• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD?

    2021-05-06 08:56:00YudongZhang張玉棟JialeTang唐家樂YongjieHu胡永杰JieYuan袁杰LuluGuan管路路XingyuLi李星雨HushanCui崔虎山GuanghuiDing丁光輝XinyingShi石新穎KaidongXu許開東andShiweiZhuang莊仕偉
    Chinese Physics B 2021年4期
    關(guān)鍵詞:虎山家樂光輝

    Yudong Zhang(張玉棟), Jiale Tang(唐家樂), Yongjie Hu(胡永杰), Jie Yuan(袁杰),Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光輝),Xinying Shi(石新穎), Kaidong Xu(許開東), and Shiwei Zhuang(莊仕偉),?

    1School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116,China

    2Jiangsu Leuven Instruments Co. Ltd,Xuzhou 221300,China

    Keywords: dielectric strength, silicon nitride film, inductively coupled plasma chemical vapor deposition(ICP-CVD),hydrogen content

    1. Introduction

    Silicon nitride thin films are widely used in large-scale integrated circuits and semiconductor devices,[1]such as optoelectronics,microelectronics,and so on,[2]because of their excellent photoelectric performance,mechanical and passivation properties.[3]Demands for high-k films are becoming more and more urgent with the popularization of IC manufacturing process.[4]Silicon nitride films fabricated by inductively coupled plasma chemical vapor deposition (ICP-CVD) have found many applications in this field as passivation layers.[5]The low temperature of the deposition, the higher deposition rate,the adjustable refractive index,and the higher passivation quality are all reasons that silicon nitride films are increasingly supplanting other dielectric layers, such as SiO2.[6]In summary, silicon nitride layers are likely to lower the production costs and increase the efficiency of microcircuit.[7]

    Due to the continuous shrinking of integrated circuits in the field of microelectronics,[8]the tunneling current is too large and the gate control force is reduced.[9]The traditional silicon dioxide dielectric layer no longer meets the needs of microelectronic devices,[9]so high breakdown voltage materials to replace the gate dielectric layer with low breakdown voltage have become another research hotspot in the world.[10,11]Regarding the preparation of high breakdown voltage films, the high breakdown voltage materials have many requirements,[5,12]for example, the dielectric constant must be as large as possible,and the dielectric material must be thermodynamically stable on the silicon substrate.[6,8,13]The current research work on breakdown strength has been carried out on PECVD/LPCVD,[10,14]but this experiment uses ICPCVD model to prepare silicon nitride film,which can provide more energy,promote the decomposition of reaction gas,and make a film with greater breakdown strength.

    The hydrogen content in the silicon nitride film greatly affects the breakdown strength of the film.[15]Among the components of the film, the Si–H bond plays a fundamental role in the composition of the film. As the hydrogen content in the film changes, the electrical properties of the film will change.[6,16,17]When the hydrogen content in the film is high,the dangling bonds of silicon will be filled with H,which will increase the stability of the film and increase the breakdown strength.[18]However, regarding the relationship between the H content and film breakdown voltage,few experiments have been carried out on ICP-CVD machines, and the conclusions are not perfect,so our experiment uses ICP-CVD machines for film deposition.[19,20]

    In this article, we changed the gas flow ratio and RF power to deposit silicon nitride films with different hydrogen contents. First, the deposition rate of the silicon nitride film was measured to reflect the growth state of the film. Then,the composition of the film was obtained by Fourier transform infrared spectroscopy(FTIR)and Raman spectroscopy. Combining the dielectric strength of the film, we can obtain the relationship between the hydrogen content of the film and the dielectric strength, which is of great significance for the control of the dielectric strength of the silicon nitride film.

    2. Experimental procedure

    2.1. Sample preparations

    For all experiments, double-side polished, p-type (boron doped, > 50 ?·cm) (100)-oriented single-crystalline 4-inch silicon wafers have been used as substrates,with a thickness of 350±15μm.[21]Before the film is deposited,the substrate is wiped with alcohol to remove the dirt on the surface to ensure the accuracy of the experiment.

    Table 1. Run list and results.

    The deposition experiments were performed using a Leuven Instruments 3111 System ICP-CVD downstream reactor,with an additional capacitively coupled RF plasma source connected to the substrate electrode. Both plasma sources operate at a frequency of 13.56 MHz, whereas only the ICP source was activated during the deposition. The process chamber was evacuated to a base pressure of 15 mTorr, before N2and Ar were introduced together with SiH4via a gas distribution ring arranged next to the substrate electrode. The experimental plan is shown in Table 1. By adjusting the process conditions,it is ensured that the film thickness of the experimental samples is basically the same(about 200 nm), and the difference in film thickness is controlled so that the thickness will not become a factor affecting the breakdown voltage. The RF power was controlled at 25 W, 300 W, 400 W. On the other hand, under the same RF conditions, we controlled the ratio of N2/SiH4at 0.7,0.8,0.9,and 1.0,so that silicon nitride with different hydrogen content can be obtained. All depositions were performed at a substrate temperature of 150?C. In order to reduce the deviation of the results,the first few samples of the machine were not recorded,and the experimental samples were made when the equipment was stable. And when the process conditions change,repeat the experiment first,and then make the samples when the machine adapts to the experimental conditions.

    2.2. Analysis methods

    The thickness d and refractive index n(at λ =632.8 nm)of the deposited thin films were determined using the spectral reflectance method. The measurements were conducted with a SpecEI-2000 spectroscopic ellipsometer, which determines the reflectance between 400 nm and 1000 nm. FTIR measurements on a SHIMADZU IRAffinity-1 infrared spectroscope in transmission mode between 350 cm?1and 7800 cm?1with a resolution of 0.5 cm?1were carried out to investigate the chemical composition of the films. The infrared spectrum of a blank silicon wafer was taken as reference. After baseline correction of the measured spectra, the absorption peaks were normalized by the film thickness and by the height of the silicon lattice absorption peak at 610 cm?1, assuming an equal thickness of the substrates. Room temperature Raman spectra were obtained by a Raman spectrometer(Horiba,LABRAM HR EVO)using a wavelength of λ =633 nm laser to investigate the micro-structural composition of SiNxfilms.The hydrogen content was measured by D-SIMS equipment(CAMECA 7f-auto)at about 200 nm in the SiNxfilms.

    The dielectric strength was measured by applying a ramped voltage across the dielectric film. The film was deposited on a conductive bottom layer together with a metal layer deposited on top of the deposited film. The metal layer was patterned either through a shadow mask or by lift-off to form small test pads(0.05×0.05 mm). The voltage was then ramped up until a high current peak was observed, which is the breakdown of the film.[22]

    3. Results and discussion

    3.1. Deposition rate

    First, ICP power has a very important influence on the film deposition rate.[23]As can be seen from Fig.1,when the ICP power is 25 W,300 W,400 W,the deposition rate of the film will increase with the increase of the RF power.However,when the ICP power is 25 W and the N2/SiH4ratio is 0.7,0.8,0.9,the film deposition rate is 70.6 nm/min,72.8 nm/min,and 75.7 nm/min, respectively. The increase is not obvious, indicating that the energy transport conditions are not reached,and the reaction of film deposition is not sufficient. When the ICP power is 300 W and 400 W,the film deposition rate increases significantly with the N2/SiH4ratio, which indicates that the ICP power above 300 W can already meet the current reaction and can provide good film deposition energy.

    Another factor that affects the deposition rate is the gas flow ratio. The gases participating in the reaction in our experiment are N2and SiH4. Argon mainly plays the role of bombarding the plasma,but does not participate in the reaction of the experiment. Therefore,the ratio of N2/SiH4has a very important effect on the reaction.[24]It is worth noting that when the N2/SiH4ratio is 0.7 and the ICP power is 25 W, 300 W,400 W, the film deposition rate is 70.6nm/min, 72.4 nm/min,and 75.4 nm/min, respectively, and the deposition rate does not change much. The material transportation conditions in thin film deposition are limited, and the reaction of thin film deposition is not sufficient. When the ratio of N2/SiH4is 0.8,0.9,the film deposition rate is very obvious with the increase of the ICP power,which can indicate that the ratio of N2/SiH4above 0.8 can meet the current reaction and can provide sufficient gas supply.

    Fig.1. Variation of deposition rate under different RF power and N2/SiH4 ratio.

    3.2. Chemical analyses

    The conditions in Table 2 were used to deposit film samples A4, A5, A6, and A7. It can be seen from the FTIR diagram that when the flow ratio of N2/SiH4is changed, the chemical composition of the film also changes dramatically.In Fig.2, the absorption peak of the film is marked, from which the chemical bond density of the film and the chemical composition of the film can be known. First, the Si–H bond increases sharply with the increase of the N2/SiH4ratio. When the proportion of N2increases,the concentration of SiH4cannot keep up with the reaction concentration of N2,the decomposition rate of SiH4in the chamber will be suppressed,and the residual H will increase,which will make up for the Si dangling bonds of the SiH4during the reaction, thus the Si–H bond density will increase. The Si dangling bonds on the SiH4film are filled with H,which makes the film more stable,so that when electrons pass through the film, it is not easy to produce defects and be broken down,so the dielectric strength of the film is increased. Therefore, the dielectric strengths of A4,A5,A6,and A7 measured by the experiment increase sequentially, which is in line with theoretical expectations and can prove our conjecture. At the same time,the obvious peaks of the N–H bond and O-H bond of the A6 sample also indicate the increase in the H content in the sample, the increase in the probability of binding to N and O atoms,and the overall H bond density reaches the maximum. Finally, the Si–O and Si–N bonds of the A4, A5, A6, and A7 samples increase in turn, because the deposition speed of the film is accelerated,the formation of silicon nitride film increases,and the concentration of Si involved in the reaction also increases, making the film rich in silicon. This increases the refractive index and increases the overall stability of the film.

    Table 2. Influence of the gas ratio on the infrared absorption peaks.

    Fig.2. FTIR data of SiNx films.

    Fig.3. Micro Raman spectra of A5,A6,A7. The inset shows the general scan.

    Micro Raman spectroscopy(Fig.3)was used to confirm the phase of the deposited silicon nitride. The general scans for A5,A6,A7 samples are shown in the inset. Sharp peak at 520 cm?1is of Si (substrate used for deposition) with peaks around 950 cm?1confirming the presence of SiNx. It can be seen from the figure that the intensity of Si–N bonds of the A5,A6,and A7 samples increases sequentially,and it can be concluded that as the N2/SiH4flow ratio increases,the deposition concentration of silicon nitride increases. It is mutually confirmed with the conclusion drawn in FTIR that the intensity of Si–N bonds in the film increases, and the stability increases correspondingly, thereby increasing the dielectric strength of the film.

    3.3. The hydrogen content in the films

    In order to obtain the distribution of hydrogen in the film,D-SIMS equipment was used to measure the hydrogen content in the silicon nitride film (as shown in Fig.4). In the depth range of 0–100 nm, the hydrogen content of A5, A6, and A7 samples has little difference. Because in the shallow layer of the film, the gas flow has little effect on the deposition of the film,and a sufficient amount of gas can deposit silicon nitride films with almost the same composition and chemical bonds.At the depth of 100–120 nm, the hydrogen content of the A5 sample begins to drop sharply. At this depth,under the experimental conditions of the A5 sample,the nitrogen flow rate is not enough to completely supply the reaction,the N–H bonds and Si–H bonds in the film are reduced, and the overall hydrogen content is reduced. At the depth of 180–200 nm, the hydrogen content of the A6 and A7 samples begins to gradually decrease, and the hydrogen contents of the A6 and A7 samples are almost the same. This depth is close to the base of the film,so the hydrogen content in the film will decrease.Under the experimental conditions of the A6 and A7 samples,the supply of nitrogen is saturated. Even if the ratio of N2/SiH4is increased, the hydrogen content in the silicon nitride film cannot be greatly changed. In the end,the hydrogen contents of the two samples are almost the same.

    Fig.4. Hydrogen content in the films by D-SIMS.

    3.4. Dielectric strength of the film

    From Fig.5(a),we can explore the influence of N2/SiH4ratio and RF power on the dielectric strength. Based on the above discussion and the trend in the picture, we can clearly find that an increase in the proportion of N2/SiH4will lead to an increase in the dielectric strength. This is mainly because the increase in N2flow makes the dangling bonds of Si in the film replenished by H,which increases the ability of the film to store charges and thus increases the dielectric strength. On the other hand,increasing the RF power will reduce the dielectric strength of the film.When the power of the radio frequency increases,the number of holes in the film will increase,and the stability of the film will decrease, thereby reducing the ability to store charges, resulting in a decrease in the dielectric strength. When the RF power is 25 W,300 W,and 400 W,the dielectric strength of the film decreases sequentially,this is in line with our theoretical expectations.

    The deposition rate of the film is also closely related to the dielectric strength.[25]From Fig.5(b), we can see that as the deposition rate increases,the dielectric strength of the film shows an upward and downward trend around 75 nm/min,and then shows a continuous upward trend after 80 nm/min. In the initial rising curve,when the deposition rate of the film increases,the material produced is mainly silicon nitride with a small amount of N–H and Si–H bonds, so the material tends to be stable and the dielectric strength of the film increases.With the further increase of the film deposition rate,the Si–H and N–H bonds in the film replace more silicon nitride,which leads to the instability of the material,so the dielectric strength of the film decreases. With the addition of a large number of Si–H bonds, the Si–H bonds in the film play a leading role,thereby increasing the role of H to compensate for the dangling bonds of Si,increasing the film’s ability to store charges and increasing the dielectric strength of the film.

    Fig.5. The effect of (a) and deposition rate (b) on dielectric strength.

    4. Conclusion

    In this work, the RF energy and gas flow are changed to obtain silicon nitride films with different hydrogen contents.The increase of the Si–N bond indicates that the silicon nitride content of the film is increased, and the film is more stable.Through the measurement of the dielectric strength of the sample,it is shown that lower RF power and higher N2/SiH4ratio will increase the dielectric strength of the silicon nitride film.Low RF power will increase the hydrogen content in the film,and hydrogen will not be combined with high energy to be discharged out of the chamber,so the dielectric strength will increase.A high ratio of N2/SiH4not only promotes the increase of N content in the film,but also increases the probability of Si bonding to form bonds,thereby forming more Si–H bonds in the film and increasing the hydrogen content in the film. It can be seen that increasing the hydrogen content in the film will increase the dielectric strength of the film, which is of great significance for the manufacture of films with high dielectric strength and has a wide range of MEMS applications.

    猜你喜歡
    虎山家樂光輝
    丹東虎山長城
    新少年(2024年11期)2024-12-31 00:00:00
    丹東虎山長城
    新少年(2023年5期)2023-05-06 20:04:57
    深圳市家樂威頓家具有限公司
    深圳市家樂威頓家具有限公司
    深圳市家樂威頓家具有限公司
    Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
    三山虎山血戰(zhàn)輝映青史
    源流(2021年11期)2021-03-25 10:32:07
    春在飛
    Immunohistochemical identification of dynorphin A and Kappa opioid receptor-1 in the digestive system of scallop Chlamys farreri*
    就在家門口
    世界家苑(2018年11期)2018-11-20 10:50:58
    又爽又黄无遮挡网站| 欧美成人a在线观看| 最近视频中文字幕2019在线8| 亚洲黑人精品在线| 亚洲男人的天堂狠狠| a级一级毛片免费在线观看| 欧美日韩综合久久久久久 | 久久国内精品自在自线图片| 特大巨黑吊av在线直播| 精品日产1卡2卡| 在线看三级毛片| 国内精品宾馆在线| 嫩草影院入口| 哪里可以看免费的av片| 亚洲自偷自拍三级| 99热网站在线观看| 久久久久久久午夜电影| 国产精品精品国产色婷婷| 日本免费a在线| 在线观看美女被高潮喷水网站| 中文字幕熟女人妻在线| 国产一区二区激情短视频| 国产精品日韩av在线免费观看| 丰满乱子伦码专区| www.www免费av| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图av天堂| 深夜a级毛片| 淫秽高清视频在线观看| 国产人妻一区二区三区在| 国产高清三级在线| 日韩中文字幕欧美一区二区| 日韩欧美一区二区三区在线观看| 色精品久久人妻99蜜桃| 真实男女啪啪啪动态图| 日本熟妇午夜| 中国美白少妇内射xxxbb| 亚洲自偷自拍三级| 国产伦精品一区二区三区视频9| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| 十八禁国产超污无遮挡网站| 高清在线国产一区| 欧美成人免费av一区二区三区| 婷婷丁香在线五月| 少妇人妻精品综合一区二区 | 波多野结衣巨乳人妻| 内射极品少妇av片p| 精品福利观看| 99视频精品全部免费 在线| 国内精品美女久久久久久| 精品人妻1区二区| 五月伊人婷婷丁香| 最新中文字幕久久久久| 精品久久国产蜜桃| 久久久久久久久大av| 日韩在线高清观看一区二区三区 | 免费av不卡在线播放| 亚洲第一区二区三区不卡| 日韩精品青青久久久久久| 男女啪啪激烈高潮av片| 日韩欧美国产一区二区入口| 搡老岳熟女国产| 久久久久久伊人网av| 久久精品国产清高在天天线| 日韩大尺度精品在线看网址| 午夜视频国产福利| 国产成人一区二区在线| 日本熟妇午夜| 精品一区二区三区人妻视频| 日韩欧美国产一区二区入口| 22中文网久久字幕| 2021天堂中文幕一二区在线观| 国产精品久久久久久精品电影| 亚洲综合色惰| 毛片一级片免费看久久久久 | 亚洲专区中文字幕在线| 18禁在线播放成人免费| 国产精品久久电影中文字幕| 免费观看在线日韩| 国国产精品蜜臀av免费| 国产日本99.免费观看| 免费av观看视频| 国产精品久久久久久亚洲av鲁大| 丰满乱子伦码专区| 亚洲欧美精品综合久久99| 久久久久久久久久成人| 欧美bdsm另类| videossex国产| 女的被弄到高潮叫床怎么办 | 精品欧美国产一区二区三| 天堂网av新在线| 国产女主播在线喷水免费视频网站 | 看十八女毛片水多多多| 亚洲av.av天堂| 日韩高清综合在线| 亚洲av成人精品一区久久| 一区二区三区激情视频| 淫秽高清视频在线观看| 国产69精品久久久久777片| 久久久久免费精品人妻一区二区| 五月伊人婷婷丁香| 亚洲精华国产精华精| 国产综合懂色| 成人毛片a级毛片在线播放| 亚洲熟妇熟女久久| 啦啦啦啦在线视频资源| 亚洲av二区三区四区| 久久婷婷人人爽人人干人人爱| 亚洲精品久久国产高清桃花| 天堂av国产一区二区熟女人妻| 大型黄色视频在线免费观看| 欧美在线一区亚洲| 一本精品99久久精品77| 中文字幕av成人在线电影| 国产一区二区亚洲精品在线观看| 国产视频内射| 国产探花极品一区二区| 国产精品,欧美在线| 99riav亚洲国产免费| 色尼玛亚洲综合影院| 网址你懂的国产日韩在线| 久久这里只有精品中国| 99精品久久久久人妻精品| 小蜜桃在线观看免费完整版高清| av中文乱码字幕在线| 在线观看美女被高潮喷水网站| 婷婷丁香在线五月| 日本-黄色视频高清免费观看| 国产av不卡久久| 熟女人妻精品中文字幕| 国产精品99久久久久久久久| 热99在线观看视频| 简卡轻食公司| 亚洲va日本ⅴa欧美va伊人久久| avwww免费| 最后的刺客免费高清国语| 老师上课跳d突然被开到最大视频| 成人特级黄色片久久久久久久| 亚洲18禁久久av| 欧美色视频一区免费| 淫妇啪啪啪对白视频| 国内少妇人妻偷人精品xxx网站| 我要看日韩黄色一级片| 亚洲国产精品久久男人天堂| 亚洲精品亚洲一区二区| av视频在线观看入口| 亚洲国产精品久久男人天堂| 午夜福利在线观看免费完整高清在 | 色哟哟哟哟哟哟| 琪琪午夜伦伦电影理论片6080| 在线看三级毛片| 又黄又爽又免费观看的视频| 亚洲av成人av| 欧美中文日本在线观看视频| 国产熟女欧美一区二区| 有码 亚洲区| 成人二区视频| 又紧又爽又黄一区二区| 欧美日韩中文字幕国产精品一区二区三区| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 久久精品影院6| 国产视频内射| 又紧又爽又黄一区二区| 日韩强制内射视频| 直男gayav资源| 身体一侧抽搐| 综合色av麻豆| 久99久视频精品免费| 老师上课跳d突然被开到最大视频| 久久久久久久久久成人| 日本黄大片高清| 国产91精品成人一区二区三区| 午夜精品在线福利| 伊人久久精品亚洲午夜| 天堂√8在线中文| 性欧美人与动物交配| 99久久九九国产精品国产免费| 免费av毛片视频| 男人和女人高潮做爰伦理| 麻豆一二三区av精品| 国产 一区精品| 夜夜爽天天搞| 国产精品人妻久久久久久| 一级a爱片免费观看的视频| 色精品久久人妻99蜜桃| 日韩欧美在线乱码| 亚洲成人中文字幕在线播放| 一本一本综合久久| 国产精品99久久久久久久久| 国产免费av片在线观看野外av| 一本一本综合久久| 日韩精品中文字幕看吧| 床上黄色一级片| 日本撒尿小便嘘嘘汇集6| 少妇熟女aⅴ在线视频| 日韩欧美一区二区三区在线观看| 国产精品自产拍在线观看55亚洲| 精品日产1卡2卡| 动漫黄色视频在线观看| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 国产极品精品免费视频能看的| 麻豆国产97在线/欧美| 欧美丝袜亚洲另类 | 真人一进一出gif抽搐免费| 在线国产一区二区在线| 男女做爰动态图高潮gif福利片| 午夜爱爱视频在线播放| 在线观看66精品国产| 国产国拍精品亚洲av在线观看| 国产亚洲欧美98| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇中文字幕五十中出| 99热这里只有精品一区| 大型黄色视频在线免费观看| 久久久久国内视频| 欧美激情国产日韩精品一区| av在线观看视频网站免费| 十八禁网站免费在线| 午夜免费成人在线视频| 精品人妻视频免费看| 精品久久久久久久久av| 欧美性猛交╳xxx乱大交人| 国产精品一区www在线观看 | 人人妻人人澡欧美一区二区| 舔av片在线| 国产v大片淫在线免费观看| 国内精品一区二区在线观看| www.色视频.com| 嫁个100分男人电影在线观看| 一本精品99久久精品77| 国产女主播在线喷水免费视频网站 | 国产av一区在线观看免费| 一个人看视频在线观看www免费| 久久精品国产自在天天线| 91久久精品国产一区二区成人| 欧美国产日韩亚洲一区| 亚洲人成网站在线播放欧美日韩| 亚洲综合色惰| 成年人黄色毛片网站| 淫妇啪啪啪对白视频| 成年女人看的毛片在线观看| 99久久精品热视频| 男女视频在线观看网站免费| 国产久久久一区二区三区| 又黄又爽又免费观看的视频| 欧美日韩精品成人综合77777| 搡老妇女老女人老熟妇| 成人二区视频| 国产精品国产高清国产av| 久久久久久九九精品二区国产| 国产一区二区亚洲精品在线观看| av女优亚洲男人天堂| 高清在线国产一区| 国产精品1区2区在线观看.| 91av网一区二区| av在线天堂中文字幕| 日韩亚洲欧美综合| 直男gayav资源| 欧美人与善性xxx| 久久精品人妻少妇| 欧美一区二区国产精品久久精品| bbb黄色大片| 真实男女啪啪啪动态图| 国产老妇女一区| 最新中文字幕久久久久| 极品教师在线免费播放| 精品欧美国产一区二区三| 国产精品电影一区二区三区| 国产一区二区三区视频了| 久久人人精品亚洲av| 在线观看一区二区三区| 欧美一区二区国产精品久久精品| 欧美一区二区亚洲| 一级av片app| 国产精品1区2区在线观看.| 99久久中文字幕三级久久日本| 国模一区二区三区四区视频| 在线免费观看不下载黄p国产 | 国产三级中文精品| 久久人人爽人人爽人人片va| 99精品久久久久人妻精品| 国产精品野战在线观看| 亚洲精品一区av在线观看| 有码 亚洲区| 国内精品久久久久久久电影| 欧美激情国产日韩精品一区| 精华霜和精华液先用哪个| 国产精品三级大全| 亚洲成人久久爱视频| 真人做人爱边吃奶动态| 人人妻人人澡欧美一区二区| 一夜夜www| 亚洲男人的天堂狠狠| 在线观看免费视频日本深夜| 99热只有精品国产| 午夜老司机福利剧场| 国产精品一区二区免费欧美| 大型黄色视频在线免费观看| 国产一区二区在线av高清观看| 熟女人妻精品中文字幕| 国产精品电影一区二区三区| 日本免费一区二区三区高清不卡| 欧美性猛交黑人性爽| 欧美色欧美亚洲另类二区| 亚洲无线观看免费| 色在线成人网| 少妇猛男粗大的猛烈进出视频 | 有码 亚洲区| 男插女下体视频免费在线播放| 啦啦啦韩国在线观看视频| 99国产极品粉嫩在线观看| а√天堂www在线а√下载| 国产久久久一区二区三区| 亚洲中文字幕日韩| 有码 亚洲区| 国产视频内射| 国产探花极品一区二区| 成人国产麻豆网| 久久九九热精品免费| 日韩欧美在线乱码| 丰满的人妻完整版| 国内精品久久久久久久电影| 亚洲国产精品合色在线| 久久久久久伊人网av| 一本久久中文字幕| 十八禁国产超污无遮挡网站| 永久网站在线| 亚洲国产欧美人成| 精品久久久久久久久久免费视频| 国产91精品成人一区二区三区| 国产精品久久久久久久久免| 日韩精品青青久久久久久| 亚洲欧美清纯卡通| 成人特级黄色片久久久久久久| 久久亚洲真实| 看免费成人av毛片| 国产黄色小视频在线观看| 人人妻人人看人人澡| 哪里可以看免费的av片| 精品国内亚洲2022精品成人| 波多野结衣高清作品| 亚洲人成网站高清观看| 美女黄网站色视频| 国产aⅴ精品一区二区三区波| 色噜噜av男人的天堂激情| 一级黄片播放器| 一区二区三区高清视频在线| 一本久久中文字幕| 夜夜看夜夜爽夜夜摸| 嫩草影院入口| 波野结衣二区三区在线| 亚洲精品影视一区二区三区av| 欧美激情国产日韩精品一区| 日本a在线网址| 国产精品人妻久久久久久| 亚洲熟妇熟女久久| 国产精品电影一区二区三区| 国产黄a三级三级三级人| 亚洲人成网站高清观看| 久久中文看片网| 亚洲国产精品久久男人天堂| 国产不卡一卡二| 国产精品久久久久久久久免| eeuss影院久久| 国产精品久久久久久久久免| 国产不卡一卡二| 如何舔出高潮| 欧美bdsm另类| 中文字幕免费在线视频6| 亚洲成人中文字幕在线播放| 老司机福利观看| 亚洲国产精品sss在线观看| 97超级碰碰碰精品色视频在线观看| 91午夜精品亚洲一区二区三区 | 日韩人妻高清精品专区| 可以在线观看的亚洲视频| 999久久久精品免费观看国产| 中国美女看黄片| 欧美不卡视频在线免费观看| 亚洲黑人精品在线| 国产精品98久久久久久宅男小说| 欧美xxxx黑人xx丫x性爽| 又黄又爽又免费观看的视频| 99久久无色码亚洲精品果冻| 国产精品1区2区在线观看.| 日韩av在线大香蕉| 伦理电影大哥的女人| 狠狠狠狠99中文字幕| 欧美人与善性xxx| 一级毛片久久久久久久久女| 欧美+日韩+精品| 欧美一区二区亚洲| 免费看光身美女| 精品免费久久久久久久清纯| 免费看光身美女| 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 亚洲aⅴ乱码一区二区在线播放| 国产探花极品一区二区| 啪啪无遮挡十八禁网站| 亚洲精品一卡2卡三卡4卡5卡| 免费人成视频x8x8入口观看| 三级男女做爰猛烈吃奶摸视频| 少妇猛男粗大的猛烈进出视频 | 欧美高清成人免费视频www| 丰满乱子伦码专区| 91狼人影院| 偷拍熟女少妇极品色| 91狼人影院| 欧美日韩乱码在线| 久久久久国产精品人妻aⅴ院| 日本免费a在线| 日日夜夜操网爽| 成人国产麻豆网| 免费观看人在逋| 欧美成人a在线观看| 国内久久婷婷六月综合欲色啪| 一进一出抽搐gif免费好疼| 亚洲av一区综合| 亚洲不卡免费看| av女优亚洲男人天堂| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 一级黄片播放器| 在线天堂最新版资源| av在线天堂中文字幕| 一本精品99久久精品77| 免费看a级黄色片| 亚洲欧美清纯卡通| 免费看光身美女| 国产一区二区激情短视频| 亚洲精品乱码久久久v下载方式| 国产三级中文精品| 男插女下体视频免费在线播放| 久久精品国产亚洲av涩爱 | 国产久久久一区二区三区| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 丰满乱子伦码专区| x7x7x7水蜜桃| 亚洲电影在线观看av| 久久久国产成人免费| 亚洲中文字幕一区二区三区有码在线看| 久久午夜亚洲精品久久| 成人国产一区最新在线观看| 成人鲁丝片一二三区免费| 婷婷色综合大香蕉| 高清在线国产一区| 哪里可以看免费的av片| 亚洲无线观看免费| 天天躁日日操中文字幕| 日韩中文字幕欧美一区二区| 18禁黄网站禁片午夜丰满| 欧美日本亚洲视频在线播放| 欧美高清性xxxxhd video| 熟妇人妻久久中文字幕3abv| 日韩av在线大香蕉| 日本成人三级电影网站| 99精品久久久久人妻精品| 99国产极品粉嫩在线观看| 久久草成人影院| avwww免费| 国产 一区 欧美 日韩| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 亚洲av一区综合| 看十八女毛片水多多多| 春色校园在线视频观看| 亚洲精品亚洲一区二区| 人妻久久中文字幕网| 九九久久精品国产亚洲av麻豆| 国产在线精品亚洲第一网站| 日韩强制内射视频| 婷婷亚洲欧美| 日本欧美国产在线视频| 日韩一本色道免费dvd| 免费看av在线观看网站| 国产私拍福利视频在线观看| 看片在线看免费视频| 狂野欧美激情性xxxx在线观看| 亚洲av中文字字幕乱码综合| a级毛片免费高清观看在线播放| 午夜福利成人在线免费观看| 久久婷婷人人爽人人干人人爱| 天堂网av新在线| 欧美黑人欧美精品刺激| 国产av麻豆久久久久久久| 亚洲18禁久久av| 色5月婷婷丁香| 极品教师在线免费播放| 免费av不卡在线播放| 97热精品久久久久久| 午夜福利在线观看免费完整高清在 | 久久久精品欧美日韩精品| 九色国产91popny在线| 午夜影院日韩av| 亚洲精品在线观看二区| 制服丝袜大香蕉在线| 99热这里只有精品一区| 熟女电影av网| 国产亚洲av嫩草精品影院| 日韩国内少妇激情av| 国产精品一及| 亚洲av电影不卡..在线观看| 91久久精品电影网| 桃红色精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 中国美女看黄片| 国产爱豆传媒在线观看| 亚洲人成伊人成综合网2020| 久久这里只有精品中国| 老师上课跳d突然被开到最大视频| 精品久久国产蜜桃| 91在线观看av| 狂野欧美激情性xxxx在线观看| 韩国av一区二区三区四区| 久久久精品欧美日韩精品| 日韩国内少妇激情av| 日韩av在线大香蕉| 三级国产精品欧美在线观看| 久9热在线精品视频| 久久人人精品亚洲av| 成年女人毛片免费观看观看9| 国产私拍福利视频在线观看| 久久久久久久亚洲中文字幕| 狂野欧美激情性xxxx在线观看| av在线亚洲专区| 男插女下体视频免费在线播放| 999久久久精品免费观看国产| 性欧美人与动物交配| 精品久久久久久久久亚洲 | av中文乱码字幕在线| 在线免费观看不下载黄p国产 | 日本撒尿小便嘘嘘汇集6| 97人妻精品一区二区三区麻豆| 亚洲av不卡在线观看| 波多野结衣高清作品| 午夜精品一区二区三区免费看| 日本爱情动作片www.在线观看 | 中文字幕av成人在线电影| 欧美极品一区二区三区四区| 黄色女人牲交| 日日摸夜夜添夜夜添av毛片 | 国产中年淑女户外野战色| 日本在线视频免费播放| 亚洲久久久久久中文字幕| 人妻夜夜爽99麻豆av| 最近最新免费中文字幕在线| 欧美最新免费一区二区三区| 精品免费久久久久久久清纯| 国内精品一区二区在线观看| 国产三级中文精品| 久久精品国产亚洲网站| 国产男靠女视频免费网站| 在线免费观看不下载黄p国产 | 色综合亚洲欧美另类图片| 日本三级黄在线观看| 2021天堂中文幕一二区在线观| 简卡轻食公司| 99久久九九国产精品国产免费| 69人妻影院| 又黄又爽又免费观看的视频| 男插女下体视频免费在线播放| 国产一区二区三区视频了| 男插女下体视频免费在线播放| 身体一侧抽搐| 国产亚洲精品久久久com| 国产精品一区二区性色av| 99久久精品国产国产毛片| 三级国产精品欧美在线观看| 99久久精品国产国产毛片| 人妻夜夜爽99麻豆av| 美女cb高潮喷水在线观看| 国产高潮美女av| 在现免费观看毛片| 亚洲成人久久性| 欧美色视频一区免费| 日韩人妻高清精品专区| 熟女人妻精品中文字幕| 亚洲真实伦在线观看| 久久天躁狠狠躁夜夜2o2o| 国产一区二区三区视频了| 在现免费观看毛片| av天堂在线播放| 两人在一起打扑克的视频| 国产三级在线视频| 亚洲人成网站在线播| 久久亚洲精品不卡| 午夜免费男女啪啪视频观看 | 午夜福利视频1000在线观看| 精品人妻视频免费看| 免费在线观看日本一区| 超碰av人人做人人爽久久| 12—13女人毛片做爰片一| 女人被狂操c到高潮| 久久人人爽人人爽人人片va| 欧美日韩国产亚洲二区| 最近在线观看免费完整版| 男人舔奶头视频| 国产成人a区在线观看| 夜夜爽天天搞| 国产女主播在线喷水免费视频网站 | 床上黄色一级片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品sss在线观看| 人妻久久中文字幕网| 欧美bdsm另类| 久久久久久久久久久丰满 | 国产黄a三级三级三级人| 啦啦啦观看免费观看视频高清| 狂野欧美激情性xxxx在线观看| 午夜免费男女啪啪视频观看 |