boundary plasma of EAST tokamak[4], and this value is also used for intermittent convection transport research in the boundary of the DIII-D tokamak[5].In ASDEX-U and HL-2A tokamakα= 2.8 for deuterium and in TEXTOR tokamakα= 2.5 for hydrogen are used to study turbulent transport for calculation Er×B folw respectively[6-8].However, the real α is impacted by the effect of strong magnetic field, secondary electron emission, ion temperature,diffusion, impurity, etc [2].In [9], the experimental evaluation of α coefficient on HL-2A is different from the theoretical models, the region of α coefficient is 2-3 outside last closed flux surface (LCFS),and the α coefficient increases to about 5 inside LCFS.However, the reversed trend is found from the experimental results in the J-TEXT tokamak in this text.It means that the measurement of the real sheath potential coefficient for plasma potential evaluation and relative physics study is very important.According to the formulaVp=Vf+αTe,the α coefficient can be calculated when the parameters ofVp,VfandTeare known.The conventional method to obtain these parameters is three-parameter fitting method (equation (1)) or four-parameter fitting method (equation (2)).Where the probe currentI(V)is the function of the probe potentialV,the ftiting parameters are ion saturation current(Isi),Vf,Teand slope of the ion currentAnother way is first derivative probe technique(FDPT) which can provide plasma parameters and electron energy probability function (EEPF).

    In DITE tokamak, three-parameter fitting is used belowVfand confirms that Langmuir probe is reliable in the presence of strong magnetic fields [10].In TdeV tokamak, the results obtained from four-parameter fitting of flush probe agree with the measurements of standard cylindrical probe [11, 12].In RFX, four-parameter fitting is used for non-saturation ion current I-V characteristic [13].In CASTOR tokamak, three-parameter and four-parameter fitting methods are used to study ion sheath expansion [14].In COMPASS tokamak, three kinds of methods including the FDPT, three-parameter and four-parameter fitting are used for calculating plasma parameters[15].In[16],Langmuir probe measured the electron energy distribution function at intermediate and high pressures and in a magnetic field, and then obtained the plasma parameters.References[17,18]discussed the theory of probe and how to use EEPF to obtain plasma parameters.References [19-21] derived how to use EEPF to obtain plasma parameters and showed that the electron distribution is bi-Maxwellian near LCFS in ISTTOK,CASTOR, COMPASS tokamaks and TJ-II stellarator.

    Systematic experiments have been carried out under hydrogen discharges in the J-TEXT tokamak to study the sheath potential coefficient α.In the experiments,two floating probes and a voltage swept probe are employed to simultaneously measure the floating potential and I-V characteristic;triple probe is used for crosscheckingTefrom swept probe.The floating potential is used to calculate turbulent propagation velocity in poloidal direction to indicate the location of LCFS and thus to get the relative position between probes and LCFS.Profiles of electron temperature, floating potential and plasma potential are derived from I-V characteristic.Then,sheath potential coefficient profile can be obtained.FDPT is used for I-V characteristic analysis to confirm the plasma potential obtained from three-parameter fitting, and EEPF indicates that the assumption of three-parameter fitting is valid since electron distribution is Maxwellian.

    2.Experiment setup

    Figure 1.The 2-step probe array used in experiments: a triple probe(Vf ,V+ and V? ) on the first step and a standard swept probe and two floating probes (s wept, Vf 1, Vf2) on the second step.

    J-TEXT tokamak has a major radius R = 105 cm and a minor radius a = 25.5 cm.A fast reciprocating probe array installed on the top of tokamak is used to carry out the experiments under Ohmic discharges.As shown in figure 1, the probe array has a triple probe on the first step and a standard swept probe as well as two floating probes on the second step, which can be moved about 50 mm at the speed of 1 m s?1in the vertical direction.The radial distance(Δr)between the 2 steps is 2.5 mm.All of the tips are cylindrical with the height and diameter of 2 mm, the effective collection area isAeff= 8 mm2on the first step andAeff= 4 mm2on the second step since half of probe tip is shielded by the first step.The poloidal distance between adjacent probes is 5 mm.In experiments, a 10 kHz sinusoidal wave with peak-peak value of voltage 300 V is applied for swept probe.The rough estimation of the swept probe circuit bandwidth can be calculated by the formula10 kHz, which means that the effect of capacitance on wave transmission can be ignored, where the parameters of shunt resistor and cable capacitance areRshunt= 13 Ω and C = 1.4 nF,respectively.The rest two tips on the second step are operated in floating mode with 5 mm poloidal distance.They are used for detecting the position of LCFS by measuring turbulent propagation velocity in poloidal direction.The bandwidth of the conditioning channels is higher than 300 kHz.The analog signals are sampled by a 12 bit digitizer with 2 MHz sampling frequency.

    3.Experimental results

    3.1.Main plasma parameters

    The sheath potential coefficient measurement experiments were carried out during J-TEXT tokamak Ohmic discharges under limiter configuration, of which the main parameters with time evolution are shown in figures 2(a)-(c): the plasma currentIp~ 150 kA, the toroidal magnetic fieldBt~ 2.2 T, the lineaveraged electron densityne~ 2.5 × 1019m?3.The vertical displacement of plasma and the position of fast reciprocating probes are shown in figures 2(d) and (e).According to figure 2(d),it can be found that the vertical displacement of the plasma is less than 1.5 mm during probe movement.This means that the plasma is almost kept at the same radial position,which is important for the experiment measurement since Langmuir probe is very sensitive to the position of plasma,especially in the large gradient regions.Figure 2(e)shows how the displacement of probe varies with time.Figure 2(f) shows the turbulence poloidal velocity measured by the two floating tips and estimated by time delay estimation (TDE) method in this period.It is clear that the turbulence poloidal velocity changes from ion diamagnetic drift direction (positive) to electron diamagnetic drift direction (negative) at ~251 ms,which implies that the probe passes the LCFS at that time.

    Figure 2.The main parameter evolutions of an Ohmic discharge.(a) The plasma current; (b) the toroidal magnetic field; (c) the lineaveraged electron density; (d) the plasma vertical displacement;(e) the displacement of fast reciprocating probes; (f) the poloidal velocity profile of turbulence estimated by the two floating tips with TDE method.

    3.2.Experimental measurement and estimation

    When the plasma contacts with a solid surface which is electrically isolated, the potential drop spontaneously arises between the plasma and the solid surface,a method based on probe theory under unmagnetized,pure,Maxwell distribution plasma conditions is used for this purpose [2]:

    Figure 3.Typical I-V characteristic.

    whereVpandVfare plasma potential and solid surface floating potential,Ti,miandTe,meare ion temperature, mass and electron temperature, mass respectively,δis secondary electron emission and α is probe sheath coefficient.It should be noted that some factors can impact the coefficient in tokamak plasma, such as strongly toroidal magnetic field, secondary electron emission, different electron and ion temperatures,which may change the theoretical coefficient α different from the real value.In order to obtain the practical coefficient, the following systematic experiments have been carried out on J-TEXT tokamak.

    In experimental study, the probe sheath coefficient α is calculated from the formulawhich means that plasma potentialVp,floating potentialVfand electron temperatureTeshould be obtained firstly.These parameters are estimated from the I-V characteristic of swept probe.As the probe is inserted into the plasma region with a radial velocity of 1 m s?1and the applied frequency of sweeping voltage is 10 kHz, the probe can move roughly 1 mm during 10 sweeping cycles.Figure 3 shows the typical I-V characteristic of the original data in 20 periods with pink points and the averaged value with red dotted line, the black exponential dash line is the fitting curve obtained by means of the three-parameter method,IseandIsiare the electron saturation current and ion saturation current respectively.

    From figure 3, there are three important information obtained: (1) electron and ion currents are saturated in the deeply biased voltage region; (2) floating potentialVf=?8.2 V is estimated at ( )I V= 0 A; (3) plasma potential is aboutVp= 39.2 V obtained by intersection between the fitting line of exponential andIseextrapolation line.

    Figure 4.(a) Typical I-V characteristic andVp estimated by threeparameter fitting; (b) first derivative of the experimental I-V curve(red) and fitted curve withVp estimated by three-parameter fitting(black); (c) the experimental I-V (red) and the best fitted curve(black) after iteration.

    In strongly magnetized plasma, the distortion of electron part in I-V characteristic above the floating potential is observed.As the magnetic field increases, the electron part current is gradually depressed.Based on this, first derivative of I-V characteristic method is used to estimate the plasma potential in [15, 20, 21].In J-TEXT plasma, the cylindrical probe is perpendicular to the magnetic field lines, the diffusion parameterthen the EEPF can be estimated by the first derivative of the probe current as:wheref(ε) is the EEPF,r=1 mm is the probe radius, the characteristic size of turbulenceL= 1 cm,the geometric factorγvaries from 0.71 to 4/3, B ~2.2 T, the electron Larmor radiusrL(B,ε)is in the order of 10?2mm,Uis the probe potential relative to the plasma potentialVp,εis the electron energy.The plasma potential estimation procedure is reviewed in[15,20],the first is to calculate the fitted I-V characteristic, and then use it to compare with the experimental one.If there is a discrepancy,then correction plasma potential is used to repeat the above procedure until obtains the best agreement between the fitted calculation and the measured I-V characteristic, as shown in figure 4(c).Usually, the plasma potential is shifted (0.1-0.4)Teto the positive side with respect to the maximum of the first derivative (the value ofTeexpressed in eV).In [15], a seed plasma potential is estimated for the iteration calculation, but in this text,the plasma potential calculated by three-parameter fitting before is used for the seed plasma potential,which is a good starting point for iteration calculation.As shown in figures 4(a) and (c), the plasma potential estimated from three-parameter fitting is a very good seed for FDPT calculation and the two plasma potentials agree with each other,the difference is less than 3 V (or 8%) for current curve.

    Figure 5.Experimental EEPF at different positions relative to LCFS,all EEPF curves show that the electron distribution is Maxwellian one near the LCFS.

    Figure 6.Measured results: (a) floating potential profile; (b) plasma potential profile;(c)electron temperature profile;(d)electron density profile; (e) sheath potential coefficient profile.

    The I-V characteristic with three-parameter method for evaluating plasma parameters is based on the assumption of Maxwellian electron distribution.However, some experimental evidence shows that the electron distribution is non-Maxwellian in tokamak plasmas [9, 15, 20-22].In order to confirm the reliability of results, the EEPF is calculated as shown in figure 5.Looking on the figure,from bottom to top,the three lines are corresponding to the EEPF at different positions relative to the LCFS,the bottom line is red(12 mm),then black in the middle (0 mm) and blue on the top(?18 mm).During the probe insertion into plasma, the proportion of high-energy electrons is increased, but the EEPF shows that the electron distribution is still Maxwellian distribution at the three positions.In fact,all EEPF curves in the experiments indicate that the electron distribution is Maxwellian distribution in the probe region.

    Figure 7.Electron temperature profiles retrieved by the FDPT and three-parameter fitting method.In the confined plasma, the electron temperatures are obtained by different techniques.Three-parameter fitting obtains the higher temperature,while the rough estimation by first derivative gives the lower temperature.

    Figure 8.Sheath potential coefficient profiles of 5 shots.

    Figure 6 shows the profiles of parameters estimated from I-V characteristic near LCFS.In the figure 6(a), the floating potential increases slowly with the probe movement from -8 to 0 V until LCFS, then gradually decreases to ?38 V at last.As shown in figure 6(b), the plasma potential has similar trend as floating potential, which increases slowly from about 40 V to about 60 V, and then decreases.In figure 6(c), the electron temperature monotonically increases from 17 eV outside of the LCFS to 30 eV inside of LCFS.The electron density profile is shown in figure 6(d).Figure 6(e) is the sheath potential coefficient profile;it decreases from about 3 outside of LCFS to about 2.5 inside of LCFS.Figure 7 presents the profiles of the electron temperature profiles retrieved by the FDPT and three-parameter fitting method,and a good agreement is observed.The results of plasma potential and electron temperature, confirm the consistency of the FDPT and three-parameter fitting for precise evaluation of the plasma parameters in tokamak edge plasma.Figure 8 shows the sheath potential coefficient profiles of 5 discharges.It is clear that the experimental values are different from the value(α= 2.5)roughly estimated by formula(3)using the assumptionTi=Teandδ= 0.Overall, the sheath potential coeffciient generally increases and reaches the maximum near LCFS, then gradually decreases with the probe moving into the plasma within the range from about 3 to 2.1.It should be noted that the error is dominated by the fitted error since I-V characteristic is the simple average of 20 periods from original data.

    4.Conclusion and discussion

    The floating potential, electron temperature and plasma potential have been evaluated from I-V characteristic by three-parameter fitting method.The profiles of sheath potential coefficient α and EEPF are also obtained in this paper.The results in J-TEXT tokamak show that the range of sheath potential coefficient α is between 2.1 and 3, and decreases gradually from outside to inside of LCFS, and the electron distribution is Maxwellian in the edge and SOL in the experiments.Some phenomena are different from other tokamaks, such as CASTOR, HL-2A and COMPASS, for example,there exists bi-Maxwellian electron distribution near the LCFS, and the coefficient α increases gradually from outside to inside of LCFS in HL-2A tokamak.For the EEPF difference, a possible explanation is due to the different electron-electron collision property [23].For HL-2A experimental parameters of plasma inside LCFS 20 mm:density isne~ 3 ×1018m?3, bi-Maxwellian electron temperatures are high electron temperatureTeh~90 eV and low electron temperatureTel~40 eV.The collision length for the averaged energy electrons in the distribution is~1016(Te[e V])2/ne[m?3] .Moreover, the connection length inside LCFS 20 mm is ~25 m in HL-2A, which is just satisfied for collision length of the high temperature plasma:Thus the bi-Maxwellian distribution still exists but gradually decreases along the radial direction.In J-TEXT experiments, the density and temperature inside LCFS 20 mm arene~ 9 ×1018m?3and 30 eV, the collision length is only ~1 m.The connection length in J-TEXT is ~14 m.These results indicate that the bi-Maxwellian is hard to exist in the edge of J-TEXT tokamak.However, the?18 mm EEPF in some shots’data seem a little different from Maxwllian EEPF while other shots’data seem Maxwellian.In figure 9, the bi-Maxwellian approximation was used to analyze the data.The results show that low and high temperatures are 22 eV and 39.8 eV respectively,and effective temperature23.5 eV is different from the temperature from Maxwellian EEPF (26 eV).Although the bi-Maxwellian distribution is occurred only at the deep position inside of LCFS sometimes, we speculate that ?18 mm may be the place where EEPF changes from bi-Maxwellian to Maxwllian in J-TEXT tokamak.It is interesting and worthy to further study in future.

    As for the different tendency of α profile in J-TEXT,according to the formula (3), the α is related toand δ.Recently, many experiments show that theincreases from SOL to the edge and the coefficient δ will increase with temperature rising, which may be the reason for the decreasing in J-TEXT.In some devices, such as HL-2A,the electron distribution is bi-Maxwellian in the edge,thus the high temperature electron dominates the floating potential and makes it further away from plasma potential, in turn, leading to the increase of α.

    Figure 9.Bi-Maxwellian approximation at the position of ?18 mm,the experimental EEPF (blue) is fitted by bi-Maxwellian approximation (green).The low temperature is 22 eV (red) and the high temperature is 39.8 eV (black).

    Acknowledgments

    This work is supported by the National Key Research and Development Program of China (No.2018YFE0309103),National Natural Science Foundation of China (Nos.11875020, 11705052, 11875124 and U1867222), the ITER Organization and China Domestic Agency for the support of this work (ITER5.5.P01.CN.05).

    猜你喜歡
    龍文趙偉雅麗
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    到底誰會贏?
    3秒給答案
    假如你有很多錢,該怎么花?
    Temperature-Dependent Growth of Ordered ZnO Nanorod Arrays
    Hydrothermal Synthesis of Ordered ZnO Nanorod Arrays by Nanosphere Lithography Method
    Free-boundary plasma equilibria with toroidal plasma flows
    Non-Hermitian quasicrystal in dimerized lattices?
    如何求函數(shù)y=Asin(ωx+φ)中φ的值
    SPECTRAL PROPERTIES OF DISCRETE STURM-LIOUVILLE PROBLEMS WITH TWO SQUARED EIGENPARAMETER-DEPENDENT BOUNDARY CONDITIONS*
    街头女战士在线观看网站| 国产av国产精品国产| a 毛片基地| 欧美日韩av久久| 色婷婷久久久亚洲欧美| 国产色婷婷99| 制服诱惑二区| 久久99一区二区三区| 亚洲欧美成人精品一区二区| 男女国产视频网站| 久久99精品国语久久久| 一区在线观看完整版| 青草久久国产| 日韩精品有码人妻一区| 国产精品人妻久久久影院| 久久 成人 亚洲| 99热全是精品| 久久精品aⅴ一区二区三区四区 | 在线观看免费日韩欧美大片| 久久久久久久久免费视频了| 亚洲三区欧美一区| 人人妻人人爽人人添夜夜欢视频| 日产精品乱码卡一卡2卡三| 日韩三级伦理在线观看| 久久久精品国产亚洲av高清涩受| 精品亚洲乱码少妇综合久久| 高清在线视频一区二区三区| 精品亚洲成a人片在线观看| 久久久精品国产亚洲av高清涩受| 免费av中文字幕在线| 青青草视频在线视频观看| 国产亚洲午夜精品一区二区久久| 久久热在线av| 国产成人免费无遮挡视频| 一区二区三区乱码不卡18| 国产免费一区二区三区四区乱码| 高清欧美精品videossex| 人妻少妇偷人精品九色| 婷婷色av中文字幕| av在线app专区| 美女中出高潮动态图| 波野结衣二区三区在线| 亚洲av欧美aⅴ国产| 国产黄色免费在线视频| 超色免费av| 国产熟女午夜一区二区三区| 久久久久久伊人网av| 成人漫画全彩无遮挡| 久久国内精品自在自线图片| 啦啦啦啦在线视频资源| 日韩精品免费视频一区二区三区| 高清视频免费观看一区二区| 国产av码专区亚洲av| 九草在线视频观看| 母亲3免费完整高清在线观看 | 亚洲综合色惰| 国产一区二区在线观看av| 成人毛片a级毛片在线播放| 伊人亚洲综合成人网| 看免费成人av毛片| 欧美日韩一区二区视频在线观看视频在线| 午夜福利一区二区在线看| 免费大片黄手机在线观看| 肉色欧美久久久久久久蜜桃| 高清黄色对白视频在线免费看| 欧美日韩国产mv在线观看视频| 亚洲av综合色区一区| 丝袜脚勾引网站| 最近2019中文字幕mv第一页| 女人被躁到高潮嗷嗷叫费观| 涩涩av久久男人的天堂| 国产精品麻豆人妻色哟哟久久| 国产欧美亚洲国产| 欧美激情极品国产一区二区三区| 欧美xxⅹ黑人| 日韩中字成人| 国产男女内射视频| 国产1区2区3区精品| 啦啦啦中文免费视频观看日本| av国产久精品久网站免费入址| 在线 av 中文字幕| 超碰97精品在线观看| 波多野结衣av一区二区av| 人妻一区二区av| 国产av精品麻豆| 在线看a的网站| 丝袜人妻中文字幕| 日韩中文字幕视频在线看片| 青青草视频在线视频观看| 免费观看无遮挡的男女| 最近2019中文字幕mv第一页| 巨乳人妻的诱惑在线观看| 看十八女毛片水多多多| 18+在线观看网站| 19禁男女啪啪无遮挡网站| 久久中文字幕人妻熟女| 亚洲五月婷婷丁香| 自拍欧美九色日韩亚洲蝌蚪91| 欧美大码av| 真人做人爱边吃奶动态| 9热在线视频观看99| 国产精品影院久久| 搡老岳熟女国产| 精品人妻在线不人妻| 亚洲aⅴ乱码一区二区在线播放 | 黑丝袜美女国产一区| 高清毛片免费观看视频网站 | 欧美久久黑人一区二区| 免费日韩欧美在线观看| 色哟哟哟哟哟哟| 99re在线观看精品视频| 视频区欧美日本亚洲| 极品教师在线免费播放| 精品福利永久在线观看| 精品一区二区三区四区五区乱码| 最新美女视频免费是黄的| 亚洲国产欧美网| 激情在线观看视频在线高清| 在线视频色国产色| 国产一区二区三区综合在线观看| 99国产精品一区二区蜜桃av| 日韩高清综合在线| 精品久久蜜臀av无| 天堂影院成人在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲精品久久午夜乱码| 在线国产一区二区在线| 超碰97精品在线观看| 亚洲少妇的诱惑av| 中文字幕人妻丝袜一区二区| 18禁裸乳无遮挡免费网站照片 | 50天的宝宝边吃奶边哭怎么回事| 国产精品一区二区在线不卡| 韩国av一区二区三区四区| 国产精品99久久99久久久不卡| 老司机靠b影院| 80岁老熟妇乱子伦牲交| 日本a在线网址| 午夜免费激情av| 女人精品久久久久毛片| 亚洲精品国产色婷婷电影| 成人永久免费在线观看视频| 黄色 视频免费看| 午夜福利欧美成人| 露出奶头的视频| 国产熟女午夜一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲 欧美一区二区三区| 欧美精品亚洲一区二区| 男女下面进入的视频免费午夜 | 精品午夜福利视频在线观看一区| 黄片播放在线免费| 变态另类成人亚洲欧美熟女 | 国产精品久久久av美女十八| 国产免费av片在线观看野外av| 欧美黑人欧美精品刺激| 一边摸一边抽搐一进一小说| 欧美中文综合在线视频| 热99国产精品久久久久久7| 国产欧美日韩一区二区三区在线| 精品国产一区二区三区四区第35| 久久久精品欧美日韩精品| 亚洲人成电影免费在线| www.精华液| 亚洲午夜理论影院| 一区二区三区激情视频| 在线免费观看的www视频| 中亚洲国语对白在线视频| 国产麻豆69| 看免费av毛片| 亚洲精品在线美女| 国产精品国产av在线观看| 亚洲人成77777在线视频| 18禁裸乳无遮挡免费网站照片 | av中文乱码字幕在线| 亚洲成人国产一区在线观看| 一个人观看的视频www高清免费观看 | 亚洲,欧美精品.| 成人三级黄色视频| 国产精品爽爽va在线观看网站 | 人人澡人人妻人| 777久久人妻少妇嫩草av网站| 欧美在线黄色| 成在线人永久免费视频| 日日干狠狠操夜夜爽| 交换朋友夫妻互换小说| 国产精品美女特级片免费视频播放器 | 叶爱在线成人免费视频播放| bbb黄色大片| 亚洲精品久久午夜乱码| 曰老女人黄片| 日本欧美视频一区| 欧美日韩中文字幕国产精品一区二区三区 | 色综合婷婷激情| 日日干狠狠操夜夜爽| 亚洲第一欧美日韩一区二区三区| 成人永久免费在线观看视频| 无遮挡黄片免费观看| 一夜夜www| 人妻久久中文字幕网| 午夜福利影视在线免费观看| 涩涩av久久男人的天堂| 国产一区二区激情短视频| 91国产中文字幕| 日韩欧美在线二视频| 久久久久精品国产欧美久久久| 露出奶头的视频| 操美女的视频在线观看| 成人永久免费在线观看视频| 无遮挡黄片免费观看| 精品免费久久久久久久清纯| 免费在线观看黄色视频的| 50天的宝宝边吃奶边哭怎么回事| 欧美精品亚洲一区二区| 亚洲国产精品999在线| 亚洲精品中文字幕一二三四区| 女人被狂操c到高潮| 高清欧美精品videossex| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 自拍欧美九色日韩亚洲蝌蚪91| 女性被躁到高潮视频| 新久久久久国产一级毛片| 精品福利永久在线观看| 久久热在线av| 日本免费一区二区三区高清不卡 | 99久久人妻综合| 19禁男女啪啪无遮挡网站| 一进一出抽搐动态| 久久青草综合色| 老汉色∧v一级毛片| 日韩 欧美 亚洲 中文字幕| 69av精品久久久久久| 中文字幕最新亚洲高清| 亚洲欧美日韩另类电影网站| 大型黄色视频在线免费观看| 日本 av在线| 人成视频在线观看免费观看| 久久久国产一区二区| 亚洲精品一卡2卡三卡4卡5卡| 男女做爰动态图高潮gif福利片 | 国产精品香港三级国产av潘金莲| 精品国产乱码久久久久久男人| 最新在线观看一区二区三区| 99久久99久久久精品蜜桃| 精品人妻1区二区| 成人免费观看视频高清| 男人的好看免费观看在线视频 | 久久久久久久久中文| 精品人妻1区二区| 日本免费a在线| 欧美中文综合在线视频| 老司机靠b影院| 国产精品爽爽va在线观看网站 | a级毛片黄视频| 国产精品国产av在线观看| 久久中文字幕一级| 成熟少妇高潮喷水视频| 两性午夜刺激爽爽歪歪视频在线观看 | 纯流量卡能插随身wifi吗| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器 | 国产无遮挡羞羞视频在线观看| 国产成人精品无人区| 真人做人爱边吃奶动态| 亚洲精品美女久久av网站| 欧美中文综合在线视频| 美女午夜性视频免费| 久99久视频精品免费| 国产精品免费视频内射| av网站免费在线观看视频| 亚洲av成人一区二区三| 欧美黄色片欧美黄色片| 成人18禁在线播放| 啦啦啦免费观看视频1| 一进一出抽搐动态| 午夜视频精品福利| 两性夫妻黄色片| 97人妻天天添夜夜摸| 中文字幕人妻丝袜制服| 精品国产国语对白av| 十八禁网站免费在线| 日韩欧美在线二视频| 精品久久久久久,| 18禁黄网站禁片午夜丰满| 亚洲 欧美 日韩 在线 免费| 一级,二级,三级黄色视频| 一本综合久久免费| 淫秽高清视频在线观看| 日日爽夜夜爽网站| 免费高清视频大片| 亚洲情色 制服丝袜| 日本 av在线| 久久久国产成人精品二区 | 90打野战视频偷拍视频| 丁香六月欧美| 久久精品影院6| 黑人猛操日本美女一级片| 国产精品久久久av美女十八| 国产成人欧美在线观看| 波多野结衣av一区二区av| 99久久国产精品久久久| 伊人久久大香线蕉亚洲五| 91国产中文字幕| 亚洲专区国产一区二区| 久久久久久久久久久久大奶| 激情在线观看视频在线高清| 精品国产乱码久久久久久男人| 久久国产亚洲av麻豆专区| 天堂动漫精品| 日韩大尺度精品在线看网址 | 欧美精品一区二区免费开放| 夜夜看夜夜爽夜夜摸 | 黑人操中国人逼视频| 国产成年人精品一区二区 | 十八禁网站免费在线| 桃色一区二区三区在线观看| 国产免费男女视频| 天天影视国产精品| 国产人伦9x9x在线观看| 欧美日韩亚洲高清精品| 亚洲国产欧美一区二区综合| 一级毛片精品| 男人舔女人下体高潮全视频| 操出白浆在线播放| 女性被躁到高潮视频| 久久精品国产清高在天天线| 免费在线观看黄色视频的| 亚洲av五月六月丁香网| 亚洲男人天堂网一区| 亚洲免费av在线视频| 亚洲精品中文字幕在线视频| 一级片免费观看大全| 美女福利国产在线| 欧美老熟妇乱子伦牲交| 欧美中文日本在线观看视频| 悠悠久久av| 久久99一区二区三区| 美女扒开内裤让男人捅视频| 一二三四在线观看免费中文在| 日韩欧美三级三区| 欧美乱妇无乱码| 国产精品久久久久成人av| 国产精品日韩av在线免费观看 | 精品午夜福利视频在线观看一区| 老司机靠b影院| 欧美日韩乱码在线| 丰满迷人的少妇在线观看| 日本欧美视频一区| 国产麻豆69| 欧美亚洲日本最大视频资源| 大型av网站在线播放| 50天的宝宝边吃奶边哭怎么回事| 美女大奶头视频| 最近最新免费中文字幕在线| 亚洲午夜精品一区,二区,三区| 18禁美女被吸乳视频| 无限看片的www在线观看| 丝袜美腿诱惑在线| 老司机深夜福利视频在线观看| 久久人妻福利社区极品人妻图片| netflix在线观看网站| 淫秽高清视频在线观看| 香蕉久久夜色| 亚洲七黄色美女视频| 久久精品亚洲熟妇少妇任你| 国产成人精品久久二区二区91| 老司机深夜福利视频在线观看| 日本免费a在线| 一本大道久久a久久精品| 成在线人永久免费视频| 欧美 亚洲 国产 日韩一| 国产有黄有色有爽视频| 在线国产一区二区在线| 精品国产乱码久久久久久男人| 可以在线观看毛片的网站| 免费高清视频大片| 一区二区三区国产精品乱码| 亚洲黑人精品在线| 精品福利观看| 超色免费av| 丰满饥渴人妻一区二区三| 青草久久国产| 日韩免费av在线播放| 99热国产这里只有精品6| 一进一出抽搐gif免费好疼 | 欧美黑人精品巨大| 欧美大码av| 亚洲av美国av| 精品国内亚洲2022精品成人| 精品久久久久久久毛片微露脸| 咕卡用的链子| 成人亚洲精品一区在线观看| 看黄色毛片网站| 19禁男女啪啪无遮挡网站| 国产1区2区3区精品| 国产精品爽爽va在线观看网站 | 国产成人欧美在线观看| 日韩精品免费视频一区二区三区| 色尼玛亚洲综合影院| 黄色女人牲交| 男女高潮啪啪啪动态图| 99热只有精品国产| 亚洲精品av麻豆狂野| 91成年电影在线观看| 韩国av一区二区三区四区| 欧美日韩乱码在线| 国产精品一区二区精品视频观看| 免费搜索国产男女视频| 成人精品一区二区免费| 亚洲精品久久成人aⅴ小说| 桃色一区二区三区在线观看| 亚洲专区中文字幕在线| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 久久亚洲真实| 成年版毛片免费区| 国产亚洲精品久久久久5区| 看免费av毛片| 国产成年人精品一区二区 | 国产91精品成人一区二区三区| 日本三级黄在线观看| 在线观看一区二区三区| 成人三级做爰电影| 日韩成人在线观看一区二区三区| e午夜精品久久久久久久| 婷婷精品国产亚洲av在线| 国产熟女午夜一区二区三区| 午夜激情av网站| 久久久国产精品麻豆| 亚洲精品久久午夜乱码| 日韩欧美一区二区三区在线观看| 三级毛片av免费| 丰满饥渴人妻一区二区三| 一个人观看的视频www高清免费观看 | 一a级毛片在线观看| 很黄的视频免费| 麻豆久久精品国产亚洲av | 亚洲专区国产一区二区| 久久人妻熟女aⅴ| 精品卡一卡二卡四卡免费| 99热只有精品国产| 麻豆一二三区av精品| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 国产精品九九99| 久久久久久久久中文| 国产伦人伦偷精品视频| 一二三四在线观看免费中文在| 国产精华一区二区三区| 国产深夜福利视频在线观看| 免费不卡黄色视频| 一区二区日韩欧美中文字幕| 久久人人爽av亚洲精品天堂| 国产一区二区三区在线臀色熟女 | 嫁个100分男人电影在线观看| 欧美日韩亚洲高清精品| 欧美中文日本在线观看视频| 欧美午夜高清在线| 真人做人爱边吃奶动态| 亚洲av熟女| 又紧又爽又黄一区二区| 别揉我奶头~嗯~啊~动态视频| av天堂在线播放| 欧美一级毛片孕妇| 亚洲av美国av| 咕卡用的链子| 18美女黄网站色大片免费观看| 国产精品免费视频内射| 精品熟女少妇八av免费久了| 国产精品久久久av美女十八| 最新美女视频免费是黄的| av有码第一页| 757午夜福利合集在线观看| www.www免费av| 少妇粗大呻吟视频| 成年女人毛片免费观看观看9| 国产免费av片在线观看野外av| 免费观看精品视频网站| 久久人妻熟女aⅴ| 国产精品亚洲一级av第二区| 美女 人体艺术 gogo| 搡老岳熟女国产| 伦理电影免费视频| 成人亚洲精品一区在线观看| 欧美日韩精品网址| 国产欧美日韩一区二区精品| 欧美日本亚洲视频在线播放| 亚洲欧洲精品一区二区精品久久久| 欧美激情极品国产一区二区三区| 国产免费男女视频| 久久性视频一级片| 乱人伦中国视频| 法律面前人人平等表现在哪些方面| 午夜福利,免费看| 亚洲中文日韩欧美视频| 欧美在线一区亚洲| 老汉色∧v一级毛片| 十分钟在线观看高清视频www| 80岁老熟妇乱子伦牲交| 在线观看免费高清a一片| а√天堂www在线а√下载| 日本黄色视频三级网站网址| 两人在一起打扑克的视频| 亚洲精品久久成人aⅴ小说| xxxhd国产人妻xxx| 久久精品国产亚洲av高清一级| 黄网站色视频无遮挡免费观看| 精品无人区乱码1区二区| avwww免费| 国产99久久九九免费精品| 18禁美女被吸乳视频| 激情视频va一区二区三区| 性少妇av在线| 精品国产美女av久久久久小说| 久久国产亚洲av麻豆专区| 亚洲aⅴ乱码一区二区在线播放 | 精品日产1卡2卡| 91精品三级在线观看| 香蕉久久夜色| 男人的好看免费观看在线视频 | 正在播放国产对白刺激| 亚洲人成77777在线视频| 一二三四在线观看免费中文在| 国产极品粉嫩免费观看在线| 欧美黑人精品巨大| 成人精品一区二区免费| 色精品久久人妻99蜜桃| 大型黄色视频在线免费观看| 免费av中文字幕在线| 亚洲精品国产精品久久久不卡| 不卡av一区二区三区| tocl精华| 国产在线观看jvid| 人妻丰满熟妇av一区二区三区| 亚洲欧美一区二区三区黑人| 免费在线观看影片大全网站| 国产亚洲欧美精品永久| 黄色视频不卡| 水蜜桃什么品种好| 久久这里只有精品19| 久热这里只有精品99| 中文字幕高清在线视频| 这个男人来自地球电影免费观看| 波多野结衣高清无吗| 久久伊人香网站| 精品久久久久久久毛片微露脸| 精品少妇一区二区三区视频日本电影| 国产麻豆69| 国产一卡二卡三卡精品| av电影中文网址| 欧美乱妇无乱码| 日本欧美视频一区| 中文字幕av电影在线播放| 国产亚洲精品久久久久5区| 国产一区二区三区视频了| 亚洲欧美精品综合久久99| 亚洲久久久国产精品| 欧美精品啪啪一区二区三区| 99精品久久久久人妻精品| 国产高清激情床上av| 色播在线永久视频| 桃红色精品国产亚洲av| 久久人人精品亚洲av| 我的亚洲天堂| 欧美日韩乱码在线| 悠悠久久av| 国产成人啪精品午夜网站| 国产三级黄色录像| 亚洲专区国产一区二区| 国产区一区二久久| 99精品欧美一区二区三区四区| 在线十欧美十亚洲十日本专区| 精品熟女少妇八av免费久了| 国产蜜桃级精品一区二区三区| 91九色精品人成在线观看| 嫁个100分男人电影在线观看| 亚洲国产精品999在线| 亚洲 欧美一区二区三区| 国产精品 国内视频| 亚洲少妇的诱惑av| 人人妻人人添人人爽欧美一区卜| 日韩av在线大香蕉| 伊人久久大香线蕉亚洲五| 久久午夜综合久久蜜桃| 免费观看人在逋| 亚洲精品国产区一区二| www.精华液| 极品教师在线免费播放| 欧美亚洲日本最大视频资源| 午夜久久久在线观看| 大陆偷拍与自拍| 999精品在线视频| √禁漫天堂资源中文www| 极品教师在线免费播放| 国产成人欧美| 国产精品永久免费网站| 91av网站免费观看| 女人被躁到高潮嗷嗷叫费观| 黄色丝袜av网址大全| 亚洲九九香蕉| 亚洲国产欧美日韩在线播放| 国产激情久久老熟女| 成在线人永久免费视频| 免费在线观看影片大全网站| 日本三级黄在线观看| 欧美激情高清一区二区三区| 12—13女人毛片做爰片一| 久久久久精品国产欧美久久久| 黄频高清免费视频| 亚洲专区中文字幕在线| 精品第一国产精品| 免费人成视频x8x8入口观看| 国产精品影院久久| 午夜免费鲁丝|