• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time?

    2021-05-06 08:55:38YanYanFeng馮艷艷XiaoDiNiu牛瀟迪YongHuiXu徐永輝andWenYang楊文
    Chinese Physics B 2021年4期

    Yan-Yan Feng(馮艷艷), Xiao-Di Niu(牛瀟迪), Yong-Hui Xu(徐永輝), and Wen Yang(楊文),?

    1Department of Chemistry and Bioengineering,Guilin University of Technology,Guilin 541004,China

    2Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials,

    Department of Chemistry and Bioengineering,Guilin University of Technology,Guilin 541004,China

    Keywords: CO2 adsorption,MgAl-LDHs,one-pot hydrothermal method,intercalated anion,alkaline etching

    1. Introduction

    In recent years,with the fast speed of population growth and social development, human beings need more energy,along with the continuous progress of modernization and automation.[1]Up to date, most of the energy comes from fossil resources; however, the inadequate combustion of fossil resources and other irregular use of fossil resources not only wasted the earth’s precious resources,but also produced a large number of toxic and harmful gases and fuel waste,resulting in serious environmental pollution.[2]The burning of fossil resources has produced a large amount of CO2, which can cause obvious greenhouse effect and other serious environmental problems on earth.[3–5]This phenomenon has attracted worldwide attention,and in order to reduce CO2emission, the relevant factories have to install and design the process technology for CO2capture. Hence, it is necessary to strengthen the research on CO2adsorption.

    There are many solid adsorbents to deal with CO2, but more efficient methods with fast adsorption rate and low cost are needed. According to the adsorption temperature,CO2adsorbents can be divided into three types: low-temperature adsorbent(adsorption temperature below 200?C),[6–8]mediumtemperature adsorbent (adsorption temperature between 200 and 400?C),[9]and high-temperature adsorbent (adsorption temperature above 400?C).[10]For low-temperature adsorption,great efforts have been devoted to advancing the capture performance. Guo et al.[6]prepared a series of porous activated carbons derived from sugarcane bagasse,and compared with the physically activated carbons,the NaOH-activated carbon showed high dynamic CO2uptake of 1.31 mmol/g at 60?C under 10%CO2flowing gas.Verrecchia et al.[7]investigated the three main factors affecting the synthesis of zeolites from coal fly ash, and then achieved the adsorbent with excellent CO2adsorption performance as compared to commercial 13X.Chen et al.[8]synthesized the premodified Li/Al hydrotalcite impregnated with polyethylenimine(PEI),and with PEI loading of 40%,the functionalized adsorbent obtained the highest adsorption capacity of 1.723 mmol/g at 50?C.

    Among abundant low-temperature solid adsorbents,MgAl layered double hydroxides (MgAl-LDHs) have got a great deal of attention. LDHs, consisting of positively charged layers and interlayer anions, belong to anionic layered compounds. Owing to the mobility and strong interchangeability of interlayer anions,[11–13]LDHs have been applied in many fields,such as adsorption,[14–16]catalysis,[17–19]electrochemistry,[20,21]and flame retardant.[22,23]In terms of adsorption applications, MgAl-LDHs could not only remove CO2from industrial exhaust,but also collect the anionic pollutants in the environment and gas pollution,etc. To date,numerous research on MgAl-LDHs has focused on improving the preparation methods,including changing the molar ratio of Mg/Al,[24]modifying with alkali metals,replacing the intercalation anions,[25]and so on.[26,27]Among various preparation methods, the co-precipitation method is the most commonly used. However, for the obtained adsorbents, it is disadvantageous to CO2adsorption due to their small specific surface area and stacked structure. Therefore, it is of great significance to promote the CO2uptake of MgAl-LDHs with loose and porous structure.

    In the present study, MgAl-LDHs are obtained via the one-pot hydrothermal method. Due to the amphoteric nature of Al species, NaOH is used to remove the Al species in the LDHs,[28]and appropriate treating time with NaOH solution would contribute meaningfully to forming some nanopores and increasing the available specific surface area, which ultimately expose more effective adsorption sites for CO2uptake.Consequently, we investigate the effect of intercalated anion and alkaline etching time on the structure and morphology of MgAl-LDHs for use in CO2uptake. Adjusting the intercalated anion and alkaline etching time of LDHs can tailor the structural characteristics of the resultant adsorbents,which in turn tune their adsorption performances,for MgAl-LDHs with high specific surface area and large pore volume are beneficial to the CO2adsorption process. After that,the adsorbents are characterized by x-ray diffraction (XRD), N2adsorption,scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively, followed by adsorption measurement of CO2. In order to explore the adsorption mechanism,the adsorption data are fitted by the firstorder,pseudo-second-order and Elovich models,respectively.In general, this work would provide meaningful guidance for designing MgAl-LDHs to improve CO2adsorption performance.

    2. Experimental details

    2.1. Materials

    In experiment, magnesium nitrate hexahydrate (99.0%,Mg(NO3)2·6H2O), aluminum nitrate nonahydrate (99.0%,Al(NO3)3·9H2O), magnesium chloride hexahydrate (98.0%,MgCl2·6H2O), aluminum chloride hexahydrate (97.0%,AlCl3·6H2O), magnesium acetate tetrahydrate (99.0%,Mg(CH3COO)2·4H2O), aluminum acetate (Al(CH3COO)3),urea (99.0%, H2NCONH2), and sodium hydroxide (96.0%,NaOH) were analytical grade and purchased from Xilong Chemical Co. Ltd., Guangzhou, China. All the chemicals were used without further purification.

    2.2. Preparation of the samples

    2.2.1. Preparation of MgAl-LDHs intercalated with different anions

    2.2.2. Preparation of the adsorbents alkaline-etched by 3.0 mol/L NaOH

    The adsorbents alkaline-etched by 3.0 mol/L NaOH were prepared as follows.[28]A 50 mL NaOH solution with 0.2 g of MgAl(Cl)was fully stirred at room temperature for 30 min,followed by alkaline etching reaction at 95?C for 3,6 and 9 h,respectively. Finally, the product was washed with water and ethanol for several times and dried at 100?C overnight,named as MgAl(Cl)-3,MgAl(Cl)-6,and MgAl(Cl)-9,respectively.

    2.3. Characterization

    XRD patterns of the samples were characterized by a power x-ray diffractometer(PANalytical X’Pert3)with Cu Kαradiation.[21]The pore structure of the samples was obtained using N2physisorption at 77 K by a Micromeritics ASAP Tristar II 3020 equipment (Micromeritics Instrument Corporation). Prior to the analysis, the sample was degassed at 150?C for 3 h. The morphology of the samples was observed using a field-emission scanning electron microscope(SEM, Hitachi SU5000). FT-IR spectra were conducted on a Fourier transform infrared spectrometer(Nicolet iS10,American Thermo Scientific Company)in the wavelength range of 400–4000 cm?1.

    2.4. CO2 adsorption capacity evaluation

    The CO2adsorption performance of the samples was tested by a thermogravimetric analyzer (SDT Q500, TA).[31]Appropriately 10 mg of the sample was put into an alumina pan, and He was injected as a protective gas with a gas flow of 100 mL/min. Next, the sample was raised to 75?C with a heating rate of 5?C/min. After stabilizing at 75?C for 30 min,the gas was switched to CO2with a gas flow of 100 mL/min,and the adsorption process was kept at 75?C for 60 min. The adsorption amount of CO2was calculated according to the weight change of the sample during the adsorption process.

    The first-order (Eq. (1)),[32]the pseudo-second-order(Eq. (2)),[33]and Elovich (Eq. (3))[34]kinetic models are applied over the as-prepared adsorbents,and the kinetic models are expressed as follows:

    where qe,1(qe,2) is the adsorption capacity of MgAl-LDHs at equilibrium (mg/g); qtis the adsorption capacity (mg/g)of CO2by the adsorbent at time t (min); k1(1/min), k2(g/(mg·min)) and k are the first-order, pseudo-second-order and Elovich rate constants, respectively; β is the relationship between surface coverage and activation energy.

    3. Results and discussion

    3.1. Characterization analyses

    The XRD patterns of the samples are presented in Fig.1.Characteristic diffraction features of the LDHs structure appear in all MgAl-LDHs samples at 2θ of 11.5?, 23.6?,35.0?,39.6?and 47.1?, corresponding to the reflections of (003),(006), (009), (015), and (018), respectively.[35]The sample MgAl(Cl) synthesized with chloride salts as precursors shows higher crystallinity than the samples MgAl(NO) and MgAl(Ac), suggesting that the crystallinity is affected by the precursor nature. In addition, the characteristic peaks of Mg5(CO3)4(OH)2·4H2O(brucite)are observed for MgAl(Ac)using acetate salts as precursors.As for the alkaline-etched adsorbents shown in Fig.1(b), the characteristic peak of LDHs also appears, and the characteristic peaks at 2θ of 23.6?and 47.1?change from single peak to double peaks. As the samples undergo alkaline etching, the characteristic peaks of Mg6Al2(OH)18·4.5H2O would obviously appear, while the characteristic peaks of Mg4Al2(OH)14·3H2O decrease,revealing that the Al species are partly removed. With the further increase of the alkaline etching time, the characteristic peaks of Mg4Al2(OH)14·3H2O are gradually weakened.

    N2adsorption isotherms of the samples are depicted in Fig.2. All the samples exhibit typical type-III isotherms with low N2uptake at low relative pressure(P/P0)and high N2uptake at high P/P0. For MgAl-LDHs intercalated with different anions, the adsorption volume of MgAl(Cl)is highest among the three samples, while the adsorption volume of MgAl(Ac)is lowest. With the alkaline etching of NaOH,the N2adsorption capacity depicts a reverse U-shaped trend. As the alkaline etching time increases,the N2uptake of MgAl(Cl)-3 gradually increases,and the adsorption capacity of MgAl(Cl)-6 reaches the maximum. With further increase of the alkaline etching time, the adsorption capacity of MgAl(Cl)-9 obviously decreases. The above results indicate that the alkaline etching time has a significant influence on the pore structure of the MgAl-LDHs.

    Fig.1. XRD patterns of the samples.

    Fig.2. N2 adsorption isotherms of the samples.

    Figure 3 displays pore size distributions (PSD) of the samples computed with the Barrett–Joyner–Halenda (BJH)method. As shown in Fig.3, all the samples possess a distribution of pores within the diameters of 0–50 nm, confirming the formation of mesoporous materials,which is attributed to the stacked structure of LDHs. It is noted that the mesopore volume of MgAl(Cl) within 2–50 nm is higher than that of MgAl(Ac)and MgAl(NO),in good agreement with the N2adsorption isotherms,and is further expanded after alkaline etching treatment. With the alkaline etching time of 9 h,the pores of MgAl(Cl)-9 collapse and the corresponding mesopore volume declines. For the alkaline-etched adsorbents, MgAl(Cl)-6 possesses huge number of micropores and mesopores, revealing that alkaline etching could make the significant contribution of micropores and mesopores,especially mesopores.This also explains why the sample MgAl(Cl)-6 achieves an enhanced CO2adsorption capacity.

    Figure 4 presents the Brunauer–Emmett–Teller specific surface area (BET SSA) and pore volume (PV) of the samples. The variation of intercalated anions leads to differences in the BET SSA and PV. Among the intercalated adsorbents,the MgAl(Cl)using chloride salts as precursors displays the highest BET SSA and PV,indicating that the porosity of MgAl(Cl)is well-developed. Compared with others,the MgAl(NO)sample has the lowest BET SSA,being 86.5%and 66.0% of the MgAl(Ac) and MgAl(Cl), respectively. The alkaline etching of NaOH results in high surface areas and large pore volumes,and the MgAl(Cl)-6 sample achieves the largest BET SSA of 28.13 m2/g and PV of 0.0765 cm3/g.

    Fig.3. Pore size distributions of the samples obtained by the BJH adsorption branch.

    SEM characterization results of the samples are shown in Fig.5. Sheet-like LDHs with smooth surface of MgAl(NO)and MgAl(Cl)using chloride salts and nitrate salts as precursors can be observed in Figs. 5(a) and 5(c), while disorderly stacked structure of MgAl(Ac)with acetate salts as precursors can be seen from Fig.5(b). The different morphologies presented by the MgAl-LDHs with different precursors may be due to the nature of intercalated anions. After alkaline etching treatment, the layered structure begins to be destroyed, suggesting that the Al species of the layered structure are partly removed, along with the increase of BET SSA and PV of the modified LDHs,which would be conducive to the exposure of the active sites, so as to improve the adsorption performance of the adsorbent. Nevertheless, the longer the alkaline etching time, the more serious the structural damage, and with the alkaline etching time being 9 h, the sheet-like structure of MgAl(Cl)-9 is severely crushed and aggregated, resulting in poor dispersibility, which is consistent with the results of N2adsorption analysis.

    Fig.4. BET specific surface area(a)and pore volume(b)of the samples.

    Fig.5. SEM images of the samples: (a)MgAl(NO),(b)MgAl(Ac),(c)MgAl(Cl),(d)MgAl(Cl)-3,(e)MgAl(Cl)-6,and(f)MgAl(Cl)-9.

    Fig.6. FT-IR spectra of the samples.

    3.2. CO2 adsorption performances of the adsorbents

    The effect of intercalated anion and alkaline etching time on CO2adsorption for MgAl-LDH adsorbents was performed,and in order to analyze the adsorption mechanism of CO2on the adsorbent, the adsorption data are fitted by the firstorder kinetic equation,the pseudo-second-order kinetic equation and the Elovich model,respectively. Figure 7(a)exhibits the CO2adsorption data of the MgAl-LDHs with different precursors.Obviously,the intercalated anion could influence CO2adsorption behavior,and it is meaningful to apply the suitable precursor to prompt CO2adsorption performance of MgAl-LDHs. Among the three samples, the adsorbent MgAl(Cl)possesses the highest CO2adsorption capacity. The impact of intercalated anion for MgAl-LDHs on CO2adsorption behavior and adsorption kinetics is illustrated in Figs.7(b)–7(d)and Table 1. Compared with the first-order kinetic equation and the Elovich model, the correlation coefficient R2for the pseudo-second-order kinetic equation is close to 1.0,suggesting that the fitting curves are in good agreement with the adsorption data and the adsorption process is more suitable to be described by the pseudo-second-order kinetic equation.

    Fig.7. CO2 adsorption isotherms of the samples prepared with different precursors fitted by the first-order kinetic model,the pseudo-secondorder kinetic model,and the Elovich kinetic model.

    In the initial stage of adsorption, the adsorption rate of the samples is faster; however,as the adsorption process progresses, the adsorption rate slows down and the adsorption equilibrium would be reached after a period of time. It is found that the CO2adsorption process of the samples could be divided into two stages: rapid surface reaction stage and CO2diffusion controlling stage. In the rapid surface reaction stage, the large slope of the curve indicates the fast adsorption rate. Among the intercalated samples,the adsorption rate of MgAl(Ac) is higher, and thus its CO2adsorption capacity hardly changes after 15 min. The rapid reaction stage is the important stage of adsorption, that is, CO2reacts with the alkaline binding sites on the adsorbent surface; with the progress of adsorption,the adsorption site of the adsorbent is gradually covered,which slows down the adsorption rate. As the adsorption process of CO2for MgAl(NO)and MgAl(Ac)reaches saturation, the adsorption capacity of MgAl(Cl) still increases,ascribing to the developed pore structure and abundant alkaline adsorption sites. In addition, it should be noted that the crystallinity of MgAl-LDHs has a non-negligible effect on CO2adsorption performance, and high crystallinity leads to favorable CO2uptake.

    Figure 8 shows CO2uptake of alkaline-etched MgAl(Cl)adsorbents. It can be seen that the adsorption performance of the adsorbents is significantly improved after alkaline etching, and the sample MgAl(Cl)-6 with alkaline etching time of 6 h has the highest adsorption amount of 16.3 mg/g. As the alkaline etching time continues to extend, the CO2uptake of MgAl(Cl)-9 sharply decreases, due to the collapse of pore structure and the fragmentized sheet-structure. Hence,the CO2adsorption performance is greatly influenced by alkaline etching time,and appropriate alkaline etching time can advance the contact between CO2molecules and the adsorbent. The fitting results of the kinetic models (displayed in Figs. 8(b)–8(d) and Table 1) show that both the first-order and pseudo-second-order kinetic models are applicable, and thus the adsorption process includes physical adsorption and chemical adsorption; however, the correlation coefficients of the pseudo-second-order kinetic model are slightly higher than those of the first-order kinetic model, indicating that the adsorption process of the adsorbent on CO2is more obedient to the pseudo-second-order kinetic model than to the first-order kinetic model. The sample MgAl(Cl)-6 owns the fastest adsorption rate of 0.041 g/(mg·min), while MgAl(Cl)without alkaline etching has the lowest adsorption rate of 0.020 g/(mg·min), consistent with CO2adsorption capacities of the alkaline-etched samples, which indicates that alkaline etching treatment is conducive to the internal diffusion of CO2during the adsorption process.

    Fig.8. CO2 adsorption isotherms of the samples prepared with various alkaline etching times fitted by the first-order kinetic model, the pseudo-second-order kinetic model,and the Elovich kinetic model.

    Table 1. Adsorption parameters from kinetic models of CO2 adsorption data.

    4. Conclusions

    MgAl layered double hydroxides have been synthesized by the one-pot hydrothermal method to investigate the effect of intercalated anion and alkaline etching time on CO2adsorption. By means of XRD,N2adsorption,SEM,FT-IR and CO2adsorption analyses,the results demonstrate that the adsorbent MgAl(Cl)using chloride salts as precursors shows a high crystallinity,sheet-like LDHs with smooth surface and developed pore structures.In contrast,MgAl(Ac)employing acetate salts as precursors displays a poor crystallinity, disorderly stacked structure and unsatisfactory pore structure; and correspondingly,MgAl(Cl)possesses the highest CO2uptake among the three intercalated samples. With alkaline etching of NaOH,the adsorption performance of the adsorbents is significantly improved, and MgAl(Cl)-6 with alkaline etching time of 6 h has the largest adsorption amount of 16.3 mg/g, which could be ascribed to well-developed porosity. The alkaline adsorption active sites over the surface of the adsorbent are fully exposed,which is conducive to the combination of acid gas CO2with it, thereby enhancing the CO2capture. As the alkaline etching time further increases, the CO2adsorption capacity of MgAl(Cl)-9 obviously reduces, mainly due to the collapse of pore structure and the fragmentized sheet-structure. Therefore, this work would provide a valuable idea for the rational design of MgAl-LDHs for enhancing CO2adsorption.

    国产亚洲av片在线观看秒播厂| 男女下面进入的视频免费午夜| 日韩电影二区| 国产精品一二三区在线看| 欧美国产精品一级二级三级 | 综合色丁香网| 亚洲一级一片aⅴ在线观看| 日韩一本色道免费dvd| 伦精品一区二区三区| 女的被弄到高潮叫床怎么办| 大又大粗又爽又黄少妇毛片口| 麻豆国产97在线/欧美| 久久久久久伊人网av| 久久久久久伊人网av| 青春草亚洲视频在线观看| 一级毛片我不卡| 天堂俺去俺来也www色官网| 亚洲欧美日韩卡通动漫| 亚洲国产精品成人久久小说| 精品亚洲成a人片在线观看 | 天美传媒精品一区二区| 国产精品国产三级国产专区5o| 日本欧美视频一区| 岛国毛片在线播放| 国产极品天堂在线| 午夜激情久久久久久久| 美女内射精品一级片tv| 亚洲精品中文字幕在线视频 | 免费黄色在线免费观看| 欧美3d第一页| 欧美变态另类bdsm刘玥| 国产女主播在线喷水免费视频网站| 精品一区二区免费观看| 黄色怎么调成土黄色| 久久精品夜色国产| 另类亚洲欧美激情| 男人舔奶头视频| 午夜激情久久久久久久| 简卡轻食公司| 久久这里有精品视频免费| 你懂的网址亚洲精品在线观看| 最黄视频免费看| 国产亚洲最大av| 精品一区二区三区视频在线| 成人一区二区视频在线观看| 亚洲精品aⅴ在线观看| 亚洲欧美精品自产自拍| 亚洲欧洲国产日韩| 毛片一级片免费看久久久久| 蜜桃久久精品国产亚洲av| 99国产精品免费福利视频| 久久久久久九九精品二区国产| 一本—道久久a久久精品蜜桃钙片| av卡一久久| 国产精品久久久久久久久免| 亚洲国产日韩一区二区| 一本久久精品| 干丝袜人妻中文字幕| 久久久欧美国产精品| 成人毛片60女人毛片免费| 久久久成人免费电影| 啦啦啦视频在线资源免费观看| 韩国高清视频一区二区三区| 人妻一区二区av| 国产永久视频网站| 伦理电影免费视频| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 成年美女黄网站色视频大全免费 | 观看av在线不卡| 久久人人爽av亚洲精品天堂 | 亚洲欧洲国产日韩| 一区二区三区乱码不卡18| 亚洲av在线观看美女高潮| 亚洲色图av天堂| 黄片wwwwww| 黄色怎么调成土黄色| 超碰97精品在线观看| 久久久精品免费免费高清| av在线蜜桃| 国产欧美另类精品又又久久亚洲欧美| 中文乱码字字幕精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 成人亚洲欧美一区二区av| 草草在线视频免费看| 亚洲aⅴ乱码一区二区在线播放| 国产精品伦人一区二区| 国产精品.久久久| 五月伊人婷婷丁香| 日本av手机在线免费观看| 欧美3d第一页| 黄色日韩在线| 日韩中文字幕视频在线看片 | 国产极品天堂在线| 一区二区三区四区激情视频| 国产v大片淫在线免费观看| 国产伦理片在线播放av一区| 男女下面进入的视频免费午夜| 嫩草影院新地址| 国产精品伦人一区二区| 久久国产精品大桥未久av | 日韩欧美精品免费久久| 久久国产精品男人的天堂亚洲 | 成年免费大片在线观看| 五月开心婷婷网| 最新中文字幕久久久久| 午夜福利影视在线免费观看| 成人一区二区视频在线观看| 街头女战士在线观看网站| 亚洲av电影在线观看一区二区三区| 黄色视频在线播放观看不卡| 日日摸夜夜添夜夜添av毛片| 久久精品国产自在天天线| 国产成人免费无遮挡视频| 亚洲人成网站在线播| 色综合色国产| 亚洲自偷自拍三级| 最近的中文字幕免费完整| 少妇的逼水好多| 蜜臀久久99精品久久宅男| 免费大片18禁| 欧美成人午夜免费资源| av在线蜜桃| 欧美少妇被猛烈插入视频| 少妇 在线观看| 中文资源天堂在线| 成人国产麻豆网| 一区二区三区免费毛片| 成人一区二区视频在线观看| 亚洲精品日韩av片在线观看| 日韩免费高清中文字幕av| 免费少妇av软件| 中文字幕av成人在线电影| 我要看日韩黄色一级片| av线在线观看网站| 22中文网久久字幕| av国产精品久久久久影院| 欧美成人午夜免费资源| 久久久亚洲精品成人影院| 成人漫画全彩无遮挡| 婷婷色av中文字幕| 一级毛片黄色毛片免费观看视频| 久久ye,这里只有精品| 超碰97精品在线观看| 亚洲经典国产精华液单| 精品午夜福利在线看| 日韩 亚洲 欧美在线| 久久亚洲国产成人精品v| 亚洲熟女精品中文字幕| 国产亚洲精品久久久com| 日韩一区二区视频免费看| 午夜福利在线在线| videossex国产| 精品一区二区三卡| 国产一区二区在线观看日韩| 中文乱码字字幕精品一区二区三区| 久久亚洲国产成人精品v| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | 日韩成人伦理影院| 少妇人妻久久综合中文| 亚洲精品第二区| 精品少妇黑人巨大在线播放| 亚洲精品色激情综合| 最近2019中文字幕mv第一页| 一个人看的www免费观看视频| 国产精品国产三级国产av玫瑰| 精品人妻熟女av久视频| 久久久久久久久久久免费av| 国国产精品蜜臀av免费| 久久精品国产亚洲av天美| 三级国产精品欧美在线观看| 91久久精品国产一区二区成人| 老女人水多毛片| 精品人妻偷拍中文字幕| 嫩草影院入口| 亚洲综合色惰| 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 国产视频内射| 精品熟女少妇av免费看| 久久精品久久精品一区二区三区| 日韩视频在线欧美| 视频区图区小说| 国内精品宾馆在线| 黄色配什么色好看| 欧美少妇被猛烈插入视频| 久久久久久久国产电影| 91午夜精品亚洲一区二区三区| 嫩草影院新地址| 99热这里只有是精品50| 美女主播在线视频| 国产成人aa在线观看| 黄色一级大片看看| 久久ye,这里只有精品| 欧美成人午夜免费资源| 国内少妇人妻偷人精品xxx网站| 一区二区三区四区激情视频| 久久毛片免费看一区二区三区| 成人国产麻豆网| 水蜜桃什么品种好| 99精国产麻豆久久婷婷| 黄色怎么调成土黄色| 少妇精品久久久久久久| 最黄视频免费看| 在线免费十八禁| 亚洲国产日韩一区二区| 搡老乐熟女国产| 久久精品国产亚洲av天美| 日韩av不卡免费在线播放| 免费观看无遮挡的男女| 久久av网站| 成人国产av品久久久| 亚洲精品色激情综合| a 毛片基地| 日韩,欧美,国产一区二区三区| 黑人高潮一二区| 亚洲成人一二三区av| 插逼视频在线观看| 亚洲色图综合在线观看| 日韩成人伦理影院| 一级a做视频免费观看| 国产91av在线免费观看| 亚洲真实伦在线观看| 婷婷色综合www| 在线播放无遮挡| 我的女老师完整版在线观看| 18禁动态无遮挡网站| 1000部很黄的大片| 欧美成人一区二区免费高清观看| 伊人久久精品亚洲午夜| 激情 狠狠 欧美| 新久久久久国产一级毛片| 在线观看免费日韩欧美大片 | 久久韩国三级中文字幕| 日日摸夜夜添夜夜添av毛片| 日韩av免费高清视频| 在线亚洲精品国产二区图片欧美 | 你懂的网址亚洲精品在线观看| 一级毛片久久久久久久久女| 国产午夜精品一二区理论片| 在线观看三级黄色| 久久精品国产鲁丝片午夜精品| 亚洲av国产av综合av卡| 美女cb高潮喷水在线观看| 国产在线视频一区二区| 91久久精品国产一区二区三区| 亚洲av在线观看美女高潮| 自拍偷自拍亚洲精品老妇| 美女cb高潮喷水在线观看| 人妻制服诱惑在线中文字幕| 青春草亚洲视频在线观看| 在线观看一区二区三区激情| 亚洲欧美成人综合另类久久久| 免费黄色在线免费观看| av网站免费在线观看视频| 六月丁香七月| 日韩,欧美,国产一区二区三区| 多毛熟女@视频| 亚洲精品一区蜜桃| 欧美日韩精品成人综合77777| 精品人妻熟女av久视频| 在线看a的网站| 欧美成人a在线观看| 中文资源天堂在线| 国产亚洲最大av| 国产成人精品一,二区| 婷婷色综合大香蕉| 久久精品夜色国产| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av成人精品| 黄色一级大片看看| 久久97久久精品| 欧美变态另类bdsm刘玥| 色哟哟·www| 精品亚洲乱码少妇综合久久| 哪个播放器可以免费观看大片| 亚洲人与动物交配视频| 两个人的视频大全免费| av不卡在线播放| 女性生殖器流出的白浆| 免费观看无遮挡的男女| 看免费成人av毛片| 舔av片在线| 男人添女人高潮全过程视频| 97超视频在线观看视频| 高清在线视频一区二区三区| 99热国产这里只有精品6| 成年免费大片在线观看| 亚洲精品,欧美精品| 国产片特级美女逼逼视频| 黑丝袜美女国产一区| 亚洲,一卡二卡三卡| 国产午夜精品一二区理论片| 欧美另类一区| 日韩一区二区视频免费看| 中国三级夫妇交换| 丝袜喷水一区| av免费在线看不卡| av在线app专区| 欧美日韩精品成人综合77777| 麻豆精品久久久久久蜜桃| 男的添女的下面高潮视频| 春色校园在线视频观看| 人体艺术视频欧美日本| av国产久精品久网站免费入址| 免费大片黄手机在线观看| 国产亚洲欧美精品永久| 少妇 在线观看| 人妻夜夜爽99麻豆av| 亚洲国产最新在线播放| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 赤兔流量卡办理| 九色成人免费人妻av| 精品亚洲成国产av| 中国三级夫妇交换| 亚洲国产毛片av蜜桃av| 最近最新中文字幕免费大全7| 妹子高潮喷水视频| 亚洲精品,欧美精品| 免费黄色在线免费观看| 国产极品天堂在线| 美女高潮的动态| 日日啪夜夜撸| 99热全是精品| av播播在线观看一区| 少妇熟女欧美另类| 日日啪夜夜撸| 国产精品一二三区在线看| 国产永久视频网站| 在线免费观看不下载黄p国产| 中文天堂在线官网| 丝袜脚勾引网站| 亚洲第一区二区三区不卡| 精品久久久精品久久久| 亚洲色图av天堂| 啦啦啦视频在线资源免费观看| 一个人看视频在线观看www免费| 亚洲精品国产色婷婷电影| 久久精品熟女亚洲av麻豆精品| 日韩中文字幕视频在线看片 | 青春草亚洲视频在线观看| 国产精品国产av在线观看| 国产男女内射视频| 亚洲三级黄色毛片| 免费久久久久久久精品成人欧美视频 | 精品一品国产午夜福利视频| 免费久久久久久久精品成人欧美视频 | 成人毛片60女人毛片免费| 毛片女人毛片| 日韩欧美 国产精品| 一本一本综合久久| 天堂中文最新版在线下载| 性色avwww在线观看| 黄色日韩在线| 好男人视频免费观看在线| 亚洲成色77777| 91精品伊人久久大香线蕉| 色综合色国产| 能在线免费看毛片的网站| 黑丝袜美女国产一区| 97热精品久久久久久| av福利片在线观看| 嫩草影院入口| 日本免费在线观看一区| av不卡在线播放| 寂寞人妻少妇视频99o| 色婷婷久久久亚洲欧美| 日韩人妻高清精品专区| 国产精品国产三级国产专区5o| 日日啪夜夜撸| 免费看日本二区| 精华霜和精华液先用哪个| 国产精品蜜桃在线观看| 最新中文字幕久久久久| 极品少妇高潮喷水抽搐| 97超视频在线观看视频| 亚洲三级黄色毛片| 亚洲精品国产成人久久av| 97超碰精品成人国产| 亚洲精品国产成人久久av| 18+在线观看网站| 伦理电影免费视频| 精品少妇黑人巨大在线播放| 在线观看免费高清a一片| 伦理电影大哥的女人| 亚洲成人手机| 高清午夜精品一区二区三区| 在线免费十八禁| 精品人妻偷拍中文字幕| 日本黄色片子视频| 国产 一区精品| 国产v大片淫在线免费观看| 精品国产乱码久久久久久小说| 欧美日韩亚洲高清精品| 国产精品av视频在线免费观看| 尤物成人国产欧美一区二区三区| 亚洲国产欧美在线一区| a级一级毛片免费在线观看| av一本久久久久| 日韩在线高清观看一区二区三区| 久久精品久久精品一区二区三区| av福利片在线观看| 五月天丁香电影| 纵有疾风起免费观看全集完整版| 少妇人妻精品综合一区二区| 国产精品福利在线免费观看| 久久久久久久大尺度免费视频| 亚洲av成人精品一二三区| 直男gayav资源| 一本—道久久a久久精品蜜桃钙片| av在线老鸭窝| 丰满乱子伦码专区| 免费看光身美女| 高清不卡的av网站| 成人亚洲欧美一区二区av| 99久久精品国产国产毛片| 在线看a的网站| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 国产一级毛片在线| 久久久久久久久大av| 黄色欧美视频在线观看| 在线观看国产h片| 免费看光身美女| 嫩草影院入口| 欧美xxⅹ黑人| 国产精品国产三级国产专区5o| 哪个播放器可以免费观看大片| 亚洲不卡免费看| 亚洲一级一片aⅴ在线观看| 联通29元200g的流量卡| 国产高清国产精品国产三级 | 午夜老司机福利剧场| 在线看a的网站| 秋霞在线观看毛片| 精品久久久久久久久亚洲| 亚洲国产精品国产精品| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品,欧美精品| 中文字幕亚洲精品专区| 一本色道久久久久久精品综合| 秋霞伦理黄片| 综合色丁香网| 亚洲经典国产精华液单| 国产片特级美女逼逼视频| 蜜臀久久99精品久久宅男| 中文字幕亚洲精品专区| 亚洲自偷自拍三级| 中国美白少妇内射xxxbb| 女人十人毛片免费观看3o分钟| 99视频精品全部免费 在线| 五月天丁香电影| 国产亚洲5aaaaa淫片| 久热久热在线精品观看| 一本—道久久a久久精品蜜桃钙片| av专区在线播放| 国产精品三级大全| 国产免费又黄又爽又色| 久久ye,这里只有精品| 亚洲最大成人中文| 久久国内精品自在自线图片| 汤姆久久久久久久影院中文字幕| 99久久精品一区二区三区| 免费av中文字幕在线| 久久精品国产亚洲av涩爱| 国产精品久久久久久av不卡| 高清午夜精品一区二区三区| 少妇熟女欧美另类| 日本wwww免费看| 联通29元200g的流量卡| 日本爱情动作片www.在线观看| 99精国产麻豆久久婷婷| 日本av手机在线免费观看| 99精国产麻豆久久婷婷| 最近的中文字幕免费完整| 欧美日韩精品成人综合77777| 国产 一区 欧美 日韩| 男女边吃奶边做爰视频| 人妻制服诱惑在线中文字幕| 一本一本综合久久| 日本av免费视频播放| 丝瓜视频免费看黄片| 国产亚洲91精品色在线| 内射极品少妇av片p| 国产免费一区二区三区四区乱码| 国内少妇人妻偷人精品xxx网站| 美女视频免费永久观看网站| 一本色道久久久久久精品综合| 免费看不卡的av| 少妇猛男粗大的猛烈进出视频| 日本-黄色视频高清免费观看| 国产乱来视频区| 视频区图区小说| 精品视频人人做人人爽| 少妇裸体淫交视频免费看高清| 黄色日韩在线| 97精品久久久久久久久久精品| 五月伊人婷婷丁香| 中文字幕久久专区| 91在线精品国自产拍蜜月| 欧美三级亚洲精品| 超碰97精品在线观看| 国产精品一及| 日日摸夜夜添夜夜添av毛片| 精品久久久精品久久久| av在线观看视频网站免费| 久久久久久久久久久丰满| 欧美国产精品一级二级三级 | 寂寞人妻少妇视频99o| 国产69精品久久久久777片| 久久久成人免费电影| av视频免费观看在线观看| 久久国产亚洲av麻豆专区| 在线看a的网站| 男人狂女人下面高潮的视频| 日韩大片免费观看网站| 18+在线观看网站| 18禁在线无遮挡免费观看视频| 国产女主播在线喷水免费视频网站| 91精品国产九色| 一本—道久久a久久精品蜜桃钙片| 欧美老熟妇乱子伦牲交| 国产在视频线精品| 街头女战士在线观看网站| 最近最新中文字幕大全电影3| 亚洲国产精品一区三区| 最近中文字幕2019免费版| 麻豆乱淫一区二区| 国产成人91sexporn| 97超碰精品成人国产| 能在线免费看毛片的网站| 汤姆久久久久久久影院中文字幕| 国产乱人偷精品视频| 欧美另类一区| 欧美最新免费一区二区三区| 久久精品国产亚洲网站| 99久久中文字幕三级久久日本| 日韩在线高清观看一区二区三区| 一区二区三区乱码不卡18| 在线观看免费日韩欧美大片 | 99久久人妻综合| av一本久久久久| 亚洲成人av在线免费| 午夜激情福利司机影院| 亚洲av.av天堂| 国产午夜精品一二区理论片| 97热精品久久久久久| 亚洲真实伦在线观看| 国产 一区 欧美 日韩| 综合色丁香网| 午夜福利网站1000一区二区三区| 亚洲人成网站在线播| 欧美少妇被猛烈插入视频| av天堂中文字幕网| 性色av一级| 国产男人的电影天堂91| 少妇高潮的动态图| 99热6这里只有精品| 菩萨蛮人人尽说江南好唐韦庄| 91精品一卡2卡3卡4卡| 我要看黄色一级片免费的| 91aial.com中文字幕在线观看| 直男gayav资源| 丰满迷人的少妇在线观看| 人体艺术视频欧美日本| 男人狂女人下面高潮的视频| 免费久久久久久久精品成人欧美视频 | 看非洲黑人一级黄片| 久久精品熟女亚洲av麻豆精品| 91精品伊人久久大香线蕉| 日产精品乱码卡一卡2卡三| 亚洲国产毛片av蜜桃av| 久久97久久精品| 91午夜精品亚洲一区二区三区| 中文在线观看免费www的网站| 午夜免费鲁丝| 22中文网久久字幕| 涩涩av久久男人的天堂| 精品少妇久久久久久888优播| av网站免费在线观看视频| 日日啪夜夜爽| 黄色怎么调成土黄色| 午夜福利高清视频| 国产在线一区二区三区精| 中国国产av一级| 亚洲av日韩在线播放| 久久久久久久国产电影| 激情 狠狠 欧美| 日本黄大片高清| 国产久久久一区二区三区| 欧美一区二区亚洲| av在线蜜桃| 久久精品国产鲁丝片午夜精品| 在线观看美女被高潮喷水网站| 高清黄色对白视频在线免费看 | 精品国产一区二区三区久久久樱花 | 熟女av电影| 2021少妇久久久久久久久久久| 五月伊人婷婷丁香| 欧美高清成人免费视频www| 日本欧美国产在线视频| 99热国产这里只有精品6| 欧美日本视频| 亚洲精品日本国产第一区| 少妇人妻久久综合中文| 日韩国内少妇激情av| a 毛片基地| 丰满人妻一区二区三区视频av| 国产在线免费精品| 国产视频内射| 麻豆国产97在线/欧美| 国产有黄有色有爽视频| 纯流量卡能插随身wifi吗|