• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Reflexive Selfadjoint Solutions to Some Operator Equations

    2021-05-13 11:08:20WentingLiangandChunyuanDeng

    Wenting Liang and Chunyuan Deng

    1 Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,Shanxi,China.

    2 School of Mathematical Science,South China Normal University,Guangzhou 510631,China.

    Abstract.In this paper,we study the existence of the reflexive,reflexive selfadjoint and reflexive positive solutions to some operator equations with respect to the generalized reflection operator dual(P,Q).We derive necessary and sufficient conditions for the solvability of these equations and provide a detailed description of the solutions in the solvable case by using the Moore-Penrose inverses.

    Key words:(P,Q)reflexive solution,operator equation,positive operator.

    1 Introduction

    Let H and K be separable,infinite dimensional,complex Hilbert spaces.We denote the set of all bounded linear operators from H into K by B(H,K)and by B(H)when H=K.For A∈B(H,K),let A*,R(A)and N(A)be the adjoint,the range and the null space of A,respectively.is the closure of R(A).An operator A∈B(H)is said to be injective if N(A)={0}.A is densely defined if the domain of A is a dense subset of H and the range of A is contained within H.A is said to be positive if(Ax,x)≥0 for all x∈H.Note that the positive operator A has a unique square root A12.Let PMbe the orthogonal projection on closed subspace M?H.IMdenotes the identity onto M or I if there is no confusion.For A,B,P,Q∈B(H),denote by

    We say that P∈B(H)is a reflection operator if P*=P and P2=I.For two reflection operators P and Q,denote by

    The operator X∈BRPQ(H)(resp.Y∈BAPQ(H))is said to be(P,Q)reflexive(resp.(P,Q)anti-reflexive)operator with respect to the reflection operator pair(P,Q)[2,3].By BS(H)and B+(H)we denote the set of all selfadjoint elements and all positive elements in B(H),respectively.Denote by

    The(P,Q)reflexive and anti-reflexive operators have many applications in system and control theory,in engineering,in scientific computations and various other fields[2,3,5,15].The positive solutions to the equation AX=C were studied in[6-8,13,14,19,20]for different setting in Hilbert space or Hilbert C*-module.The equation XA*-AX*=B was studied in[1,9].

    The purpose of this paper is to provide a new approach to the study of(P,Q)reflexive solution and(P,P)reflexive self-adjoint and(P,P)reflexive positive solution respectively to the operator system AX=B.We get the necessary and sufficient conditions for the existence of a solution and obtain the general expression of the solution in the solvable case.

    The paper is organized in the following way.In Section 2,we will recall some results about operators on Hilbert space.In Section 3,we will give the necessary and sufficient conditions for the existence of a(P,Q)reflexive solution to the operator equation AX=B and provide a formula for the general solution to this operator equation.In Section 4,we consider the existence and expressions for the(P,Q)reflexive and anti-reflexive solutions to the operator equation AXB=C.In Section 5,we apply the obtained results to study the(P,Q)reflexive solution and(P,P)reflexive self-adjoint solution to the operator system AX=B and XC=D.A new result concerning the(P,Q)reflexive solution of the operator equation A*X+X*A=B is derived in this section.

    2 Some lemmas

    In this section,we begin with some lemmas which play important roles in the sequel.First,we give the properties of reflection operator.If P2=I,σ(P)k=0,1}={1,-1}by the spectral mapping theorem.Observing that ifλ∈σ(P),thenλ2=1.This shows that eachλ∈σ(P)is a simple root of the equationλ2=1.

    Lemma 2.1.Let P∈B(H).Then P is a reflection operator(P*=P and P2=I)if and only if P=IM⊕-IM⊥,where M=R(I+P).

    Let H1=R(I+Q),H2=R(I-Q),K1=R(I+P)and K2=R(I-P)be nondegenerate subspaces.Then reflection operator P as an operator on K1˙+K2and reflection operator Q as an operator on H1˙+H2have the diagonal matrix forms

    respectively.Let A,B and X∈B(H)be partitioned as

    respectively.It is clear that

    The following lemma is a standard result.

    Lemma 2.2.For A∈B(H),let A=UP0be the polar decomposition of A,where U is unitary fromtoand P0=|A|=λdEλis the spectral decomposition of P0.Let,where

    Then

    Note that A?=(A*A)?A*=A*(AA*)?,R(A)is closed if and only if R(P0)is closed and if and only if 0 is not an accumulation point ofσ(P0).We getand A?=A?if R(A)is closed,where A?∈B(H)is the Moore-Penrose inverse of A.In general,A?is a closed densely defined operator if R(A)is not closed[4,18].Throughout this work the next well-known criterion due to Douglas[10](see also Fillmore-Williams[12])about range inclusions and factorization of operators will be crucial.

    Lemma 2.3([10]).If A,B∈B(H),then the followings are equivalent:

    (i)A=BC for some operator C∈B(H);

    (ii)AA*≤kBB*for some k>0;

    (iii)R(A)?R(B).

    If one of these conditions holds,then there exists a unique solution C0∈B(H)of the equation BX=A such that R(C0)?R(B*)and N(C0)=N(A).This solution is called the Douglas reduced solution.Moreover,‖C0‖2=inf{λ>0:AA*≤λBB*}.In fact,if R(A)?R(B),the Douglas reduced solution is C0=B?A.If R(A)?R(B)and R(B)is closed,then the Douglas reduced solution is C0=B?A.

    The following lemma presents general solutions of the operator equation AX=B(see[5-7,13,15,19]).

    Lemma 2.4.Let A,B be given operators in B(H).Then the operator equation AX=B has a solution if and only if R(B)?R(A)and the general solution is X=A?B+(IA?A)Y,where Y∈B(H)is arbitrary.

    3 The(P,Q)reflexive solution

    In this section we consider the existence and expression for the reflexive,reflexive self-adjoint and reflexive positive solution of the operator equation AX=B,respectively.

    Theorem 3.1.Let A,B be given operators in B(H),P,Q be reflection operators and AP,BQbe defined in(1.1).Then the following statements hold.

    (i)AX=B has a(P,Q)reflexive solution X∈BRPQ(H)if and only if R(BQ)?R(AP).The general(P,Q)reflexive solution is

    where Y∈BRPQ(H)is arbitrary.

    (ii)AX=B has a(P,Q)anti-reflexive solution X∈BAPQ(H)if and only if R(B-Q)? R(AP).The general(P,Q)anti-reflexive solution is

    where Y∈BAPQ(H)is arbitrary.

    Proof.(i)By(1.1),(2.1)and(2.2),AX=B has a solution X∈BRPQ(H),i.e.,

    if and only if

    or else if and only if

    which is equivalent with APX=BQhas a solution X∈BRPQ(H).By Lemma 2.3,we get R(BQ)?R(AP).

    Conversely,if R(BQ)?R(AP),by Lemma 2.2,

    We get

    Since[P,A*A+PA*AP]=0,we get[P,(A*A+PA*AP)?]=0 and

    Note that,for every Y∈BRPQ(H),

    Since R(A*)?R(A*A+PA*AP),we get

    (ii)Note that AX=B has a solution X∈BAPQ(H)if and only if

    has a solution X∈BAPQ(H)or else if and only if

    has a solution X∈BAPQ(H)or else if and only if APX=B-Qhas a solution X∈BAPQ(H).The rest of the proof is similar to item(i).

    Remark 3.1.If A∈B(H)and P is a reflection operator,then

    and

    In Theorem 3.1(i),if R(A*A+PA*AP)is closed,the general reflexive solution reduces as

    for all Y∈BRPQ(H).If R(A)is closed and P=Q=I,then the general reflexive solution reduces as X=A?B+(I-A?A)Y,?Y∈B(H).

    When P=Q we can seek the reflexive selfadjoint solution of AX=B.

    Theorem 3.2.Let A,B be given operators in B(H),P be a reflection operator and AP,BPbe defined in(1.1).Then AX=B has a solution X∈(H)if and only if R(BP)?R(AP)and{AB*,APB*}?BS(H).The general(P,P)reflexive selfadjoint solution is

    where W=(A*A+PA*AP)?,V=A*B+PA*BP and U∈(H)is arbitrary.

    Proof.By the proof of Theorem 3.1,if the equation AX=B has a solution X∈=BRPP(H)∩BS(H),then R(BP)?R(AP).Moreover,

    is selfadjoint.Hence,the operators B(I±P)A*are selfadjoint,which is equivalent to AB*,APB*∈BS(H).The necessity follows.

    For sufficiency,from R(BP)?R(AP)we know there exists X∈B(H)such that APX=BPby Douglas’s theorem.If APis represented by

    where A11is an injective and densely defined operator,then BPcan be written as

    since R(BP)?R(AP).X∈B(H)as the corresponding 2×2 operator matrix can be represented by

    The relation APX=BPimplies that A11X11=B11and A11X12=B12.Since A11is injective and densely defined,we get X11=B11and X12=B12.The general selfadjoint solution of APX=BPis

    From

    we get that AX=B.Hence,(3.4)is the general selfadjoint solution of AX=B.If{AB*,APB*}?BS(H),then AP∈BS(H).Applying(3.1)and(3.2)we get

    The general selfadjoint solution(3.4)can be represented as

    Set W:=(A*A+PA*AP)?and V:=A*B+PA*BP.Then

    The general selfadjoint solution(3.5)can be represented as

    Note that{W,W?,V}?BRPP(H).If U∈(H),we get that X∈(H)is a general reflexive selfadjoint solution of AX=B.

    The general reflexive positive solution of AX=B is given as the following.

    Theorem 3.3.Let A,B be given operators in B(H)and P be a reflection operator.Then AX=B has a solution X∈(H)if and only if

    for someλ>0.A general(P,P)reflexive positive solution of AX=B is

    where W=(A*A+PA*AP)?and U∈(H)is arbitrary.

    Proof.As follows from the proof of Theorem 3.1,the equation AX=B has a solution X∈(H)=BRPP(H)∩B+(H)if and only if the equation APX=BPhas a solution X∈(H).

    Let Y be a positive solution of APX=BP.Since R(BP)=R(APY)?R(AP),by Douglas’s theorem,there existsλ>0 such that

    Note that

    Hence,B(I±P)B*≤λB(I±P)A*for someλ>0.Conversely,if the conditions(3.7)are satisfied with someλ>0,thenBy Lemma 2.3,there exists a unique

    Let APand BPbe partitioned as(3.1)and(3.2),respectively.Then X0can be partitioned as

    since R(X0)?Note that the relation N(X0)=N(BP)implies N=From

    and(3.8),we know that

    is a(P,P)reflexive positive solution to APX=BP.It implies thatis a(P,P)positive reflexive solution to AX=B and the general(P,P)positive reflexive solution to AX=B is

    The proof is complete.

    If A is selfadjoint and AX=B has a selfadjoint solution X0,then

    where the bar denotes complex conjugation.The product AX0=B is invertible if and only if the selfadjoint operators A and X0are invertible.

    4 The(P,Q)reflexive(anti-reflexive)solutions to AXB=C

    In this section we study(P,Q)reflexive and anti-reflexive solutions to the operator equation AXB=C.Note that solution X∈B(H)is(P,Q)reflexive(antireflexive)if and only if X*∈B(H)is(Q,P)reflexive(anti-reflexive).

    Theorem 4.1.Let A,B and C be given operators in B(H),P,Q be reflection operators.Then the following statements hold.

    (i)The operator equation AXB=C has a(P,Q)reflexive solution if and only if R(C)?R(A)and there exists Y0∈B(H)such that

    where[A?C+(I-A?A)Y0]Pand BQare defined by(1.1).

    (ii)The operator equation AXB=C has a(P,Q)anti-reflexive solution if and only if R(C)?R(A)and there exists S0∈B(H)such that

    where[A?C+(I-A?A)S0]-Pand BQare defined by(1.1).

    Proof.(i)Necessity.If the operator equation AXB=C has(P,Q)solutions,the Douglas’s Theorem[10]or Lemma 2.3 yields R(C)?R(A).Let X0∈BRPQ(H)be such that AX0B=C.It follows from Lemma 2.4 that there exists Y0∈B(H)such that the operator equation XB=A?C+(I-A?A)Y0has a(P,Q)reflexive solution X0.Therefore,the operator equation B*X*=[A?C+(I-A?A)Y0]*has a(Q,P)reflexive solutionBy Theorem 3.1(i),we obtain that R([A?C+(I-

    For sufficiency,if there exists Y0∈B(H)such that R([A?C+(I-A?A)Y0])?R(),by Theorem 3.1(i)again,then the operator equation B*Y=[A?C+(IA?A)Y0]*has a(Q,P)reflexive solution(i.e.,X0is a(P,Q)reflexive solution).That is,

    Note that R(C)?R(A),it follows that there exists a(P,Q)reflexive solution X0such that AX0B=C.

    (ii)Note that,by Theorem 3.1(ii),the operator equation B*Y=[A?C+(IA?A)Y0]*has a(Q,P)anti-reflexive solution(i.e.,X0is a(P,Q)anti-reflexive solution)if and only if R([A?C+(I-A?A).The rest of the proof is similar to(i).

    Next,we give the expression of(P,Q)reflexive and anti-reflexive solution to operator equation AXB=C.By Theorem 4.1,if there exists Y0∈B(H)such that R([A?C+(I-A?A),then the operator equation

    has a(Q,P)reflexive solution,that is,a(P,Q)reflexive solution X0.Denote by W0=A?C+(I-A?A)Y0.By Theorem 3.1,we obtain that the(Q,P)reflexive solution to B*Y=is

    where Y∈BRPQ(H)is arbitrary.So,we get

    where Y∈BRPQ(H)is arbitrary,is a(P,Q)reflexive solution to the operator equation

    Moreover,note that R(C)?R(A),it is easy to see that AX0B=AW0=C.As a result,the(P,Q)reflexive solution to AXB=C is

    where Y∈BRPQ(H)are arbitrary.

    Therefore,we have the following result.

    Theorem 4.2.Let A,B and C be given operators in B(H),P,Q be reflection operators.Then the following statements hold.

    (i)If there exists Y0∈B(H)such that

    then the operator equation AXB=C has(P,Q)reflexive solution

    where Y∈BRPQ(H)are arbitrary.

    then the operator equation AXB=C has(P,Q)anti-reflexive solution

    where Y′∈BAPQ(H)are arbitrary.

    5 Apply to the operator system

    In this section,we investigate the common reflexive solution of the equations AX=B and X*C=D.For matrices,the necessary and sufficient conditions for the existence of the common hermitian solution of linear matrix equations were studied in[14,Theorem 2.3]and[16,Theorem 4].Let

    The following theorem gives general conditions for the existence of reflexive solutions.

    Theorem 5.1.Let A,B,C and D be given operators in B(H),and P,Q be reflection operators.

    (i)The equations AX=B and X*C=D have a common solution X∈BRPQ(H)if and only if

    The common(P,Q)reflexive solution is

    where Y∈BRPQ(H)is arbitrary.

    (ii)The equations AX=B and XC=D have a common solution X∈(H)if and only if the following conditions hold:

    (a)AD=BC and APD=BPC;

    (b){AB*,APB*,C*D,C*PD}?BS(H);

    (c)R

    The common(P,P)selfadjoint reflexive solution is

    Proof.(i)By the proof of Theorem 3.1,the equations AX=B and X*C=D have a common solution X∈BRPQ(H)if and only if

    has a solution X∈BRPQ(H)or else if and only if

    By Theorem 3.1,for all Y∈BRPQ(H),the general common solution is

    (ii)By Theorem 3.2,the system AX=B and XC=D has a solution X∈(H)if and only if

    and

    is selfadjoint,which is equivalent to AD=BC,APD=BPC and{AB*,APB*,C*D,C*PD}?BS(H).By Theorem 3.2,the general selfadjoint solution is

    The proof is complete.

    The next theorem represents general conditions for the existence of a reflexive solution of the operator equation A*X+X*A=B.

    Theorem 5.2.Let A,B∈B(H).If A,B have the matrix representations(2.2),then A*X+X*A=B has a solution X∈BRPQ(H)if and only if the following system of matrix equations

    is consistent.In this case,the(P,Q)reflexive solution is represented by

    where

    for all Mii,Niisuch that

    Proof.First,by(2.3),there exist X11and X22such that X=X11⊕X22if X∈BRPQ(H).Note that B=B*if A*X+X*A=B.By(2.2),A*X+X*A=B has a solution X∈BRPQ(H)if and only if there exist X11and X22such that

    i.e.,the system of(5.2)has a solution.In order to describe the set of reflexive solutions completely,we divide the proof into several steps.

    Claim 1.For every A0∈B(H),the equation=0 has the general solutionM0for all M0,N0such thatA0=0.

    Proof.As we know,A0as an operator frominto H=has the diagonal matrix formwhere∈is densely defined and injective.Let X0=have the corresponding form with A0.From

    we get

    Claim 2.For every A0,B0∈B(H),if there exists X0∈B(H)such that=B0,then B0is selfadjoint and

    Proof.It is clear that B0is selfadjoint.Since=0 and(I-=0,we get=0.The result follows immediately.

    Claim 3.For every A0,B0∈B(H),the equation=B0has one special solution

    Proof.By Claim 2,

    Hence,by Claims 1-3,the general solution of=Bii,i=1,2 is

    for all Mii,Niisuch that=0.We get the general(P,Q)reflexive solution

    where Miiis arbitrary and Niisatisfies=0.

    6 Concluding remarks

    Using Moore-Penrose inverses,we give the necessary and sufficient conditions for the solvability of some operator equations and provide a detailed description of the solutions if the corresponding equations are consistent.

    In details,we investigate the existence and expressions for the(P,Q)reflexive,the(P,P)reflexive selfadjoint and the(P,P)reflexive positive solutions respectively to the operator system AX=B,the(P,Q)reflexive and anti-reflexive solutions to the operator equation AXB=C.Also,by applying the obtained results,we study the(P,Q)reflexive solution and the(P,P)reflexive self-adjoint solution to the operator system AX=B and XC=D.A new result concerning the(P,Q)reflexive solution of the operator equation A*X+X*A=B is derived.

    久久这里只有精品19| 人妻 亚洲 视频| 在线观看免费视频网站a站| 少妇被粗大的猛进出69影院 | tube8黄色片| 秋霞伦理黄片| 捣出白浆h1v1| 寂寞人妻少妇视频99o| 久久久久久久久久久久大奶| 少妇人妻 视频| 777米奇影视久久| 成人影院久久| 亚洲婷婷狠狠爱综合网| 亚洲精品第二区| 狠狠精品人妻久久久久久综合| 国产高清三级在线| 亚洲国产日韩一区二区| 22中文网久久字幕| 色婷婷av一区二区三区视频| 成人国语在线视频| 最近最新中文字幕免费大全7| 18禁裸乳无遮挡动漫免费视频| 国产精品人妻久久久影院| 一区在线观看完整版| 只有这里有精品99| 一级,二级,三级黄色视频| 五月伊人婷婷丁香| 五月玫瑰六月丁香| 中文字幕人妻熟女乱码| 日韩av免费高清视频| 9色porny在线观看| 99久国产av精品国产电影| 性色av一级| 老熟女久久久| 欧美人与善性xxx| 香蕉丝袜av| 日本与韩国留学比较| av片东京热男人的天堂| 2018国产大陆天天弄谢| 国产1区2区3区精品| videossex国产| 日日爽夜夜爽网站| 久久久久精品人妻al黑| 国产精品久久久久久av不卡| 亚洲国产精品一区三区| 亚洲一级一片aⅴ在线观看| 精品福利永久在线观看| 亚洲av电影在线进入| 亚洲性久久影院| 最近的中文字幕免费完整| 伦理电影免费视频| 看非洲黑人一级黄片| 一级片免费观看大全| 欧美激情国产日韩精品一区| 亚洲三级黄色毛片| 久久人人爽人人片av| 久久精品国产综合久久久 | 一本久久精品| 下体分泌物呈黄色| 一级黄片播放器| 纯流量卡能插随身wifi吗| 久久久国产欧美日韩av| 欧美激情极品国产一区二区三区 | 国产男人的电影天堂91| 亚洲国产最新在线播放| 女性被躁到高潮视频| 中文乱码字字幕精品一区二区三区| 女的被弄到高潮叫床怎么办| 涩涩av久久男人的天堂| 久久婷婷青草| 美女脱内裤让男人舔精品视频| 免费高清在线观看视频在线观看| 色哟哟·www| 久久午夜福利片| 麻豆精品久久久久久蜜桃| 亚洲国产毛片av蜜桃av| 亚洲成av片中文字幕在线观看 | av在线app专区| 亚洲国产精品999| 亚洲第一区二区三区不卡| 日本av免费视频播放| 午夜激情久久久久久久| 中文字幕精品免费在线观看视频 | 亚洲av日韩在线播放| 观看av在线不卡| 有码 亚洲区| 男男h啪啪无遮挡| 建设人人有责人人尽责人人享有的| 黄网站色视频无遮挡免费观看| 国产日韩欧美亚洲二区| 黄色一级大片看看| 交换朋友夫妻互换小说| 精品久久久久久电影网| 日本爱情动作片www.在线观看| 欧美精品亚洲一区二区| 亚洲美女搞黄在线观看| www.av在线官网国产| 男女下面插进去视频免费观看 | 在线免费观看不下载黄p国产| 免费黄网站久久成人精品| 亚洲国产精品999| 精品熟女少妇av免费看| 久久这里只有精品19| 少妇的逼好多水| 天堂8中文在线网| 下体分泌物呈黄色| 亚洲精品中文字幕在线视频| 久久狼人影院| 欧美xxⅹ黑人| 日韩伦理黄色片| 欧美精品国产亚洲| 中文字幕精品免费在线观看视频 | 视频在线观看一区二区三区| 桃花免费在线播放| 午夜福利视频精品| 热re99久久精品国产66热6| 男女午夜视频在线观看 | 18禁裸乳无遮挡动漫免费视频| 中文字幕精品免费在线观看视频 | 人人妻人人添人人爽欧美一区卜| 伊人久久国产一区二区| 久久免费观看电影| 久久热在线av| 免费黄网站久久成人精品| 黑丝袜美女国产一区| 国产一区二区在线观看av| 日韩欧美精品免费久久| 熟妇人妻不卡中文字幕| 国产精品.久久久| 亚洲一区二区三区欧美精品| 一级毛片电影观看| 国产免费一区二区三区四区乱码| 丝瓜视频免费看黄片| 亚洲丝袜综合中文字幕| 在线看a的网站| 久久99蜜桃精品久久| 国产国拍精品亚洲av在线观看| 精品少妇内射三级| 成年av动漫网址| 深夜精品福利| 中文天堂在线官网| 亚洲内射少妇av| 一本久久精品| 日本欧美视频一区| 在线天堂最新版资源| 欧美bdsm另类| 免费观看性生交大片5| 国产精品国产三级国产专区5o| 91成人精品电影| 看免费成人av毛片| 亚洲av成人精品一二三区| 成人18禁高潮啪啪吃奶动态图| 在线 av 中文字幕| 秋霞伦理黄片| 制服丝袜香蕉在线| 一级毛片 在线播放| 久久ye,这里只有精品| 女性被躁到高潮视频| 男女午夜视频在线观看 | 免费播放大片免费观看视频在线观看| 观看美女的网站| 少妇人妻精品综合一区二区| kizo精华| 蜜臀久久99精品久久宅男| 免费av中文字幕在线| 国产亚洲精品久久久com| 乱人伦中国视频| 成年人免费黄色播放视频| freevideosex欧美| 99热网站在线观看| 2021少妇久久久久久久久久久| 亚洲国产成人一精品久久久| 久久久久久久久久成人| 亚洲精品久久久久久婷婷小说| 少妇的逼好多水| 中文字幕精品免费在线观看视频 | 五月伊人婷婷丁香| 欧美另类一区| 在线观看www视频免费| 男女午夜视频在线观看 | 我的女老师完整版在线观看| 一本久久精品| 久久国产精品男人的天堂亚洲 | 啦啦啦视频在线资源免费观看| 青春草国产在线视频| 成年女人在线观看亚洲视频| 久久亚洲国产成人精品v| 男女无遮挡免费网站观看| 啦啦啦在线观看免费高清www| 精品一区二区三区四区五区乱码 | 免费高清在线观看日韩| 欧美日韩综合久久久久久| 赤兔流量卡办理| 精品一区二区三卡| 国产精品麻豆人妻色哟哟久久| 成年动漫av网址| 久热这里只有精品99| 欧美精品高潮呻吟av久久| 日韩一区二区视频免费看| 精品人妻熟女毛片av久久网站| 久久鲁丝午夜福利片| 成人亚洲精品一区在线观看| 日韩一本色道免费dvd| 亚洲精品乱码久久久久久按摩| 一级毛片 在线播放| 一级毛片我不卡| 日韩制服丝袜自拍偷拍| 大陆偷拍与自拍| 国产成人免费观看mmmm| 日本欧美国产在线视频| 国产精品熟女久久久久浪| 高清在线视频一区二区三区| 这个男人来自地球电影免费观看 | 精品午夜福利在线看| 三级国产精品片| 看十八女毛片水多多多| 欧美精品av麻豆av| 97在线人人人人妻| 黄片无遮挡物在线观看| 下体分泌物呈黄色| 国产高清不卡午夜福利| 精品第一国产精品| 国产在线一区二区三区精| 伊人亚洲综合成人网| 最近中文字幕高清免费大全6| 精品亚洲成国产av| 在线观看免费日韩欧美大片| 下体分泌物呈黄色| 久久久久久久久久人人人人人人| 制服人妻中文乱码| 又黄又爽又刺激的免费视频.| 午夜日本视频在线| 亚洲国产最新在线播放| 国产伦理片在线播放av一区| 又粗又硬又长又爽又黄的视频| 如何舔出高潮| 母亲3免费完整高清在线观看 | 99九九在线精品视频| 欧美变态另类bdsm刘玥| 十分钟在线观看高清视频www| 国产黄色视频一区二区在线观看| 免费高清在线观看日韩| 天美传媒精品一区二区| 日韩欧美一区视频在线观看| 精品久久久久久电影网| 亚洲精品中文字幕在线视频| 亚洲av国产av综合av卡| 欧美国产精品va在线观看不卡| 尾随美女入室| 一级片'在线观看视频| 成人二区视频| 一级片免费观看大全| 少妇猛男粗大的猛烈进出视频| 日韩视频在线欧美| 亚洲美女视频黄频| 亚洲成人一二三区av| 成年美女黄网站色视频大全免费| 国产av国产精品国产| 亚洲精品国产av蜜桃| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 涩涩av久久男人的天堂| 国产极品粉嫩免费观看在线| 高清欧美精品videossex| 久久精品国产亚洲av天美| 欧美精品一区二区大全| 97在线视频观看| 国产乱来视频区| 国产高清不卡午夜福利| 91在线精品国自产拍蜜月| 国产xxxxx性猛交| 五月伊人婷婷丁香| 一边摸一边做爽爽视频免费| 久久99一区二区三区| 亚洲精品av麻豆狂野| 在线观看免费视频网站a站| 日韩制服骚丝袜av| 中文字幕免费在线视频6| 一级,二级,三级黄色视频| 美国免费a级毛片| 深夜精品福利| 欧美少妇被猛烈插入视频| 伊人久久国产一区二区| 五月伊人婷婷丁香| 韩国高清视频一区二区三区| 久久免费观看电影| 色婷婷久久久亚洲欧美| 人体艺术视频欧美日本| 18禁在线无遮挡免费观看视频| 亚洲精品一二三| 在线观看三级黄色| 久久精品国产鲁丝片午夜精品| 汤姆久久久久久久影院中文字幕| 欧美日韩av久久| 成人免费观看视频高清| 日日爽夜夜爽网站| 久久久久久久久久成人| 亚洲国产精品一区三区| 久久精品aⅴ一区二区三区四区 | 免费观看a级毛片全部| 国产成人a∨麻豆精品| 天天躁夜夜躁狠狠躁躁| 十八禁网站网址无遮挡| 国产精品 国内视频| 国产男女内射视频| 亚洲伊人久久精品综合| 伦理电影免费视频| 中文字幕亚洲精品专区| 熟女电影av网| 中文字幕最新亚洲高清| 成年av动漫网址| 男女免费视频国产| 美女xxoo啪啪120秒动态图| 自线自在国产av| 熟女电影av网| 男女国产视频网站| 欧美成人精品欧美一级黄| 国产高清不卡午夜福利| 免费av中文字幕在线| 欧美 日韩 精品 国产| av.在线天堂| 国产精品一区二区在线不卡| 亚洲国产精品成人久久小说| 日韩电影二区| 交换朋友夫妻互换小说| 伦理电影免费视频| 在线免费观看不下载黄p国产| 男女无遮挡免费网站观看| 人妻一区二区av| 免费高清在线观看视频在线观看| 大片电影免费在线观看免费| 麻豆乱淫一区二区| 久久女婷五月综合色啪小说| 美女国产视频在线观看| 日日爽夜夜爽网站| 亚洲成人一二三区av| 国产在线免费精品| 国产欧美另类精品又又久久亚洲欧美| 国产老妇伦熟女老妇高清| 久热这里只有精品99| 波野结衣二区三区在线| 国产免费福利视频在线观看| av播播在线观看一区| 久久久精品94久久精品| 午夜91福利影院| 好男人视频免费观看在线| 2021少妇久久久久久久久久久| 韩国精品一区二区三区 | 综合色丁香网| 国产一级毛片在线| 成年人免费黄色播放视频| 日韩中字成人| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区国产| av黄色大香蕉| 日韩,欧美,国产一区二区三区| 日本av免费视频播放| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻丝袜制服| 国产精品欧美亚洲77777| 天天躁夜夜躁狠狠躁躁| 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 久久久亚洲精品成人影院| 热99国产精品久久久久久7| 亚洲人成77777在线视频| av卡一久久| 精品人妻熟女毛片av久久网站| 久久影院123| h视频一区二区三区| 亚洲精品乱久久久久久| 午夜福利视频在线观看免费| 久久久久久伊人网av| 高清毛片免费看| 99热国产这里只有精品6| 国产一级毛片在线| 婷婷色综合大香蕉| 久热久热在线精品观看| 五月伊人婷婷丁香| 午夜精品国产一区二区电影| 最新中文字幕久久久久| 飞空精品影院首页| 国产精品一国产av| 飞空精品影院首页| 26uuu在线亚洲综合色| 女的被弄到高潮叫床怎么办| 99热国产这里只有精品6| 如何舔出高潮| 国产极品粉嫩免费观看在线| 久久久久久久国产电影| 一区二区av电影网| 新久久久久国产一级毛片| 国产成人免费观看mmmm| tube8黄色片| 亚洲综合色惰| 十八禁高潮呻吟视频| 国产一区二区在线观看av| 自线自在国产av| 久久久久精品久久久久真实原创| 熟妇人妻不卡中文字幕| 99香蕉大伊视频| 国产精品久久久久久精品古装| 国产精品成人在线| 一边摸一边做爽爽视频免费| 2022亚洲国产成人精品| 国产乱来视频区| 亚洲av国产av综合av卡| 一级黄片播放器| 18在线观看网站| 亚洲欧美日韩另类电影网站| 1024视频免费在线观看| 国产亚洲一区二区精品| 哪个播放器可以免费观看大片| 欧美成人精品欧美一级黄| 美女主播在线视频| 欧美成人精品欧美一级黄| 中文字幕人妻熟女乱码| 国产深夜福利视频在线观看| 女人精品久久久久毛片| 丁香六月天网| 国产成人精品婷婷| 80岁老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 人妻一区二区av| 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 国产1区2区3区精品| 久久久国产精品麻豆| 男男h啪啪无遮挡| 国产精品一区二区在线观看99| 午夜福利视频精品| 亚洲人成77777在线视频| 春色校园在线视频观看| 永久免费av网站大全| 熟女人妻精品中文字幕| 久久99精品国语久久久| 飞空精品影院首页| 国产国语露脸激情在线看| 久久精品国产a三级三级三级| 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡 | 男女无遮挡免费网站观看| 有码 亚洲区| 国产精品不卡视频一区二区| 日本爱情动作片www.在线观看| www.av在线官网国产| 精品少妇内射三级| 熟女电影av网| 久久久久网色| 国产黄色免费在线视频| 国产一级毛片在线| 国产麻豆69| 午夜影院在线不卡| 欧美国产精品一级二级三级| a级片在线免费高清观看视频| 国产视频首页在线观看| 久久久久精品人妻al黑| 18禁在线无遮挡免费观看视频| 国产av码专区亚洲av| 在现免费观看毛片| 超色免费av| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 亚洲丝袜综合中文字幕| 天堂8中文在线网| 久久久久国产网址| 日韩免费高清中文字幕av| 日本黄大片高清| 99热6这里只有精品| 日本午夜av视频| 乱人伦中国视频| 国产男人的电影天堂91| 尾随美女入室| 99久久综合免费| 成年美女黄网站色视频大全免费| 亚洲五月色婷婷综合| 一区在线观看完整版| 伊人久久国产一区二区| 一级a做视频免费观看| 国产成人午夜福利电影在线观看| 国产麻豆69| 国产色婷婷99| 久久综合国产亚洲精品| 成人亚洲精品一区在线观看| 亚洲精品日本国产第一区| 18在线观看网站| 午夜精品国产一区二区电影| 日韩制服骚丝袜av| 老熟女久久久| 亚洲欧美成人综合另类久久久| 成人二区视频| 亚洲av欧美aⅴ国产| 2021少妇久久久久久久久久久| 大香蕉久久网| 亚洲国产精品一区三区| 久久国产精品男人的天堂亚洲 | 三上悠亚av全集在线观看| 男人操女人黄网站| 性色av一级| 免费高清在线观看视频在线观看| 国产成人aa在线观看| 天天操日日干夜夜撸| 中文乱码字字幕精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| videossex国产| videosex国产| 少妇猛男粗大的猛烈进出视频| 久久久久精品人妻al黑| 欧美日韩视频高清一区二区三区二| 国产精品不卡视频一区二区| 国产亚洲最大av| 国产午夜精品一二区理论片| 有码 亚洲区| 亚洲精品久久成人aⅴ小说| 国产日韩一区二区三区精品不卡| 90打野战视频偷拍视频| 9热在线视频观看99| 亚洲美女黄色视频免费看| 亚洲伊人色综图| 午夜久久久在线观看| 成年人免费黄色播放视频| 欧美 亚洲 国产 日韩一| 亚洲精品日韩在线中文字幕| 狠狠精品人妻久久久久久综合| 亚洲av福利一区| 亚洲久久久国产精品| 亚洲精品国产av成人精品| 91午夜精品亚洲一区二区三区| 三上悠亚av全集在线观看| 午夜激情久久久久久久| 亚洲国产日韩一区二区| 在线 av 中文字幕| 国产熟女午夜一区二区三区| 久久国产精品男人的天堂亚洲 | 人人妻人人澡人人爽人人夜夜| 男人爽女人下面视频在线观看| 日本av免费视频播放| 男女午夜视频在线观看 | 看十八女毛片水多多多| 丝袜脚勾引网站| 免费观看a级毛片全部| 国产又爽黄色视频| 狂野欧美激情性xxxx在线观看| 久久久久精品人妻al黑| 亚洲精品日本国产第一区| 久久免费观看电影| 亚洲国产欧美日韩在线播放| 我的女老师完整版在线观看| 久久狼人影院| xxxhd国产人妻xxx| 你懂的网址亚洲精品在线观看| 在线免费观看不下载黄p国产| 最新的欧美精品一区二区| 三上悠亚av全集在线观看| 日韩av免费高清视频| 国产一区二区激情短视频 | 午夜福利网站1000一区二区三区| 美女视频免费永久观看网站| 亚洲成国产人片在线观看| av在线老鸭窝| 在线观看美女被高潮喷水网站| 日本-黄色视频高清免费观看| 美女福利国产在线| 国产免费福利视频在线观看| 欧美成人精品欧美一级黄| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 男男h啪啪无遮挡| 午夜日本视频在线| 黄网站色视频无遮挡免费观看| 成人国语在线视频| 不卡视频在线观看欧美| 曰老女人黄片| 午夜日本视频在线| 老女人水多毛片| 亚洲欧洲精品一区二区精品久久久 | 中国美白少妇内射xxxbb| 免费av中文字幕在线| kizo精华| 国产精品久久久久成人av| 69精品国产乱码久久久| 老熟女久久久| 一级毛片电影观看| 99视频精品全部免费 在线| 妹子高潮喷水视频| 最黄视频免费看| 欧美变态另类bdsm刘玥| 18禁在线无遮挡免费观看视频| 超色免费av| 久久久久久久国产电影| 国产亚洲最大av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品日本国产第一区| freevideosex欧美| 久久久久久久亚洲中文字幕| 亚洲,一卡二卡三卡| videosex国产| 国产精品一二三区在线看| 精品午夜福利在线看| 女性生殖器流出的白浆| 亚洲综合精品二区| 观看av在线不卡| 少妇的逼水好多| 春色校园在线视频观看| 人成视频在线观看免费观看| 免费黄网站久久成人精品| 在线观看国产h片| 免费女性裸体啪啪无遮挡网站| 亚洲精品成人av观看孕妇| 成人国语在线视频| www.av在线官网国产| av电影中文网址| 久久99蜜桃精品久久| 成年女人在线观看亚洲视频|