• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the J.L.Lions Lemma and Its Applications to the Maxwell-Stokes Type Problem and the Korn Inequality

    2021-05-13 11:07:42JunichiAramaki

    Junichi Aramaki

    Division of Science,Tokyo Denki University,Hatoyama-machi,Saitama,350-0394,Japan.

    Abstract.In this paper,we consider the equivalent conditions with Lp-version(1<p<∞)of the J.L.Lions lemma.As applications,we first derive the existence of a weak solution to the Maxwell-Stokes type problem and then we consider the Korn inequality.Furthermore,we consider the relation to other fundamental results.

    Key words:J.L.Lions lemma,de Rham theorem,Maxwell-Stokes type problem,multiply-connected domain.

    1 Introduction

    Assume thatΩis a domain of Rd.In this paper,this means thatΩis a bounded and connected open subset of Rdwhose boundaryΓ=?Ωis Lipschitz-continuous andΩis locally on the same side ofΓ.The classical J.L.Lions lemma asserts that any distribution in the space of H-1(Ω)with the gradient(in the distribution sense)belonging to H-1(Ω)is a function in L2(Ω).

    Amrouche et al.[1]derived the equivalent conditions with the J.L.Lions lemma.The conditions are the classical and the general J.L.Lions lemma,the Ne?as inequality,the coarse version of the de Rham theorem,the surjectivity of the operator div:and an approximation lemma.Some of these equivalent properties can be given as a”direct”proof.

    However,these equivalent conditions of L2-version of the J.L.Lions lemma are insufficient for considering the Maxwell-Stokes type system containing p-curlcurl operator.Thus it is important for us to improve the result to the Lp-version of the equivalent relations with the J.L.Lions lemma.

    One of our purpose of this paper is to show the existence of a weak solution to the Maxwell-Stokes type equation.The existence depends deeply on the nonlinearity of the equation and the shape of the domain.We allow the domainΩ to be a multiply-connected domain with holes.To show the existence,we apply the equivalent conditions with the J.L.Lions lemma,in particular,the coarse version of the de Rham theorem.For example,Lp-version of the Ne?as inequality can be found in Ne?as[19,Theorem 1],Geymonat and Suquet[14,Lemma 1]and Amrouche and Girault[2].For the Maxwell type system containing p-curlcurl operator,see Miranda et al.[17,18]and Aramaki[6],and for the Maxwell-Stokes type system,see Pan[20]and Aramaki[9]and references therein.

    The paper is organized as follows.In Section 2,we give some preliminaries.In Section 3,we derive Lp-version of the J.L.Lions lemma and its equivalent relations.In Section 4,we give an application on the existence of a weak solution to the Maxwell-Stokes type problem.Section 5 is devoted to consider the Korn inequality.In the Appendix A,we give a relation between the J.L.Lions lemma and the de Rham theorem,and in the Appendix B,we give a relation between the J.L.Lions lemma and a weak version of Poincar′e lemma.

    2 Preliminaries

    In this section,we shall state some preliminaries that are necessary in this paper.LetΩbe a domain in Rd(d≥2)(which means a bounded,connected open subset of Rdwith a Lipschitz-continuous boundaryΓ),let 1<p<∞and let p′be the conjugate exponent i.e.,(1/p)+(1/p′)=1.From now on we use D(Ω),Lp(Ω),Wm,p(Ω),,W-m,p(Ω)=(the dual space of,m≥0,integer),Ws,p(Γ)(s∈R),and so on,for the standard real C∞functions with compact supports inΩ,Lpand Sobolev spaces of real valued functions.For any above space B,we denote Bdby boldface character B.Hereafter,we use this character to denote vector and vector-valued functions.Occasionally,we also use the same character for matrix values functions,and we denote the standard inner product of vectors a and b in Rdby a·b.We denote the space of distributions in Ωby D′(Ω).Moreover,for the dual space B′of B(resp.B′ofB),we denote the duality bracket between B′and B(resp.B′andB)by〈·,·〉B′,B(resp.〈·,·〉B′,B).

    The gradient operatorgrad=?:D′(Ω)→D′(Ω)is defined by

    SinceΩis connected,we can see that if f∈D′(Ω)satisfies ?f=0 in D′(Ω),then f is identified with a constant function(cf.Boyer and Fabrie[10,Chapter II,Lemma II.2.44]).For f∈Lp(Ω),we can regard?f as an element ofW-1,p(Ω)by the definition

    The operator curl:D′(Ω)→D′(Ω;Rd(d-1)/2)is defined by

    The classical Poincar′e lemma says that whenΩis simply connected domain of Rd,forh∈C1(Ω),there existsπ∈C2(Ω)such thath=?πinΩif and only ifcurlh=0 inΩ.

    We introduce a closed subspace of a reflexive Banach spacewhich is a basic space in our arguments by

    Moreover,we define a closed subspace of Lp′(Ω)by

    endowed with the norm of Lp′(Ω).We note that the dual space(Lp(Ω)/R)′of Lp(Ω)/R is identified with.Now we state three theorems on the properties of the domainΩwithout their proofs.

    Theorem 2.1.LetΩbe a domain of Rd.Then there exist a finite number of domains Ωi?Ω(i∈I)such that eachΩiis starlike with respect to an open ball andΩ=∪i∈IΩi,whereΩiis starlike with respect to an open ball B(x,r)={y∈Rd;|y-x|<r}means that if for each z∈Ωi,the convex hull of{z}∪B(x,r)is contained inΩi.

    For the proof,see Maz’ya[16,Section 1.1.9,Lemma 2].

    Theorem 2.2.LetΩbe a domain of Rd.Then there exist domainsΩj(j=1,2,...)of Rdsuch that the boundary?Ωjis of class

    For the proof,see[10].

    Theorem 2.3.LetΩbe a domain of Rd.Then there exist a finite number of simply connected domainsΩi(i∈I)of Rdsuch thatΩ=∪i∈IΩi.

    For the proof,see[1].

    3 Lp-version of the J.L.Lions lemma and its equivalent relations

    In this section,we assume thatΩis a bounded domain of Rdwith a Lipschitzcontinuous boundary.

    We derive the following theorem.

    Theorem 3.1.LetΩbe a domain and 1<p<∞.Then the following(a),(b),...,(g)are equivalent.

    (a)Classical J.L.Lions lemma:If f∈W-1,p(Ω)satisfies

    then f∈Lp(Ω).

    (b)The Ne?cas inequality:There exists a constant C=C0(p,Ω)such that

    (c)The operator grad has a closed range:grad(Lp(Ω)/R)is a closed subspace ofW-1,p(Ω).

    (d)Coarse version of the de Rham theorem:For anyh∈W-1,p(Ω),there exists a unique[π]∈Lp(Ω)/R,where[π]denotes the class in the quotient space Lp(Ω)/R with the representativeπ,such thath=?πinW-1,p(Ω)if and only if

    (e)The operator div is surjective:The operator

    is continuous and surjective.Consequently,for any,there exists a unique/Kerdiv,whereKerdiv=(Ω,div0)and[uf]denotes the class in the quotient space/Kerdiv with the representativeufsuch that div[uf]=f inΩ.Therefore,the operator

    is continuous and bijective.Hence,by the Banach open mapping theorem,there exists a constant c1(p,Ω)>0 such that

    (f)Approximation lemma:LetΩis starlike with respect to an open ball and define

    where c2(p′,Ω)>0 is a constant,and

    (g)The J.L.Lions lemma:If f∈D′(Ω)satisfies?f∈W-1,p(Ω),then f∈Lp(Ω).

    Remark 3.1.The authors of[1]derived this theorem in L2-framework,for example,in(a),in the sense that f∈H-1(Ω)and ? f∈H-1(Ω)implies f∈L2(Ω).Therefore,our Theorem 3.1 is an improvement of[1].This improvement is necessary to consider in applications to the Maxwell-Stokes problem containing pcurlcurl equation in Section 4 and the Korn inequality in Section 5.

    Proof of Theorem 3.1

    (a)implies(b).Define a Banach space equipped with the norm

    The canonical injection i:Lp(Ω)→V(Ω)is linear,continuous and bijective according to(a).Hence,it follows from Banach open mapping theorem that i-1is also continuous,that is,there exists a constant c0(p,Ω)>0 such that

    (b)implies(c).It suffices to show that there exists a constant C(p,Ω)>0 such that

    If the inequality(3.1)is false,then there exists a sequence{[fk]}?Lp(Ω)/R such that

    is compact and i0is the dual operator of the compact injection,we can see that fkl→f strongly in W-1,p(Ω).On the other hand,since?fkl→0 inW-1,p(Ω),it follows from the hypothesis(b)that we can see that{fkl}is a Cauchy sequence in Lp(Ω).Hence fkl→f strongly in Lp(Ω)as l→∞.Since?:Lp(Ω)→W-1,p(Ω)is continuous,we have?fkl→?f=0 inW-1,p(Ω).This implies that f=const.so[f]=0.Thus

    This is a contradiction.

    (c)is equivalent to(d).We note that the operatorgrad=?:Lp(Ω)/R→W-1.p(Ω)is the dual operator of-div:and satisfies

    for all[f]∈Lp(Ω)/R andφ∈(Ω).Therefore,if we apply the Banach closed range theorem,Im?is a closed subspace ofW-1,p(Ω)if and only if

    This means that(c)and(d)are equivalent.

    (d)implies(e).Assume that(d)and(c)hold.Sincegrad(Lp(Ω)/R)is a closed subspace ofW-1,p(Ω)from(c),it follows from the Banach closed range theorem that we have Imdiv=(Ker?)⊥.Since Ker?=R,we have Imdiv=,so we can see that

    is a continuous and bijective linear operator.Therefore,from the Banach open mapping theorem,the inverse operator is continuous.Hence,for any f∈Lp′0(Ω),there exists a unique/Kerdiv such that divuf=f in,and there exists a constant C(p,Ω)such that

    (e)implies(f).Assume thatΩis starlike with respect to an open ball of radius r>0 and the center x of which will be assumed without loss of generality to be at the origin.Define

    We show that for anyφ∈˙D(Ω),there existvn=vn(φ)∈D(Ω)and a constant c2(p′,Ω)>0 independent ofφsuch that

    and divvn→φin D(Ω)as n→∞.

    In fact,from(e),for anyφ∈˙D(Ω),there exists[v]∈(Ω)/Kerdiv such that

    and div[v]=φinΩ.By elementary calculation,we can see that

    is achieved.Therefore,there existsu∈(Ω)such that

    and divu=φinΩ.Letw=w(φ)be the extension ofuby 0 in RdΩ.Thenw∈W1,p′(Rd),

    and divw=φinΩand divw=0 in RdΩ.Let n0≥1 be the smallest integer such that n0>2/r,and putλn=1-2/nr for all n≥n0andΩn={λnx;x∈Ω}(?Ω).We note that 0<λn<1.SinceΩis starlike with respect to B(0,r),the Thales theorem implies that for all n≥n0,dist(x,Γ)>2/n for all n≥n0and for all x∈Ωn.If we defineun(x)=λnw(x/λn)∈W1,p′(Rd),we see thatun=0 in RdΩn,divun=φ(·/λn)in Rd,whereφ(·/λn)designates the function defined byφ(x/λn)if x∈Ωnand by 0 if x∈RdΩn.Choose a mollifierρ∈C∞(Rd)such thatρ≥0,ρ(x)=0 for|x|≥1 andRdρ(x)dx=1,and defineρn(x)=ndρ(nx).Since for n≥n0,dist(x,Γ)>2/n for x∈Ωnand suppρn?,we can see thatwn=un*ρn∈C∞(Rd),that is,for x∈Rdand suppwn?For n≥n0,if we definevn=thenvn∈D(Ω)and satisfies

    for all n≥n0.

    We show that divvn→φin D(Ω)as n→∞.Sinceφ∈D(Ω),there existsα>0 such that dist(x,Γ)≥αfor all x∈suppφ.Since suppρn?there exist n1≥n0andβ>0 such that dist(x,Γ)≥βfor all x∈supp(φ(·/λn)*ρn)∪suppφfor n≥n1.Therefore,we have

    supp(divvn)∪suppφ?K:=for all n≥n1.We have

    Therefore,we have

    where

    Here

    Since?αφis uniformly continuous,we have

    This implies that divvn→φin D(Ω)as n→∞.

    (f)implies(g).

    Step 1.The case whereΩis starlike with respect to an open ball.

    Let f∈D′(Ω)and ? f∈W-1.p(Ω).It suffices to prove that

    In fact,assume that(3.2)holds.Since D(Ω)is dense in Lp′(Ω),for anyφ∈Lp′(Ω),there existφn∈D(Ω)such thatφn→φin Lp′(Ω).From(3.2),we have

    Therefore,{〈f,φn〉D′(Ω),D(Ω)}is a Cauchy sequence in R.We define

    Clearly,the definition is independent of the choice of{φn}such thatφn→φin(Ω).Since

    Thus f∈Lp(Ω).

    We show(3.2).Letφ1∈D(Ω)such that=1.For anyφ∈D(Ω),define φ0=φ0(φ)by

    for allv∈D(Ω).From(f),there existvn=vn(φ0)∈D(Ω)such that

    and divvn→φ0in D(Ω)as n→∞.Since

    and

    we have

    Thus(3.2)holds,and so(g)holds for the case where Ω is starlike with respect to an open ball.

    Step 2.The case where Ω is a general bounded domain with a Lipschitz continuous boundary.

    Let Ω be a bounded domain with a Lipschitz continuous boundary Γ.From Theorem 2.1,there exists a finite number of domains{Ωi}(i=1,2,...,N)such that eachΩiis contained inΩand starlike with respect to an open ball,and Ω=Ωi.Let f∈D′(Ω)and ? f∈W-1,p(Ω).Then there exists a constant C(f,p,Ω)>0 such that

    for allv∈D(Ω).For functionsθ∈D(Ωi)and θ∈D(Ωi),we write their extensions toΩby 0 and 0 inΩΩiby∈D(Ω)and∈D(Ω),respectively.For every i=1,...,N,if we define a linear form fi:D(Ωi)→R by

    then for any φ∈D(Ωi),we have

    Hence

    Since D(Ωi)is dense in(Ωi),we have ? fi∈W-1,p(Ωi).By Step 1,we see that fi∈Lp(Ωi),so

    Let Ωi∩ Ωj/=?.Then for anyφ∈D(Ωi∩ Ωj),if we write the extension ofφby 0 on Ω(Ωi∩ Ωj)by,then

    for allφ∈D(Ωi∩Ωj).Since fi∈D′(Ωi)?D′(Ωi∩Ωj),we have

    for allφ∈D(Ωi∩Ωj).Thus we have fi=fjin D′(Ωi∩Ωj).Therefore we can define a function=fiinΩi(i=1,...,N).Then we have.Letφ∈D(Ω),and letbe a partition of unity associated withof the compact set suppφ,i.e.,αi∈D(Ω),suppαi?Ωiand=1 in a neighborhood of supp φ.Then we have

    (g)implies(a).Clear.

    This completes the proof of Theorem 3.1.

    Remark 3.2.Since we can prove that the classical J.L.Lions lemma(a)holds(cf.Ciarlet[11,p.381 and the footnote]),or the Ne?as inequality(b)(cf.[19,Theorem 1]or[10,Remark IV.1.1])directly,consequently if Ω is a bounded domain with a Lipschitz-continuous boundary,then all of(a),...,(g)are true.

    4 An application to the existence of a weak solution to the Maxwell-Stokes type problem

    In this section,let Ω be a bounded domain in R3with a C1,1boundaryΓ,and 1<p<∞.We will apply Theorem 3.1.

    Since we allowΩto be a multiply-connected domain with holes,we assume thatΩsatisfies the following conditions as in Amrouche and Seloula[4](cf.Amrouche and Seloula[3],Dautray and Lions[12]and Girault and Raviart[15]).Ω is locally situated on one side ofΓand satisfies the following(O1)and(O2).

    (O1)Γ has a finite number of connected componentsΓ0,Γ1,...,ΓIwith Γ0denoting the boundary of the infinite connected component of R3.

    (O2)There exist J connected open surfaces Σj,(j=1,...,J),called cuts,contained inΩsuch that

    (a)each surfaceΣjis an open subset of a smooth manifold Mj,

    (b)?Σj?Γ(j=1,...,J),where?Σjdenotes the boundary ofΣj,andΣjis non-tangential toΓ,

    The number J is called the first Betti number and I the second Betti number.We say thatΩis simply connected if J=0 andΩhas no holes if I=0.If we define

    then it is well known that dim=J and dim=I.In the latter,we need a basis ofas follows.(1≤i≤I)be a unique solution of the problem

    dσis the surface area ofΓ.Then we can see thatis a basis of(cf.[4,Corollary 4.2]).

    We introduce some spaces of vector functions.Define a space

    equipped with the norm

    We note that Xp(Ω)is a Banach space with respect to the given norm as above.Moreover,we note that ifv∈Lp(Ω)and curlv∈Lp(Ω),then the tangent tracen×v∈W-1/p,p(Γ)is well defined and

    for anyφ∈W1,p′(Ω),and that ifv∈Lp(Ω)and divv∈Lp(Ω),then the normal tracev·n∈W-1/p,p(Γ)is well defined and

    for anyφ∈W1,p′(Ω)(cf.[4,p.45]).

    Furthermore,define a closed subspace of Xp(Ω)by

    From[4,(1.5)],we see that,where the symbolmeans that the inclusion mapping is continuous,and thus there exists a constant C>0 depending only on p andΩsuch that

    Forv∈Lp(Ω),divv∈W-1,p(Ω)and curlv(?W-1,p(Ω))are defined by

    and

    respectively.In fact,it follows from the H¨older inequality that

    holds.Similarly,we see that

    holds.Thus the linear operators div:v∈Lp(Ω)→divv∈W-1,p(Ω)andcurl:v∈Lp(Ω)→curlvare continuous.

    For brevity,we write the closed subspaces(Ω,div0)ofW1,p(Ω)by

    The following inequalities are used frequently(cf.[4]).If we define

    then we can see that X1,p(Ω)W1,p(Ω)and there exists a constant C>0 depending only on p and Ω such that

    Moreover,we can deduce the following(cf.[4,p.40]):for anyv∈W1,p(Ω)withv×n=0 onΓ,we have

    Thus we have the following.

    Lemma 4.1.(Ω)is a reflexive,separable Banach space with the norm

    which is equivalent to theW1,p(Ω)-norm.

    Assume that S(x,t)is a Carath′eodoty function inΩ×[0,∞)satisfying the following structural conditions.

    For a.e.x∈Ω,S(x,t)∈C2((0,∞))∩C([0,∞))as a function of t,and there exist 1<p<∞and constants 0<λ≤Λ<∞such that for a.e.x∈Ωand t>0,

    where St=?S/?t,Stt=?2S/?t2.We note that(4.4a)implies that

    Example 4.1.Assume that S(x,t)=ν(x)g(t)tp/2,whereνis a measurable function inΩsatisfying

    for some constantsν*andν*.If a function g(t)≡1,it follows from elementary calculations that(4.4a)-(4.4c)hold.This case corresponds to the p-curlcurl operator(cf.Aramaki[7]).

    As an another example,we can take

    Then we can see that S(x,t)=ν(x)g(t)tp/2also satisfies(4.4a)-(4.4c)if p≥2(cf.Aramaki[8,Appendix B]).

    Lemma 4.2.If S(x,t)satisfies(4.4a)and(4.4b),then for a.e.x∈Ω,J[a]=S(x,|a|2)is strictly convex.

    For the proof,see[8,Lemma 2.3].

    We also use the following lemma with respect to the monotonicity of St.

    Lemma 4.3.There exists a constant c>0 such that for alla,b∈R3,

    In particular,Stis strictly monotone,that is,

    For the proof,see[7,Lemma 3.6].

    Now we consider a stationary Maxwell-Stokes type problem.To do so,let S(x,t)be a Carath′eodory function inΩ×[0,∞)satisfying(4.4a)-(4.4c),and let(Ω)′be given.We consider the following Maxwell-Stokes type problem:to find(u,π)∈W1,p(Ω)×(Ω)such that

    For givenfwe give the notion of weak solutions for(4.8a)-(4.8c).

    Definition 4.1.We say that(u,π)∈W1,p(Ω)×(Ω)is a weak solution of(4.8a)-and(u,π)satisfies

    for all.

    We have the following theorem.

    Theorem 4.1.Assume that 1<p<∞andf∈(Ω)′.Then the problem(4.8a)-(4.8c)has a unique weak solution(u,π)∈W1,p(Ω)×Lp′0(Ω),and there exists a constant C>0 depending only on p,λ,ΛandΩsuch that

    Proof.For givenf∈(Ω)′,we consider the following minimization problem:to findu∈(Ω)such thatuis a minimizer of

    where

    Here we say thatu∈(Ω)is a minimizer of(4.11),if R[u]=R*.We show that(4.11)has a unique minimizeru∈,and that there exists a constant C>0 dependent only on p,λandΩsuch that

    Ifu,v∈andu/=v,then we havecurlu/=curlv.Because,if curlu=curlvinΩ,then we have curl(u-v)=0,div(u-v)=0 inΩand〈(u-v)·n,1〉Γi=0 for i=1,...,I.Thus we haveu=vfrom(4.3).This contradict the hypothesis.Thus,it follows from Lemma 4.2 that R is a strictly convex and clearly proper functional.From Aramaki[7],we can see that R is lower semi-continuous on.By(4.5)and the H¨older and Young inequalities,we have

    for anyε>0.If we chooseε>0 so thatε=λ/(2p),we can see that R is coercive onHence it follows from Ekeland and Temam[13,Proposition 1.2]that the minimization problem has a unique minimizeru.

    By the Euler-Lagrange equation

    we can see thatusatisfies

    for allv∈If we takev=uas a test function of(4.13),it follows from(4.4a),the H¨older and Young inequalities that for anyε>0,there exists a constant C(ε)>0 such that

    If we choose a small enoughε>0,then there exists a positive constant C depending only on p,λandΩsuch that(4.12)holds.Since

    from(4.4a),we see that St(x,|curlu|2)curlu∈Lp′(Ω).By(4.1),we can rewrite(4.13)into the form

    for allv∈(Ω).Here we note that the Ne?as inequality(b)in Theorem 3.1 holds(cf.[19]or[14]).SinceΩis a C1,1domain,it follows from(4.14)that we can see that the coarse version of the de Rham theorem(d)in Theorem 3.1 holds.Thus there exists[π]∈Lp′(Ω)/R such that

    Since Lp′(Ω)/R is isomorphic to(Ω),we may assume thatπ∈(Ω).Furthermore,since St(x,|curlu|2)curlu∈Lp′(Ω),we have curl[St(x,|curlu|2)curlu]∈Sincewe see thatand

    Thus(4.9)holds,that is,(u,π)is a weak solution of(4.8a)-(4.8c).

    Next,we show the estimate(4.10).We takev=u∈(Ω)as a test function of(4.9).Since forv=u∈(Ω)we have

    the inequality(4.12)holds.

    We claim that the following Poincar′e type inequality holds.

    Indeed,by Theorem 3.1(e),for anyφ∈(Ω),there existsv∈(Ω)such that divv=φin(Ω)and there exists a constant c(p,Ω)such that

    Therefore,we get the estimate(4.15).Since?π=f-curl[St(x,|curlu|2)curlu]∈using(4.12),we have

    Since,we have(Ω),so

    Thus taking(4.12)and(4.15)into consideration,we obtain the estimate(4.10).

    Finally,we show the uniqueness of a weak solution for(4.8a)-(4.8c).Let(u1,π1)and(u2,π2)be two weak solutions of(4.8a)-(4.8c).Takingv=u1-u2∈Vp0(Ω)as a test function of(4.9),we have

    Therefore,we can see that

    Hence,by the strict monotonicity of St(Lemma 4.3),we haveu1=u2.Furthermore,if we choosev∈D(Ω)as a test function of(4.9),we have

    Since?(π1-π2)=0 in D′(Ω),we can see thatπ1-π2is equal to a constant.Since πi∈(Ω),we see that the constant is equal to zero,so we haveπ1=π2inΩ.

    Remark 4.1.In our previous paper[8],we showed that the following system

    has a unique weak solution under the hypothesis

    However,in Theorem 4.1,the hypothesis(4.17)is unnecessary for the existence theory of a weak solution for(4.8a)-(4.8c).Thus our result is new.

    Next we consider the following inhomogeneous Maxwell-Stokes type problem.

    Corollary 4.1.Assume that 1<p<∞,f∈(Ω)′andφ∈Lp(Ω).Then the problem(4.18a)-(4.18d)has a weak solution(u,π)∈W1,p(Ω)×(Ω).In particular case where Ωhas no hole,there exists a constant C>0 depending only on p,λ,ΛandΩsuch that

    Proof.Let(w,π)be a unique weak solution of(4.8a)-(4.8c).We consider the following div-curl problem:From Aramaki[5,Theorem 3.5],the problem(4.19)has a solutionu0∈W1,p(Ω).In particular,ifΩhas no hole,there exists a constant C1>0 depending only on p andΩsuch that

    If we define

    Thususatisfies(4.18b)-(4.18d).Sincecurlu=curlwinΩand(u,π)satisfies(4.9),we can see that(u,π)is a weak solution of(4.18a)-(4.18d).In particular case whereΩhas no holes,from(4.10)and(4.20),we have

    This completes the proof.

    5 An application of J.L.Lions lemma to the Korn inequality

    In this section,we consider the Korn inequality which plays a crucial role in linearized elasticity.

    We have the following Korn inequality inW1,p(Ω).

    Theorem 5.1.LetΩbe a domain of Rdand 1<p<∞.Then the J.L.Lions lemma(Theorem 3.1(a))implies the following Korn inequality inW1,p(Ω):there exists a constant C=C(p,Ω)>0 such that

    wheree(v)=(eij(v))1≤i,j≤dwith

    Proof.Step 1.Define

    equipped with the norm

    Then clearlyEp(Ω)is a Banach space.We claim thatEp(Ω)=W1,p(Ω).Indeed,clearlyW1,p(Ω)?Ep(Ω).Letv∈Ep(Ω).Then for every i,k=1,...,d,?kvi∈W-1,p(Ω).Since

    it follows from J.L.Lions lemma(Theorem 3.1(a))that?kvi∈Lp(Ω)for k=1,...,d.Therefore,vi∈W1,p(Ω),sov∈W1,p(Ω).

    Step 2.Korn’s inequality.

    The canonical injection i:W1,p(Ω)→Ep(Ω)is injective and continuous.By Step 1,the injection i is surjective.Therefore,from the Banach open mapping theorem,i-1is also continuous.This implies that there exists a constant C=C(p,Ω)>0 such that

    This implies(5.1).

    Acknowledgements

    The author would like to thank the anonymous referee(s)for useful comments and suggestions.

    Appendices

    In this and next appendices,we discuss on relations to the J.L.Lions lemma to other fundamental results.

    A Relation between the J.L.Lions lemma and a simplified version of the de Rham theorem

    We have the following theorem.

    Theorem A.1.LetΩbe a domain of Rd.Then the J.L.Lions lemma(Theorem 3.1(a))implies that the following simplified version of the de Rham theorem:For anyh∈W-1,p(Ω)satisfying

    Conversely,the simplified version of the de Rham theorem implies the J.L.Lions lemma(Theorem 3.1(a)).Proof.Leth∈W-1,p(Ω)satisfy

    From Theorem 2.2,choose bounded domainsΩj?Ω(j=1,2,...)such that?Ωjis of classandFor anyvj∈(Ωj)satisfying divvj=0 inΩj,defineas an extension ofvjby 0 on RdΩj.Let{ρn}be the mollifier as in the proof of Theorem 3.1.Then there exists n0(j)and a compact set Kj?Ω such that supp(divvj)*ρn=0 in Rdfor any n≥n0(j)andfor any n≥n0(j),div(vj*ρn)=For j≥1,lethj∈W-1,p(Ωj),wherehjis the restriction ofhtoΩj,i.e.,

    identified with a subspace of(Ω).Then we have

    for allvj∈(Ωj)satisfying divvj=0 inΩj.By Theorem 3.1(d),there exists qj∈(Ωj)such thathj=?qjinW-1,p(Ωj).For j≥1,let

    Thenπj∈Lp(Ωj)andhj=?πjinW-1.p(Ωj).Ifhj=?πjinW-1.p(Ωj)andhj+1=?πj+1inW-1.p(Ωj+1),then=const..Since Ω1?Ωjandπjdx=0,the constant is equal to zero.Henceπj=πj+1a.e.in Ωj.For any x∈Ω,there exists j(x)≥1 such that x∈Ωjfor j≥j(x).Hence if we define=πj(x)for j≥j(x),then(Ω)?D′(Ω).For anyφ∈D(Ω),there exists an integer j(φ)≥1 such that suppφ?Ωjfor j≥j(φ).Hence we have

    then we haveh=?πinW-1,p(Ω).

    Conversely,if the simplified version of the de Rham theorem holds,then(d)in Theorem 3.1 holds,so the J.L.Lions lemma in Theorem 3.1(a)holds.

    Remark A.1.Theorem A.1 means that the coarse version of the de Rham theorem in Theorem 3.1 and simplified version of the de Rham theorem in Theorem A.1 are equivalent.

    B Relation between the J.L.Lions lemma and a weak version of Poincar′e lemma

    In this section,we assume thatΩis simply connected bounded domain of Rdwith a C1,1-boundary.

    Theorem B.1.LetΩbe a simply connected domain with a C1,1-boundary.Then the J.L.Lions lemma(Theorem 3.1(g))implies the following weak Poincar′e lemma:ifh∈W-1,p(Ω)satisfiescurlh=0 inW-2.p(Ω),then there exists aπ∈Lp(Ω),unique up to an additive constant such thath=?πinW-1,p(Ω).

    Proof.Assume that the J.L.Lions lemma(Theorem 3.1(g))holds andh∈W-1,p(Ω)satisfiescurlh=0 inW-2,p(Ω).SinceΩis bounded domain of Rdwith a C1,1-boundary,it follows from[2,Theorem 4.18]that the following Stokes problem

    has a unique solution(u,[λ])∈(Ω)×Lp(Ω)/R,and there exists a constant C>0 depending only on p andΩsuch that

    Since curlh=0 inW-2,p(Ω),we have

    Sincecurlu∈Lp(Ω)?(Ω),we have curlu∈C∞(Ω)according to the hypoellipticity of the Laplacian(cf.Ciarlet[11,Theorem 6.4-2]).SinceΔu=-curlcurlu+?divu=-curlcurlu∈C∞(Ω),we see thatΔu∈C∞(Ω)and curl(Δu)=0 inΩ.By the classical Poincar′e lemma,there exists∈C∞(Ω)such that?=Δu=?λ-hinW-1,p(Ω).Defineπ=λ-∈D′(Ω),we have?π=?λ-?=h∈W-1,p(Ω).Then(g)in Theorem 3.1 implies thatπ∈Lp(Ω).

    Remark B.1.In the particular case p=2,it is known that Theorem B.1 holds under the hypothesis thatΩis only simply connected domain with a Lipschitz continuous boundary,and moreover the converse also holds,that is,the weak Poincar′e lemma on any simply connected domain of Rdimplies that the J.L.Lions lemma holds on any domain with a Lipschitz continuous boundary.This comes from that we can solve the equation(B.1)under the assumption thatΩis a simply connected domain with a Lipschitz continuous boundary.See[1,Theorem 5.1]and references therein.

    久久韩国三级中文字幕| 99久久人妻综合| 少妇的逼水好多| 久久久久国产网址| 白带黄色成豆腐渣| 欧美日韩一区二区视频在线观看视频在线 | 日韩一本色道免费dvd| 免费av观看视频| av在线亚洲专区| 91狼人影院| 人妻一区二区av| 女人久久www免费人成看片| 国产精品.久久久| 黄色日韩在线| 一级毛片黄色毛片免费观看视频| 成人毛片a级毛片在线播放| 你懂的网址亚洲精品在线观看| 1000部很黄的大片| 亚洲精品久久久久久婷婷小说| 亚洲精品成人久久久久久| 高清av免费在线| 亚洲综合精品二区| 夜夜爽夜夜爽视频| 你懂的网址亚洲精品在线观看| 精品久久久久久电影网| 国产成人a∨麻豆精品| 久热久热在线精品观看| 亚洲欧美日韩东京热| 国产精品无大码| 听说在线观看完整版免费高清| 亚洲成人久久爱视频| 午夜精品一区二区三区免费看| 国产老妇女一区| 日韩不卡一区二区三区视频在线| 国产高清有码在线观看视频| 欧美高清性xxxxhd video| 久久鲁丝午夜福利片| 亚洲自拍偷在线| 久久久精品欧美日韩精品| 人妻少妇偷人精品九色| 久久久欧美国产精品| 男的添女的下面高潮视频| 高清av免费在线| 好男人在线观看高清免费视频| 老师上课跳d突然被开到最大视频| 国产黄片美女视频| 亚洲一级一片aⅴ在线观看| videossex国产| 丝瓜视频免费看黄片| 免费大片黄手机在线观看| 日韩欧美精品v在线| 18禁在线播放成人免费| 亚洲av不卡在线观看| 久久精品国产亚洲av涩爱| av播播在线观看一区| 亚洲最大成人av| 97精品久久久久久久久久精品| 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 免费大片18禁| 直男gayav资源| 久久久久久久久久久免费av| 日韩大片免费观看网站| 日韩 亚洲 欧美在线| 男女无遮挡免费网站观看| 日本黄大片高清| 日韩三级伦理在线观看| 欧美xxxx性猛交bbbb| 久久久精品免费免费高清| 午夜福利高清视频| 欧美另类一区| 美女视频免费永久观看网站| 色网站视频免费| 少妇人妻久久综合中文| 亚洲精品国产av成人精品| 亚洲天堂国产精品一区在线| 天堂中文最新版在线下载 | 免费黄网站久久成人精品| 黄色一级大片看看| 精品国产三级普通话版| 大香蕉97超碰在线| 亚洲丝袜综合中文字幕| 国产乱人视频| 久久综合国产亚洲精品| 日本三级黄在线观看| 日韩国内少妇激情av| 免费高清在线观看视频在线观看| 最近中文字幕高清免费大全6| 极品教师在线视频| 成人高潮视频无遮挡免费网站| av免费观看日本| 亚洲国产精品成人综合色| 蜜桃久久精品国产亚洲av| 亚洲经典国产精华液单| 国产av不卡久久| 国产美女午夜福利| 熟女av电影| 深夜a级毛片| 亚洲,一卡二卡三卡| 国产91av在线免费观看| 亚洲欧美一区二区三区黑人 | 菩萨蛮人人尽说江南好唐韦庄| av国产久精品久网站免费入址| av在线app专区| 亚洲国产高清在线一区二区三| 国产成年人精品一区二区| 热99国产精品久久久久久7| 国产淫语在线视频| 日日啪夜夜撸| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 你懂的网址亚洲精品在线观看| 国产亚洲91精品色在线| 天堂俺去俺来也www色官网| 国产探花极品一区二区| 国产极品天堂在线| 国产精品一区www在线观看| 久久影院123| 少妇人妻精品综合一区二区| 国产伦理片在线播放av一区| 3wmmmm亚洲av在线观看| 99久国产av精品国产电影| 成年女人在线观看亚洲视频 | 欧美成人午夜免费资源| 大陆偷拍与自拍| 亚洲伊人久久精品综合| 少妇猛男粗大的猛烈进出视频 | 美女主播在线视频| 王馨瑶露胸无遮挡在线观看| tube8黄色片| 亚洲电影在线观看av| 五月玫瑰六月丁香| 午夜激情福利司机影院| 日韩成人伦理影院| 成人国产麻豆网| 18禁在线无遮挡免费观看视频| 美女视频免费永久观看网站| 亚洲成色77777| 精品国产三级普通话版| 一本久久精品| 一级爰片在线观看| 男女边摸边吃奶| 久久影院123| 国产一级毛片在线| 老司机影院毛片| 七月丁香在线播放| 亚洲精品第二区| 久久鲁丝午夜福利片| 久久久久久伊人网av| 国产精品熟女久久久久浪| 欧美高清成人免费视频www| 婷婷色综合大香蕉| 男人爽女人下面视频在线观看| 亚洲精品一二三| 五月伊人婷婷丁香| 简卡轻食公司| 国产成人freesex在线| 亚洲综合色惰| 成人鲁丝片一二三区免费| 久久女婷五月综合色啪小说 | 伊人久久国产一区二区| 在线看a的网站| 青春草亚洲视频在线观看| 18禁动态无遮挡网站| 亚洲第一区二区三区不卡| 欧美国产精品一级二级三级 | 秋霞在线观看毛片| 国产高清不卡午夜福利| 在线观看美女被高潮喷水网站| 国产久久久一区二区三区| 制服丝袜香蕉在线| 啦啦啦中文免费视频观看日本| 国产大屁股一区二区在线视频| 亚洲图色成人| 国产免费福利视频在线观看| 最近中文字幕高清免费大全6| 国产在线一区二区三区精| 久久久久久九九精品二区国产| 欧美日韩视频高清一区二区三区二| 久久精品国产鲁丝片午夜精品| 中文天堂在线官网| 男男h啪啪无遮挡| 大又大粗又爽又黄少妇毛片口| 亚洲精品,欧美精品| 91精品伊人久久大香线蕉| 免费少妇av软件| 亚洲成人精品中文字幕电影| 婷婷色综合www| 国产午夜精品一二区理论片| 在线观看一区二区三区| 午夜激情福利司机影院| 亚洲第一区二区三区不卡| 欧美一区二区亚洲| 国产日韩欧美在线精品| 男女边摸边吃奶| 舔av片在线| 久久精品久久久久久久性| 少妇的逼水好多| 欧美日韩精品成人综合77777| 国产精品熟女久久久久浪| 久久久久久久久久成人| 日本猛色少妇xxxxx猛交久久| 成人鲁丝片一二三区免费| 你懂的网址亚洲精品在线观看| 青春草亚洲视频在线观看| 高清在线视频一区二区三区| 97人妻精品一区二区三区麻豆| 午夜福利视频1000在线观看| 91精品一卡2卡3卡4卡| 美女国产视频在线观看| 女人被狂操c到高潮| 亚洲国产高清在线一区二区三| 深爱激情五月婷婷| 大又大粗又爽又黄少妇毛片口| av国产免费在线观看| 毛片女人毛片| 一个人看视频在线观看www免费| 极品少妇高潮喷水抽搐| 神马国产精品三级电影在线观看| 最近手机中文字幕大全| 亚洲最大成人中文| 日韩强制内射视频| 国产免费又黄又爽又色| 久久久成人免费电影| 97精品久久久久久久久久精品| 波野结衣二区三区在线| 日本av手机在线免费观看| 黄色欧美视频在线观看| 亚洲av男天堂| 欧美极品一区二区三区四区| 国产精品偷伦视频观看了| 免费观看的影片在线观看| 色5月婷婷丁香| 大码成人一级视频| 99久久人妻综合| 国产亚洲5aaaaa淫片| 精品久久久精品久久久| 欧美日本视频| 国产精品成人在线| 深爱激情五月婷婷| 2021少妇久久久久久久久久久| 亚洲国产成人一精品久久久| 亚洲欧美成人精品一区二区| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩卡通动漫| 久热这里只有精品99| 国产 一区精品| 丝袜美腿在线中文| 尤物成人国产欧美一区二区三区| 熟女电影av网| 久久97久久精品| 成人一区二区视频在线观看| 国产成人免费观看mmmm| 熟妇人妻不卡中文字幕| 91aial.com中文字幕在线观看| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 久久影院123| 欧美一级a爱片免费观看看| 男女下面进入的视频免费午夜| 最近2019中文字幕mv第一页| 国产免费一级a男人的天堂| 91精品伊人久久大香线蕉| kizo精华| a级毛片免费高清观看在线播放| 亚洲国产精品国产精品| 成人国产麻豆网| 久久精品久久久久久久性| 两个人的视频大全免费| 亚洲欧美清纯卡通| 免费av不卡在线播放| 又粗又硬又长又爽又黄的视频| 国产中年淑女户外野战色| 成人午夜精彩视频在线观看| 亚洲精品aⅴ在线观看| 久久精品综合一区二区三区| 亚洲精品成人av观看孕妇| 人人妻人人看人人澡| 2022亚洲国产成人精品| 在线观看国产h片| 久久人人爽人人片av| 亚洲最大成人中文| 搡女人真爽免费视频火全软件| 亚洲欧美清纯卡通| 日韩一区二区视频免费看| 天天躁夜夜躁狠狠久久av| 深爱激情五月婷婷| 内地一区二区视频在线| 国产成人精品久久久久久| 国产男女内射视频| 国产精品国产三级国产专区5o| 国产午夜精品一二区理论片| 少妇人妻 视频| 久久久久国产精品人妻一区二区| 久久热精品热| 男人爽女人下面视频在线观看| 精品国产一区二区三区久久久樱花 | 国内精品美女久久久久久| 久久韩国三级中文字幕| 色综合色国产| 亚洲aⅴ乱码一区二区在线播放| 秋霞伦理黄片| 久久精品国产自在天天线| 一本一本综合久久| 亚洲欧美成人精品一区二区| 少妇被粗大猛烈的视频| 大香蕉97超碰在线| 亚洲三级黄色毛片| freevideosex欧美| 国产成人免费无遮挡视频| 国产日韩欧美亚洲二区| 91久久精品电影网| av在线天堂中文字幕| 国产91av在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 各种免费的搞黄视频| 在现免费观看毛片| 18+在线观看网站| 五月伊人婷婷丁香| 丰满少妇做爰视频| 青春草视频在线免费观看| 亚洲国产av新网站| 久久精品国产亚洲av天美| 深夜a级毛片| 日本欧美国产在线视频| 九九在线视频观看精品| 美女内射精品一级片tv| 亚洲经典国产精华液单| 精品久久久久久久末码| 最近中文字幕2019免费版| 午夜福利视频精品| 免费av不卡在线播放| 国产免费视频播放在线视频| 亚洲av二区三区四区| 久久6这里有精品| 不卡视频在线观看欧美| 久久6这里有精品| 不卡视频在线观看欧美| 精品少妇久久久久久888优播| av在线亚洲专区| 亚洲最大成人av| 少妇的逼水好多| 精品久久国产蜜桃| 国产精品国产av在线观看| 亚洲国产欧美人成| 成人午夜精彩视频在线观看| 狂野欧美激情性xxxx在线观看| 精品视频人人做人人爽| 久久精品综合一区二区三区| 欧美高清成人免费视频www| 精品一区在线观看国产| 欧美老熟妇乱子伦牲交| 国产精品精品国产色婷婷| 国产成人午夜福利电影在线观看| 97在线视频观看| 99久久精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产探花在线观看一区二区| 亚洲内射少妇av| 日韩视频在线欧美| 国国产精品蜜臀av免费| 国产精品不卡视频一区二区| 一级二级三级毛片免费看| 人人妻人人看人人澡| 国产视频首页在线观看| 欧美日本视频| 嫩草影院新地址| 久久精品国产亚洲av涩爱| 午夜免费鲁丝| 白带黄色成豆腐渣| 性色avwww在线观看| 在线天堂最新版资源| 亚洲欧美清纯卡通| 两个人的视频大全免费| 午夜激情福利司机影院| 欧美成人a在线观看| av在线亚洲专区| 免费大片18禁| 久久精品国产自在天天线| 亚洲精品456在线播放app| 亚洲天堂av无毛| 欧美日韩亚洲高清精品| 少妇人妻 视频| 久久久久久久久久久丰满| www.色视频.com| 在线观看人妻少妇| 九色成人免费人妻av| 可以在线观看毛片的网站| 一边亲一边摸免费视频| 午夜视频国产福利| 国产综合精华液| 欧美人与善性xxx| 91在线精品国自产拍蜜月| 五月开心婷婷网| 少妇猛男粗大的猛烈进出视频 | 免费观看无遮挡的男女| 国产精品人妻久久久久久| 久久热精品热| 十八禁网站网址无遮挡 | 国产在线一区二区三区精| 免费看a级黄色片| 99久国产av精品国产电影| 国产毛片a区久久久久| 九色成人免费人妻av| 亚洲三级黄色毛片| 亚洲自偷自拍三级| 国产91av在线免费观看| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站 | 黄色日韩在线| 欧美成人a在线观看| 黄色配什么色好看| 欧美日韩视频高清一区二区三区二| av专区在线播放| 在线观看一区二区三区| 久久精品久久久久久久性| 亚洲av国产av综合av卡| 国产精品99久久99久久久不卡 | 亚洲第一区二区三区不卡| 丝袜美腿在线中文| av在线app专区| 日本午夜av视频| 久久精品夜色国产| 国产有黄有色有爽视频| 日本一二三区视频观看| 日韩人妻高清精品专区| 国产精品一二三区在线看| 亚洲精品成人久久久久久| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻夜夜爽99麻豆av| 好男人在线观看高清免费视频| 久久久亚洲精品成人影院| 韩国av在线不卡| 亚洲天堂av无毛| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人 | 狂野欧美激情性xxxx在线观看| 免费黄网站久久成人精品| 2021天堂中文幕一二区在线观| 午夜福利视频1000在线观看| 免费大片黄手机在线观看| a级毛片免费高清观看在线播放| av黄色大香蕉| 欧美日韩视频精品一区| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 免费观看性生交大片5| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 国产久久久一区二区三区| 免费播放大片免费观看视频在线观看| 色视频www国产| 神马国产精品三级电影在线观看| 国产精品国产三级国产专区5o| 我要看日韩黄色一级片| 日日啪夜夜爽| 又大又黄又爽视频免费| 如何舔出高潮| 街头女战士在线观看网站| 亚洲精品成人av观看孕妇| 91久久精品电影网| 国产精品熟女久久久久浪| 美女脱内裤让男人舔精品视频| 久久午夜福利片| 成人高潮视频无遮挡免费网站| 久久ye,这里只有精品| 成人欧美大片| 国产一区亚洲一区在线观看| 高清毛片免费看| 亚洲精品日韩av片在线观看| 亚洲精品第二区| 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 国产老妇女一区| 欧美成人a在线观看| 成年女人在线观看亚洲视频 | 国语对白做爰xxxⅹ性视频网站| 成人欧美大片| 精华霜和精华液先用哪个| 天堂俺去俺来也www色官网| 男人舔奶头视频| 国产精品一区www在线观看| 两个人的视频大全免费| 久久久色成人| 免费看a级黄色片| 亚洲图色成人| 国国产精品蜜臀av免费| 国产精品一区二区三区四区免费观看| 毛片女人毛片| 黄片无遮挡物在线观看| 最近最新中文字幕大全电影3| 国产一区二区亚洲精品在线观看| 岛国毛片在线播放| 成年人午夜在线观看视频| 亚洲成人精品中文字幕电影| 观看免费一级毛片| 国产精品精品国产色婷婷| 老司机影院毛片| 亚洲欧美一区二区三区国产| 久久久久精品久久久久真实原创| 成年女人在线观看亚洲视频 | 国产午夜福利久久久久久| 三级国产精品片| 精品一区二区免费观看| 国产精品国产av在线观看| 91精品伊人久久大香线蕉| 国产高潮美女av| 如何舔出高潮| 午夜激情久久久久久久| 伊人久久精品亚洲午夜| 老司机影院成人| 国产一区二区三区av在线| 久久久a久久爽久久v久久| 国产精品精品国产色婷婷| 在线a可以看的网站| 午夜激情福利司机影院| 少妇人妻久久综合中文| 97超碰精品成人国产| 国产成人a∨麻豆精品| 国产爱豆传媒在线观看| 欧美极品一区二区三区四区| 精品久久国产蜜桃| 三级经典国产精品| 午夜爱爱视频在线播放| 男女下面进入的视频免费午夜| 国产淫语在线视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区性色av| 国产精品久久久久久久久免| av又黄又爽大尺度在线免费看| 久久久久久久久久成人| 热99国产精品久久久久久7| 国产真实伦视频高清在线观看| 国产一区有黄有色的免费视频| 亚洲av一区综合| 一级毛片黄色毛片免费观看视频| 热re99久久精品国产66热6| 97超视频在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 一区二区三区四区激情视频| 在线看a的网站| 女的被弄到高潮叫床怎么办| 日本猛色少妇xxxxx猛交久久| 亚洲,欧美,日韩| 国产在视频线精品| 深夜a级毛片| 黄色欧美视频在线观看| 久久6这里有精品| av网站免费在线观看视频| 免费黄网站久久成人精品| 欧美国产精品一级二级三级 | 夜夜看夜夜爽夜夜摸| 国产69精品久久久久777片| 久久久久久伊人网av| 久热这里只有精品99| 嫩草影院入口| 男人舔奶头视频| 亚洲天堂国产精品一区在线| 青青草视频在线视频观看| 亚洲欧美一区二区三区黑人 | 色哟哟·www| 日日摸夜夜添夜夜爱| 十八禁网站网址无遮挡 | 国产伦在线观看视频一区| 18禁在线播放成人免费| 欧美人与善性xxx| 夫妻午夜视频| 久久久久久久久久成人| 性插视频无遮挡在线免费观看| 人人妻人人澡人人爽人人夜夜| 精品久久久久久久末码| 寂寞人妻少妇视频99o| 日本一二三区视频观看| 欧美三级亚洲精品| 久久久久精品性色| 亚洲精品久久久久久婷婷小说| 超碰97精品在线观看| 在线观看一区二区三区| 国产大屁股一区二区在线视频| 一边亲一边摸免费视频| 欧美老熟妇乱子伦牲交| 亚洲,一卡二卡三卡| 插逼视频在线观看| 国产精品久久久久久精品电影小说 | 伊人久久国产一区二区| 黑人高潮一二区| 久久久欧美国产精品| 久久精品久久精品一区二区三区| 白带黄色成豆腐渣| 久久国内精品自在自线图片| 久久久久久九九精品二区国产| 性色av一级| 日韩精品有码人妻一区| 真实男女啪啪啪动态图| 男女边吃奶边做爰视频| 精品少妇黑人巨大在线播放| av卡一久久| 两个人的视频大全免费| 国产视频内射| 国产一区二区在线观看日韩| 亚洲人成网站高清观看| 听说在线观看完整版免费高清| 久久女婷五月综合色啪小说 | 欧美激情国产日韩精品一区| 99久国产av精品国产电影| 成人国产麻豆网| 91狼人影院| 丝袜脚勾引网站| 国产成人91sexporn| 日本熟妇午夜| 秋霞在线观看毛片| 中文精品一卡2卡3卡4更新| av福利片在线观看| 亚洲精品456在线播放app|