• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      集約化奶牛場(chǎng)沼液沼灌區(qū)類固醇雌激素定量分析

      2021-05-12 06:26:56余薇薇孫尉哲杜邦昊唐川東謝明原唐竟競(jìng)
      關(guān)鍵詞:類固醇雌二醇沼液

      余薇薇,孫尉哲,杜邦昊,楊 威,蔣 暉,唐川東,楊 碩,謝明原,唐竟競(jìng)

      集約化奶牛場(chǎng)沼液沼灌區(qū)類固醇雌激素定量分析

      余薇薇1,孫尉哲1,杜邦昊1,楊 威1,蔣 暉1,唐川東2,楊 碩1,謝明原1,唐竟競(jìng)1

      (1. 重慶交通大學(xué)河海學(xué)院水利水運(yùn)工程教育部重點(diǎn)實(shí)驗(yàn)室,重慶 400074; 2. 中國(guó)城市規(guī)劃設(shè)計(jì)研究院西部分院,重慶 401121)

      隨著集約化奶牛場(chǎng)的發(fā)展,其產(chǎn)生的類固醇雌激素已成為新的環(huán)境污染源,因此建立沼液及土壤復(fù)雜組分中類固醇雌激素定量分析方法,考察不同季節(jié)類固醇雌激素含量變化十分必要。該研究對(duì)奶牛場(chǎng)沼灌區(qū)的沼液及土壤中5種類固醇雌激素(雌酮、17-雌二醇、17-雌二醇、雌三醇、雌酮硫酸鈉)建立了固相萃取-液相色譜串聯(lián)兩級(jí)質(zhì)譜(SPE-LC-MS/MS)分析方法。針對(duì)沼液及土壤復(fù)雜基質(zhì)特點(diǎn),分別建立二者樣品前處理方法,處理后樣品采用電噴霧離子源負(fù)離子模式多反應(yīng)監(jiān)測(cè)分析。結(jié)果表明,檢測(cè)方法線性關(guān)系良好,檢出限為0.09~0.39 ng/L,定量限為0.24~1.18 ng/L,回收率范圍為74.56%~91.84%,該法可有效用于沼液及土壤中痕量雌激素的檢測(cè)。通過(guò)對(duì)沼液、沼灌區(qū)土壤樣品檢測(cè)發(fā)現(xiàn),雌酮、17-雌二醇與17-雌二醇檢出頻率及濃度較高,而雌三醇與雌酮硫酸鈉檢出頻率及濃度較低。同時(shí)得到沼液出水及土壤縱深雌激素的含量分布,厭氧池出水中各物質(zhì)濃度雌酮>17-雌二醇>17-雌二醇>雌酮硫酸鈉>雌三醇;好氧池出水中17-雌二醇>17-雌二醇>雌酮>雌酮硫酸鈉>雌三醇;不同縱深土壤中均為17-雌二醇>雌酮>17-雌二醇>雌酮硫酸鈉,未檢測(cè)出雌三醇;沼液中雌激素濃度隨季節(jié)溫度變化,土壤中隨季節(jié)性降低。試驗(yàn)結(jié)果為研究復(fù)雜基質(zhì)中雌激素檢測(cè)和分布提供一定理論依據(jù)和數(shù)據(jù)支撐。

      沼液; 土壤;液質(zhì)聯(lián)用;沼灌區(qū)類固醇雌激素;固相萃??;復(fù)雜基質(zhì)

      0 引 言

      在肉類產(chǎn)品的巨大需求以及政府政策支持的推動(dòng)下,中國(guó)畜牧業(yè)已從家庭經(jīng)營(yíng)的小型農(nóng)場(chǎng)轉(zhuǎn)變?yōu)榇笮偷募s化養(yǎng)殖場(chǎng)。美國(guó)農(nóng)業(yè)部預(yù)測(cè),到2025年,中國(guó)豬肉和牛肉的消費(fèi)量將分別達(dá)到6 349和838萬(wàn)t[1],消費(fèi)的增加進(jìn)一步促進(jìn)了集約化養(yǎng)殖場(chǎng)的大規(guī)模發(fā)展。然而,這種大規(guī)模發(fā)展所帶來(lái)的潛在環(huán)境問(wèn)題也引起了人們的關(guān)注。據(jù)報(bào)道,類固醇雌激素(Steroid Estrogens,SEs)可由包括牲畜在內(nèi)的所有哺乳動(dòng)物排泄,并以40~7 000 ng/L的濃度存在于養(yǎng)殖糞肥和廢水中,這些濃度比城市污水(1~80 ng/L)高出100倍,比野生動(dòng)物內(nèi)分泌系統(tǒng)紊亂的建議濃度高出1 000倍[2]。中國(guó)每年產(chǎn)生的養(yǎng)殖畜牧糞便更是達(dá)到40億t[3],動(dòng)物糞便中因其含有大量的有機(jī)質(zhì),常常被用作農(nóng)業(yè)肥料土壤灌溉[4],其中攜帶的SEs會(huì)隨之進(jìn)入到土壤環(huán)境中,并不斷遷移積累,對(duì)周?chē)鷳B(tài)環(huán)境造成潛在風(fēng)險(xiǎn),而現(xiàn)階段對(duì)沼液及沼液灌溉區(qū)域土壤中雌激素含量分布尚不明確。因此,建立快速、靈敏、可靠的檢測(cè)方法對(duì)沼液及沼液灌溉的土壤中雌激素含量進(jìn)行測(cè)定很有必要。

      在現(xiàn)有測(cè)定雌激素的方法中,色譜-質(zhì)譜聯(lián)用法(Mass Spectrum, MS)包括氣相色譜-質(zhì)譜聯(lián)用法(GC(Gas Chromatography)-MS)和液相色譜-質(zhì)譜聯(lián)用法(LC (Liquid Chromatography)-MS),因其高靈敏度和高選擇性而成為應(yīng)用最廣泛的方法[5-6]。但由于雌激素的低揮發(fā)性限制了GC-MS方法的應(yīng)用,需要復(fù)雜的衍生化過(guò)程,相比之下LC-MS方法更加靈活和靈敏[7-10]。近年來(lái)液相色譜串聯(lián)兩級(jí)質(zhì)譜法(LC-MS/MS)聯(lián)用技術(shù)日趨成熟,該法比LC-MS定性更可靠,定量更靈敏準(zhǔn)確。然而,在通過(guò)LC-MS/MS進(jìn)行復(fù)雜樣品的定量分析時(shí),其準(zhǔn)確性經(jīng)常受到樣品基質(zhì)的影響,且沼液和土壤中含有大量雜質(zhì),包括各類氨基酸、維生素、蛋白質(zhì)以及各種微量元素,均可能會(huì)抑制或增強(qiáng)分析物的信號(hào)強(qiáng)度。為了減小誤差,樣品的前處理非常關(guān)鍵,固相萃取(Solid Phase Extraction,SPE)選擇性好,富集系數(shù)高,是最有效的樣品凈化和富集方法之一[11-13]。因此,通過(guò)建立類固醇雌激素的固相萃取-液相色譜串聯(lián)兩級(jí)質(zhì)譜(SPE-LC-MS/MS)檢測(cè)方法,能夠消除沼液的復(fù)雜成分及土壤基質(zhì)雜質(zhì)對(duì)SEs檢測(cè)形成的干擾,實(shí)現(xiàn)對(duì)SEs的定量檢測(cè)。

      當(dāng)前對(duì)雌激素濃度檢測(cè)的研究多數(shù)集中于污水處理廠、自然水體中[14-16],而對(duì)濃度較高的集約化奶牛場(chǎng)及周邊沼液灌溉土壤研究較少。通過(guò)對(duì)雌激素濃度含量分布及季節(jié)性變化規(guī)律的研究,可深入了解SEs污染的環(huán)境行為。因此,對(duì)這種高風(fēng)險(xiǎn)地區(qū)雌激素濃度檢測(cè)及定性分析,可為今后估算農(nóng)業(yè)生態(tài)系統(tǒng)中SEs污染的來(lái)源和風(fēng)險(xiǎn)提供理論支撐。

      1 材料與方法

      1.1 材料、試劑與儀器

      材料:Oasis HLB固相萃取柱(6 mL/200 mg,Waters),C18、NH2、Florisil固相萃取柱(6 mL/500 mg,Welchrom),高純度氮?dú)猓兌取?9.999%),有機(jī)系尼龍微孔濾膜(津騰0.8m Φ50 mm)等。

      試劑:甲醇、乙腈、乙酸乙酯、正己烷等均為色譜純,成都科隆;雌酮(E1)、雌二醇(17-E2)、雌二醇(17-E2)、雌三醇(E3)均為色譜純,北京百靈威(J&K)科技有限公司;雌酮硫酸鈉(E1-3S)色譜純,加拿大Toronto Research Chemicals (TRC)公司;氘代雌酮(E1-d4)、氘代雌酮硫酸鹽(E1-3S-d4)均為色譜純,加拿大CDN同位素公司。

      儀器:三重四級(jí)桿液質(zhì)聯(lián)用儀(Shimadzu LC-MS/MS-8060)、臺(tái)式低速離心機(jī)(JT800)、12位固相萃取裝置(Mediwax-12)、水浴氮吹儀(MTN-2800W-12)、渦旋混勻器(VORTEX-5)、純水儀(摩爾 Millipore)、電熱鼓風(fēng)恒溫干燥箱(101A-6)、無(wú)油隔膜真空泵(津騰AP-9901S)。

      1.2 研究區(qū)域概況

      樣品采集地點(diǎn)位于中國(guó)重慶市某集約化奶牛場(chǎng)(N29°19′16″,E106°38′37″),該養(yǎng)殖場(chǎng)占地約200 hm2,主要以飼養(yǎng)奶牛為主,約3 000頭。畜禽糞便及尿液主要采用全混合厭氧反應(yīng)器(Continuous Stirred Tank Reactor,CSTR)工藝進(jìn)行前處理,部分沼液用于土壤灌溉,部分沼液后續(xù)通過(guò)好氧池處理排放,日處理能力約480 m3。樣品采集時(shí)間為6月至12月,采集沼液樣品包括厭氧池出水和好氧池出水,選擇棕色樣品瓶(1 L)收集沼液,同時(shí)加入硝酸銅和鹽酸抑制微生物;采集土壤樣品選自周邊沼液灌溉區(qū)中性紫色土,沼液還田量為1 094 m3/hm2,還田時(shí)長(zhǎng)15 d。采集0~2 cm表層土壤和5~10 cm中層土壤,土壤樣品放入鋁箔袋內(nèi)避光保存。

      1.3 沼液及土壤樣品前處理

      1)沼液樣品處理:采用SPE法進(jìn)行富集和凈化,取100 mL水樣經(jīng)慢速定性濾紙過(guò)濾后,用0.8m有機(jī)尼龍濾膜進(jìn)行抽濾,濾液保存在棕色玻璃瓶中,同時(shí)加入10 ng/mL的E1-d4和E1-3S-d4內(nèi)標(biāo)溶液。用甲醇(5 mL)、乙酸乙酯(5 mL)、超純水(5 mL)活化Oasis HLB萃取柱后對(duì)濾液進(jìn)行富集,控制流速為2~3 mL/min。連接Oasis HLB柱和NH2柱,NH2柱活化選擇甲醇和超純水溶液,洗脫液選擇甲醇/乙酸乙酯(體積比:1/1,5 mL)和5%氨水甲醇溶液(5 mL)在1 mL/min流速下進(jìn)行洗脫,洗脫液在氮?dú)庀麓蹈刹⒂眉状贾厝芙?,渦旋混勻。重溶解液利用Florisil柱進(jìn)行二次洗脫,F(xiàn)lorisil萃取柱選擇正己烷(5 mL)、正己烷/二氯甲烷(體積比:3/1,5 mL)活化,利用正己烷進(jìn)行洗脫,氮吹、重溶解、渦旋混勻,1 mL甲醇渦旋混勻,富集倍數(shù)為100倍,0.22m有機(jī)系尼龍濾膜過(guò)濾,4 ℃保存待測(cè)。

      2)土壤樣品處理:采用振蕩提取與SPE進(jìn)行前處理,風(fēng)干土壤樣品研磨后過(guò)0.125 mm(120目)篩,稱取1.0 g于聚丙烯離心管,選擇乙腈/乙酸乙酯(體積比:1/1,5 mL)和正己烷/乙酸乙酯(體積比:1/1,5 mL)作為溶解液,振蕩混勻后4 000 r/min離心30 min,上清液進(jìn)行氮?dú)獯蹈?,并用甲醇重溶解,渦旋混勻,加入10 ng/mL的E1-d4和E1-3S-d4內(nèi)標(biāo)溶液。選擇NH2柱進(jìn)行洗脫,甲醇、超純水作為活化液,甲醇/乙酸乙酯(體積比:1/1,3 mL)和5%氨水甲醇溶液(5 mL)作為洗脫液。洗脫后在氮?dú)庀麓蹈?,甲醇重溶解,渦旋混勻,0.22m有機(jī)系尼龍濾膜過(guò)濾,4 ℃保存待測(cè)。

      1.4 LC-MS/MS工作條件

      色譜條件:進(jìn)樣量為1.0L;柱溫:30 ℃;駐留時(shí)間20 ms;流動(dòng)相A為0.1%氨水,流動(dòng)相B為乙腈;洗脫梯度為0~2.00 min,流動(dòng)相B體積分?jǐn)?shù)50%;2.00~3.00 min,流動(dòng)相B體積分?jǐn)?shù)90%;3.00~3.74 min保持流動(dòng)相比例;3.74~4.19 min,流動(dòng)相B體積分?jǐn)?shù)10%;4.19~6.00 min保持流動(dòng)相比例;流速為0.3 mL/min,保留時(shí)間為6 min。

      質(zhì)譜條件:離子源模式:電噴霧離子(ESI-);掃描范圍:50~600 m/z;霧化氣流量:3 L/min;加熱氣流量:10 L/min;脫溶劑溫度:250 ℃;接口溫度:300 ℃;加熱塊溫度:400 ℃;干燥氣流量:10 L/min;掃描方式:多反應(yīng)監(jiān)測(cè)(Multiple Reaction Monitoring,MRM)。

      2 結(jié)果與分析

      2.1 微生物抑制劑的選擇

      環(huán)境樣品中含有的微生物可對(duì)SEs產(chǎn)生一定的降解作用,會(huì)對(duì)檢測(cè)結(jié)果造成一定誤差,特別是針對(duì)痕量檢測(cè)結(jié)果[17],因此選擇合適的微生物抑制劑可使檢測(cè)結(jié)果更接近真實(shí)值。常用的微生物抑制劑有疊氮化鈉和鹽酸酸化[18-19],但疊氮化鈉具有劇毒,一些雌激素降解菌和酶具有廣泛的pH適應(yīng)性[20],均會(huì)在取樣過(guò)程中產(chǎn)生一定的誤差。最終選擇硝酸銅(0.25 g/L)和鹽酸(4 mol/L)聯(lián)合使用作為微生物抑制劑,可使SEs的損失量小于3%[21],并在低溫環(huán)境下保存。

      2.2 色譜、質(zhì)譜條件優(yōu)化

      采用乙腈和甲醇作為流動(dòng)相B的影響,發(fā)現(xiàn)乙腈會(huì)大大降低系統(tǒng)壓力并加快分析物的洗脫速度,因此被選作流動(dòng)相B。流動(dòng)相中的添加劑會(huì)影響色譜保留時(shí)間和信號(hào)響應(yīng)。為了最大限度地提高靈敏度,在具有不同特性的若干常見(jiàn)的添加劑(甲酸、乙酸銨、甲酸銨、氫氧化銨)進(jìn)行了選擇,使用0.1%的氨水溶液可以發(fā)現(xiàn)最佳的信號(hào)強(qiáng)度,提高化合物的電離強(qiáng)度獲得較高的響應(yīng)值,這與趙超群[22]研究一致,因此選用0.1%氨水-乙腈作為流動(dòng)相。

      在LC-MS/MS電離方式中,用于雌激素分析的負(fù)模式ESI已成為電離的首選模式[23],因此,在負(fù)離子模式下,對(duì)目標(biāo)物進(jìn)行全Q1 MS掃描以確定母離子,對(duì)母離子進(jìn)行二次掃描以確定定量子離子和定性子離子,然后選擇MRM模式對(duì)簇去電壓、碰撞能量等質(zhì)譜參數(shù)進(jìn)行優(yōu)化。優(yōu)化條件下目標(biāo)物的MRM色譜圖如圖1所示。

      2.3 前處理?xiàng)l件優(yōu)化

      為了獲得檢測(cè)樣品中痕量雌激素所需的靈敏度和選擇性,需要對(duì)前處理?xiàng)l件進(jìn)行優(yōu)化,優(yōu)化的參數(shù)為萃取柱類型和洗脫溶劑。萃取柱通常有C18柱和Oasis HLB柱,Oasis HLB柱能吸附疏水性強(qiáng)的化合物也能吸附親水性強(qiáng)的化合物,比C18反向鍵和硅膠填料更大的容量和吸附能力[24],因此選用Oasis HLB柱作為萃取柱。考慮到樣品基質(zhì)成分較復(fù)雜,采用分步凈化的方式,分別采用NH2柱和Florisil柱凈化2次,雌激素回收率更高。萃取柱根據(jù)洗脫強(qiáng)度,沼液樣品選擇正己烷進(jìn)行洗脫,土壤樣品選擇甲醇/乙酸乙酯和5%氨水甲醇溶液進(jìn)行洗脫。

      2.4 方法評(píng)價(jià)

      2.4.1 方法線性范圍和檢出限

      用乙腈配置一定濃度范圍的雌激素標(biāo)準(zhǔn)工作液,按照1.4分析條件進(jìn)行測(cè)定,以待測(cè)物質(zhì)的峰面積為縱坐標(biāo),雌激素質(zhì)量濃度(樣品溶液:1、2、5、10、20、50、100、200g/L;內(nèi)標(biāo)溶液:0.1、0.2、0.5、1、2、5、10、20g/L)為橫坐標(biāo),進(jìn)行線性回歸分析,分別以3倍、10倍信噪比計(jì)算得到方法檢出限(Limit of Detection,LOD)和定量限(Limit of Quantitation,LOQ),如表1所示。結(jié)果表明峰面積與濃度線性關(guān)系高,相關(guān)系數(shù)2>0.999,檢出限在0.09~0.39 ng/L之間,定量限在0.24~1.18 ng/L之間。

      2.4.2 回收率

      試驗(yàn)中選擇E1-d4作為E1、17-E2、17-E2和E3的內(nèi)標(biāo)溶液,E1-3S-d4作為E1-3S的內(nèi)標(biāo)溶液,進(jìn)行加標(biāo)回收率試驗(yàn),結(jié)果表明沼液中平均加標(biāo)回收率在74.56%~91.84%之間,土壤中平均加標(biāo)回收率在81.37%~82.13%;沼液中相對(duì)標(biāo)準(zhǔn)偏差(Relative Standard Deviation,RDS)為16.94%~17.59%,土壤中RDS為13.23%~14.85%。證明該方法具有良好的準(zhǔn)確性和精密度。

      表1 SEs的線性方程、檢出限、定量限、線性范圍及相關(guān)系數(shù)

      2.5 樣品分析

      2.5.1 厭氧池出水SEs檢測(cè)

      通過(guò)對(duì)厭氧池出水中SEs含量進(jìn)行檢測(cè),如表2、圖2所示。結(jié)果表明畜禽糞便及沼液經(jīng)過(guò)厭氧處理后,5種雌激素仍然存在,其中E1和17-E2的檢出頻率均為100%,E1檢出濃度最大,達(dá)709.06 ng/L,且相對(duì)豐度均值大于50%,17-E2和17-E2濃度次之,分別為260.31 ng/L和304.92 ng/L,這主要是因?yàn)镋1、17-E2和17-E2占了奶牛排出的SEs的90%以上[25]。與厭氧池進(jìn)水中未經(jīng)厭氧處理的原污水相比,原污水中SEs濃度大小表現(xiàn)為17-E2>E1>17-E2>E3>E1-3S,厭氧反應(yīng)過(guò)后17-E2和17-E2濃度明顯降低,使E1在厭氧池出水中濃度最大,相應(yīng)的E1的相對(duì)豐度均值也從40.15%增加至61.20%,原因是厭氧條件下,17-E2和17-E2易于向E1轉(zhuǎn)化[26]。E3和E1-3S濃度均較低,為16.31 ng/L和24.06 ng/L,檢出頻率也較低,且秋季和冬季均未檢測(cè)出E3,冬季未檢測(cè)出E1-3S,是因?yàn)镋1、17-E2和17-E2是奶牛主要排放SEs之一,而E3主要來(lái)自豬和雞分泌的SEs中[27],E1-3S中的硫酸酯基又很容易被芳基硫酸酯酶分解轉(zhuǎn)化為E1。從夏季到冬季,E1和17-E2的平均濃度有所上升,可能是由于氣溫較低,厭氧菌活性下降,對(duì)雌激素的降解作用減弱。而17-E2的濃度呈下降的趨勢(shì),說(shuō)明在厭氧條件下,17-E2更容易被轉(zhuǎn)化。

      2.5.2 好氧池出水SEs檢測(cè)

      圖3顯示了好氧池出水中SEs濃度變化,畜禽沼液通過(guò)好氧處理后,5種雌激素仍然能全部檢出,雌激素濃度有所降低,但最大仍能檢測(cè)到600 ng/L左右的17-E2,若直接排入自然水體,仍然會(huì)對(duì)人類及動(dòng)物產(chǎn)生潛在威脅。5種目標(biāo)SEs平均濃度大小依次為17-E2>17-E2> E1>E1-3S>E3,與厭氧池出水濃度相比,E1濃度降低到80.093 ng/L,表明好氧處理可以有效降低E1的濃度。表3顯示檢出17-E2濃度最高,其相對(duì)豐度均值與好氧池相比增加47.10%,E1和17-E2相對(duì)豐度均值均有所降低,E3相對(duì)豐度均值增加,可能是由于在好氧條件下E1易于向17-E2和E3轉(zhuǎn)化,17-E2易于向17-E2轉(zhuǎn)化[28-29]。好氧條件下,好氧菌群對(duì)硫酸酯基的水解作用增強(qiáng),E1-3S的去除率增加。冬季均未檢測(cè)出17-E2和E3,夏季和冬季未檢測(cè)出E1-3S。除17-E2外,其余SEs在好氧池中濃度均存在高-低-高的季節(jié)性變化,原因是秋季溫度適宜,SEs降解菌群活性高,而17-E2存在低-高-低的季節(jié)性變化,是因?yàn)镾Es相互轉(zhuǎn)化的結(jié)果,也說(shuō)明傳統(tǒng)好氧處理難以有效降解17-E2。

      表3 好氧池出水SEs相對(duì)豐度均值及檢出頻率

      2.5.3 表層土壤SEs檢測(cè)

      表層土壤樣品檢測(cè)結(jié)果如表4、圖4所示,結(jié)果表明經(jīng)厭氧池出水灌溉后的土壤中SEs濃度大小表現(xiàn)與沼液有所不同,這是由于SEs運(yùn)輸、轉(zhuǎn)化和降解的協(xié)同作用的結(jié)果。幾種SEs濃度大小表現(xiàn)為17-E2>E1>17-E2> E1-3S,未檢測(cè)出E3,說(shuō)明土壤對(duì)SEs存在吸附作用。其中17-E2和E1檢出最大濃度均大于10 ng/g,兩者相對(duì)豐度均值之和接近90%,檢出頻率均為100%,表明土壤中主要存在于17-E2和E1,而17-E2的檢出頻率和平均濃度較低,說(shuō)明土壤對(duì)17-E2的吸附作用較弱,在土壤中的遷移能力更強(qiáng)。在夏季檢出各雌激素濃度均較高,逐漸隨季節(jié)性雌激素濃度降低,原因是夏季氣溫較高,農(nóng)作物生長(zhǎng)旺盛,沼液澆灌次數(shù)增多,而到冬季氣溫降低,沼液澆灌次數(shù)減少。且夏季到秋季雌激素濃度落差較大,由于夏季的雨水較多,徑流作用下表層土壤中雌激素易于流失或縱向遷移。

      表4 表層土壤SEs相對(duì)豐度均值及檢出頻率

      2.5.4 底層土壤SEs檢測(cè)

      在5~10 cm土壤中仍然能夠檢測(cè)出一定濃度的SEs,幾種SEs濃度大小表現(xiàn)為17-E2>E1>17-E2>E1-3S,與表層土壤雌激素濃度大小表現(xiàn)相同,原因是雌激素會(huì)隨降雨淋溶[30-31],仍未檢測(cè)出E3,說(shuō)明E3在土壤中易于轉(zhuǎn)化或易于被微生物分解。E1和17-E2檢出頻率與表層土壤表現(xiàn)相同,而17-E2和E1-3S檢出頻率和相對(duì)豐度均值與表層土壤相比有所增加,表明SEs可以進(jìn)入土壤環(huán)境,甚至滲透到地下含水層。17-E2濃度在秋季表現(xiàn)出反常的增加,可能是由于土壤中微生物的作用使得雌激素的相互轉(zhuǎn)化的結(jié)果。底層土壤中雌激素濃度也表現(xiàn)出隨季節(jié)性降低。

      表5 底層土壤SEs相對(duì)豐度均值及檢出頻率

      3 結(jié) 論

      1)針對(duì)沼液及土壤中復(fù)雜基質(zhì)的特點(diǎn),分別建立了沼液及土壤的前處理方法,通過(guò)對(duì)色譜質(zhì)譜條件的優(yōu)化,建立了高效、簡(jiǎn)便的自由及結(jié)合態(tài)SEs的SPE-LC-MS/MS檢測(cè)方法,該方法檢出限為0.09~0.39 ng/L,定量限為0.24~1.18 ng/L,回收率范圍為74.56%~91.84%,相關(guān)系數(shù)2>0.999。

      2)通過(guò)對(duì)沼液和沼灌土壤樣品進(jìn)行測(cè)定,發(fā)現(xiàn)沼液和沼灌土壤樣品中主要存在于E1、17-E2與17-E2 3種SEs且濃度較高,而E3與E1-3S檢出頻率及濃度均較低,厭氧處理和好氧處理均對(duì)SEs有一定去除效果,且SEs之間存在相互轉(zhuǎn)化作用。厭氧池出水和好氧池出水中SEs濃度隨季節(jié)性變化,與溫度相關(guān),而土壤中SEs濃度均隨季節(jié)性降低。借助該方法可對(duì)沼液及沼灌區(qū)土壤中SEs進(jìn)行分析檢測(cè),探究奶牛養(yǎng)殖場(chǎng)沼灌區(qū)SEs含量變化規(guī)律,為修復(fù)水體及土壤SEs污染提供理論依據(jù)和方法技術(shù)支撐。

      [1] USDA.2016 international long-term projections to 2025 [EB/OL]. (2016-03-22)[2018-03-05].https://www.ers.usda.go/data-products/internatiional-baseline-data.

      [2] Tremblay L A, Gadd J B, Northcott G L. Steroid estrogens and estrogenic activity are ubiquitous in dairy farm watersheds regardless of effluent management practices[J]. Agriculture, Ecosystems & Environment, 2018, 253: 48-54.

      [3] 劉姝芳,李艷霞,張雪蓮,等. 東北三省畜禽養(yǎng)殖類固醇激素排放及其潛在污染風(fēng)險(xiǎn)[J]. 環(huán)境科學(xué),2013,34(8):3180-3187.

      Liu Shufang, Li Yanxia, Zhang Xuelian, et al. Steroid hormone emissions from livestock and poultry farming in the three northeastern provinces and their potential pollution risks[J]. Environmental Science, 2013, 34(8): 3180-3187. (in Chinese with English abstract)

      [4] Duan M, Gu J, Wang X, et al. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms[J]. Ecotoxicology Environmental Safety, 2019, 180: 114-122.

      [5] Vitku J, Chlupacova T, Sosvorova L, et al. Development and validation of LC-MS/MS method for quantification of bisphenol A and estrogens in human plasma and seminal fluid[J]. Talanta, 2015, 140: 62-67.

      [6] Kolatorova Sosvorova L, Chlupacova T, Vitku J, et al. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS[J]. Talanta, 2017, 174: 21-28.

      [7] Yuan T F, Le J, Cui Y, et al. An LC-MS/MS analysis for seven sex hormones in serum[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 162: 34-40.

      [8] Kolatorova Sosvorova L, Sarek J, Vitku J, et al. Synthesis of 3alpha-deuterated 7alpha-hydroxy-DHEA and 7-oxo-DHEA and application in LC-MS/MS plasma analysis[J]. Steroids, 2016, 112: 88-94.

      [9] Vitku J, Heracek J, Sosvorova L, et al. Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic[J]. Environment International, 2016(89/90): 166-173.

      [10] Sosvorova L, Vitku J, Chlupacova T, et al. Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS[J]. Steroids, 2015, 98: 1-8.

      [11] Goh S X, Duarah A, Zhang L, et al. Online solid phase extraction with liquid chromatography-tandem mass spectrometry for determination of estrogens and glucocorticoids in water[J]. Journal of Chromatography A, 2016, 1465: 9-19.

      [12] Tran N H, Hu J, Ong S L. Simultaneous determination of PPCPs, EDCs, and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC-MS/MS and isotope dilution[J]. Talanta, 2013, 113: 82-92.

      [13] Vulliet E, Wiest L, Baudot R, et al. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1210(1): 84-91.

      [14] Nie M, Yan C, Dong W, et al. Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze Estuary[J]. Chemosphere, 2015, 127: 109-116.

      [15] Ekpeghere K I, Sim W J, Lee H J, et al. Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment[J]. Science of the Total Environment, 2018, 640/641: 1015-1023.

      [16] Zhou X, Lian Z, Wang J, et al. Distribution of estrogens along Licun River in Qingdao, China[J]. Procedia Environmental Sciences, 2011, 10: 1876-1880.

      [17] 張肖,丁長(zhǎng)青. 糞便類固醇激素檢測(cè)準(zhǔn)確性的影響因素[J].動(dòng)物學(xué)雜志,2012,47(5):143-151.

      Zhang Xiao, Ding Changqing. The influence factors on the accuracy of fecal steroid hormone detection[J]. Chinese Journal of Zoology, 2012, 47(5): 143-151. (in Chinese with English abstract)

      [18] Zhang H, Shi J, Liu X, et al. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J]. Water Research, 2014, 58(7): 248-257.

      [19] 宋曉明. 農(nóng)業(yè)土壤中類固醇雌激素的潛在風(fēng)險(xiǎn)與歸趨機(jī)理研究[D]. 沈陽(yáng):沈陽(yáng)大學(xué),2018.

      Song Xiaoming. Study on Potential Risk and Fate and Transport Mechanism of Steroid Estrogens in Agricultural Soil[D]. Shenyang: Shenyang University, 2018. (in Chinese with English abstract)

      [20] Xiong W, Yin C, Wang Y, et al. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17-estradiol-oxidizing dehydrogenases[J]. Journal of Hazardous Materials, 2020, 385: 121616.

      [21] Butwell A J, Hetheridge M, James H A. Endocrine disrupting chemicals in wastewater: A review of occurrence and removal[M]. UK Water Industry Research Limited, London, 2002.

      [22] 趙超群,李櫻紅,劉柱,等. 超高效液相色譜-串聯(lián)質(zhì)譜法同時(shí)測(cè)定奶粉中8種雌激素殘留[J]. 藥物分析雜志,2020,40(2):253-259.

      Zhao Chaoqun, Li Jianghong, Liu Zhu, et al. Simultaneous determination of 8 estrogen residues in milk powder by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Pharmaceutical Analysis, 2020, 40(2): 253-259. (in Chinese with English abstract)

      [23] Tso J, Aga D S. A systematic investigation to optimize simultaneous extraction and liquid chromatography tandem mass spectrometry analysis of estrogens and their conjugated metabolites in milk[J]. Journal of Chromatography A, 2010, 1217(29): 4784-4795.

      [24] Zhu B, Ben W, Yuan X, et al. Simultaneous detection of endocrine disrupting chemicals including conjugates in municipal wastewater and sludge with enhanced sample pretreatment and UPLC-MS/MS[J]. Environmental Science: Processes & Impacts, 2015, 17(8): 1377-1385.

      [25] Zhang H, Shi J, Liu X, et al. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J]. Water Research, 2014, 58: 248-257.

      [26] Noguera-Oviedo K, Aga D S. Chemical and biological assessment of endocrine disrupting chemicals in a full scale dairy manure anaerobic digester with thermal pretreatment[J]. Science of the Total Environment, 2016, 550: 827-834.

      [27] Katia, Noguera-Oviedo, Diana, et al. Chemical and biological assessment of endocrine disrupting chemicals in a full scale dairy manure anaerobic digester with thermal pretreatment[J]. Science of the Total Environment, 2016.

      [28] Mashtare M L, Lee L S, Nies L F, et al. Transformation of 17-Estradiol, 17-Estradiol, and estrone in sediments under nitrate- and sulfate-reducing conditions[J]. Environmental ence & Technology, 2013, 47(13): 7178-7185.

      [29] Mashtare M L, Green D A, Lee L S. Biotransformation of 17- and 17-estradiol in aerobic soils[J]. Chemosphere, 2013, 90(2): 647-652.

      [30] Gall H E, Sassman S A, Lee L S, et al. Hormone Discharges from a Midwest Tile-Drained Agroecosystem Receiving Animal Wastes[J]. Environmental Science & Technology, 2011, 45(20): 8755-8764.

      [31] DeLaune P B, Moore Jr P A. 17-estradiol in runoff as affected by various poultry litter application strategies[J]. Science of the Total Environment, 2013, 444: 26-31.

      Detection and variation of steroidal estrogens in intensive dairy farm marsh irrigation areas

      Yu Weiwei1, Sun Weizhe1, Du Banghao1, Yang Wei1, Jiang Hui1, Tang Chuandong2, Yang Shuo1, Xie Mingyuan1, Tang Jingjing1

      (1.,,,400074,; 2.,401121,)

      Steroidal estrogen production has become an emerging source of environmental pollution, due to the huge demand for meat products as the rapid development of intensive farms. Therefore, it is necessary to establish quantitative analysis for steroidal estrogens in complex fractions of digestate and soil, in order to explore the changes of steroidal estrogens in different seasons. In this study, a solid phase extraction-liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) was developed for the analysis of five steroidal estrogens (estrone, 17-estradiol, 17-estradiol, estriol, and sodium estrone sulfate) in digestate and soil from the methane irrigation area of dairy farms. Sample pretreatments were made on the complex matrix characteristics of methane and soil. The treated samples were analyzed by multi-response monitoring in the negative ion mode with an electrospray ionization source. The results showed that there was good linearity of the assay, where the detection limits were 0.09-0.39 ng/L, the quantification limits were 0.24-1.18 ng/L, and the recoveries ranged from 74.56% to 91.84%. This technology was effectively used for the determination of trace estrogens in methane and soil. The frequency and concentration of estrone, 17-estradiol, and 17-estradiol were higher in the methane irrigation area soil samples from dairy farms, while the frequency and concentration of estriol and sodium estrone sulfate were lower. The average concentrations of estrone and 17-estradiol increased from summer to winter, indicating a weak degradation of estrogens, due to the lower temperature and lower activity of anaerobic bacteria. The concentration of 17-E2 showed a decreasing trend, indicating that 17-E2 was more easily converted under anaerobic conditions. In the anaerobic tank effluent, the concentration of each substance was ranked in order: estrone, 17-estradiol , 17-estradiol , estrone sodium sulfate > estriol in the anaerobic pond effluent, whereas, in the aerobic pond effluent: 17-estradiol ,17-estradiol ,estrone ,estrone sodium sulfate ,estriol. Soil adsorbed estrogens and the concentration of estrogens in soil was lower than that in the digestate, as a result of the synergistic effect of transport, transformation, and degradation of soil Steroid Estrogens (SEs). The surface soil and the subsoil showed the same magnitude of estrogen concentrations, where estrogens migrated with the soil and then accumulated. 17-E2 and E1 mainly presented in the surface soil, while 17-E2 was detected less frequently at a lower mean concentration, indicating a stronger migration capacity in the soil, where the soil was less adsorbed to 17-E2. The concentration of each estrogen was detected higher in summer and gradually decreased with the seasonal change. The reason was that the higher temperature and vigorous crop growth in summer contributed to the increase in the number of methane watering, while reduced, as the temperature decreased in winter. There was a large difference in estrogen concentration from summer to autumn, where the estrogen in the surface soil was easy to lose or migrate longitudinally under the runoff in summer. In the soil at different depths, the concentration of each substance was in order of: 17-estradiol, estrone, 17-estradiol, sodium estrone sulfate, but no estriol was detected. There was a seasonal trend of decline in the concentration of estrogen in the soil. The experimental findings can provide an insightful theoretical basis and data support for the estrogen detection and distribution in complex substrates.

      digestate; soil; SPE; steroidal estrogens in wetland irrigation; liquid-mass coupling; complex substrates

      余薇薇,孫尉哲,杜邦昊,等. 集約化奶牛場(chǎng)沼液沼灌區(qū)類固醇雌激素定量分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(5):241-247.doi:10.11975/j.issn.1002-6819.2021.05.028 http://www.tcsae.org

      Yu Weiwei, Sun Weizhe, Du Banghao, et al. Detection and variation of steroidal estrogens in intensive dairy farm marsh irrigation areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 241-247. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.05.028 http://www.tcsae.org

      2020-12-03

      2020-02-28

      國(guó)家自然科學(xué)基金項(xiàng)目(51608079);重慶市研究生教育教學(xué)改革研究項(xiàng)目(yig182028);重慶市大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練(S202010618007);重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ1600541);重慶市基礎(chǔ)研究與前沿探索項(xiàng)目(cstc2018jcyjAX0322)

      余薇薇,教授,研究方向?yàn)樗幚?。Email:yu11237@cqjtu.edu.cn

      10.11975/j.issn.1002-6819.2021.05.028

      X713

      A

      1002-6819(2021)-05-0241-07

      猜你喜歡
      類固醇雌二醇沼液
      超聲引導(dǎo)腕管注射類固醇治療腕管綜合征及其對(duì)神經(jīng)電生理的影響
      人11β-羥基類固醇脫氫酶基因克隆與表達(dá)的實(shí)驗(yàn)研究
      微雌二醇人工抗原合成及其多克隆抗體的制備
      超聲引導(dǎo)下局部注射皮質(zhì)類固醇混合制劑治療老年性膝骨關(guān)節(jié)炎的止痛療效
      沼液能否預(yù)防病蟲(chóng)
      大棚絲瓜沼液高產(chǎn)栽培技術(shù)
      上海蔬菜(2016年5期)2016-02-28 13:18:05
      18~F-雌二醇的質(zhì)量控制研究
      沼液喂豬有講究
      沼液在農(nóng)業(yè)生產(chǎn)中的綜合利用
      戊酸雌二醇在重度宮腔粘連分離術(shù)后的應(yīng)用
      淮北市| 正宁县| 海丰县| 木兰县| 白玉县| 苍梧县| 嵩明县| 安宁市| 荣成市| 濮阳市| 上林县| 遵义县| 攀枝花市| 白城市| 同心县| 通渭县| 桂阳县| 玉林市| 开平市| 兴山县| 凤翔县| 读书| 芒康县| 德清县| 石河子市| 元谋县| 西和县| 玉山县| 天津市| 云安县| 孝感市| 高密市| 盱眙县| 建始县| 曲靖市| 山东省| 博野县| 浦东新区| 松潘县| 吉安县| 北安市|