• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resistance fluctuations in superconducting single crystals studied by low-frequency noise spectroscopy?

    2021-05-06 08:55:30HaiZi子海YuanYao姚湲MingChongHe何明沖DiKe可迪HongXingZhan詹紅星YuQingZhao趙宇清HaiHuWen聞海虎andCongRen任聰
    Chinese Physics B 2021年4期
    關鍵詞:紅星

    Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明沖), Di Ke(可迪), Hong-Xing Zhan(詹紅星),Yu-Qing Zhao(趙宇清), Hai-Hu Wen(聞?;?, and Cong Ren(任聰),?

    1Physics Department,School of Physics and Astronomy,Yunnan University,Kunming 50500,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Science,Beijing 100190,China

    3Physics Department,Nanjing University,Nanjing 210093,China

    Keywords: KxFe2?ySe2,phase separation,noise and chaos,percolation

    1. Introduction

    Correlated electron systems have been an important research area in condensed matter physics. In these materials,the competition or/and coexistence of correlated states, such as metallic,insulating,magnetic,and superconducting phases,quite often occurs, leading to a rich phase diagram with unconventional ordering phenomena. In many cases this results in an intrinsic tendency to electronic phase separation.[1–4]For oxide-based materials, nanoscale inhomogeneous electronic states include dopant-driven spin or/and charge density stripes or spatial variations of the superconducting gap in high-Tccuprates,[5–8]or the mixed-valence phase separations in manganese oxides.[9,10]Respectively, these effects together with associated percolation phenomena are essential ingredient for the understanding of the unconventional superconductivity or the unusually colossal magnetoresistance.[11–13]

    Resistance fluctuations are sensitive to the degree of the phase orders of the systems under investigation,and the fluctuation spectroscopy has been used as a powerful method to investigate the intrinsic dynamics of carriers of a large variety of magnetic,semiconducting,and metallic/superconducting materials, in particular, systems close to a metal–insulator transition (MIT) or the percolation limit. In this work we provide experimental insight to the effect of iron-vacancy order on the transport properties by probing low-frequency resistance fluctuations in superconducting KxFe2?ySe2single crystals. Our result reveals the percolative nature of both normal state and superconducting transition regimes for such AFM insulator/superconductor mixed compound.

    2. Experiment

    Fig.1.(a)Back-scattered electron images of SEM measurements on the cleaved surface of a K0.76Fe1.71Se2 crystal(SMP#1). (b)Temperature dependence of the resistance of SMP#1. The dotted red curve is the fit to the R–T data in high-T regime,yielding a thermally activated energy gap of 38 meV,see text.

    Single crystals of KxFe2?ySe2were grown with the Bridgman technique following a quenching process. By this quenching process, the resulting crystals contain different iron-vacancy domain structures which depends on the quenching temperatures, although they have the same stoichiometry(as determined by an inductively coupled plasma)and the superconducting phase 17%–20%in volume,as described in detail in Ref.[32]. We choose crystal K0.76Fe1.71Se2which was quenched at 473 K as SMP#1 for our study. The sample is highly inhomogeneous in chemical stiochiometry on a submicron length scale. It seems that the minority phase, identified as a conducting component, is in an ordered state in orientation in the matrix of the majority phase, as shown by the back-scattered electron images of SEM measurements in Fig.1(a). Figure 1(b)shows the temperature T dependence of the resistance(resistivity)R of K0.76Fe1.71Se2in the whole T region. A pronounced hump in R following an insulator-tometal transition (MIT) occurs at T =120 K with an activation energy of Eg=38 meV,similar to previous report.[17,18]The MIT is rather broad due to the underlying inhomogeneity of the coexistence region. Upon further cooling, the sample undergoes a superconducting transition at the onset temperature of 31.4 K within ?Tc= 2.7 K between the Ts of the onset and zero-R. The residual resistance(resistivity)is quite high (400 m?·cm) comparing with those of other iron-based superconductors.[33]

    Fig.2. (a)Typical voltage noise spectrum at various sense current I and T =40 K for SMP#1. The colored solid lines are the fits to the data in log–log plot to display the nature of the low frequency 1/fα-type noise. (b)Voltage noise spectrum SV at f =1 Hz as a function of sense current I. The red solid line is the log–log linear fitting to display the relationship of SV ∝I2.

    To measure the resistance noise,the crystals were cleaved and peeled using scotch tape into a dimension of 1.5×0.5×0.01 mm3with the thinnest side along c-axis.The electric contacts were made quickly using silver paste wiring gold wires(16 μm in diameter). Noise and voltage measurements were performed simultaneously by the standard four-probe method on a Quantum Design physical property measurement system with temperature stability of 0.01%. The sense current was provided by a 9-V battery and a series of metal-film resistors with resistance a factor of 500–1000 higher than the sample resistance. The voltage V across the sample was fed into a battery-powered low-noise preamplifier (SR560) with a gain of 100, and the amplified output was processed using a dynamic signal analyzer(HP35660A)to obtain the voltage power spectral density(PSD).In all cases,a zero-current background spectrum was subtracted to obtain the voltage power spectral density SV(f,T), the portion of S(f,T) due to fluctuations in resistance. As shown in Fig.2(a), SV(f,T)shows a typical 1/fα-like noise spectrum in low frequency with α close to unit below 100 Hz in the sense currents. The noise magnitude at f =1 Hz strictly follows a quadratic law of SV(I,f =1 Hz)∝I2checked at several Ts, as shown in Fig.2(b). This current-dependent noise is an experimentally important result as it confirms that the noise obtained is intrinsic to the samples under investigation.

    3. Results and discussion

    Figure 3 shows the main results of the voltage (resistance) fluctuations in SMP#1. The typical raw data of voltage spectral density SVof generic 1/fα-type at selected Ts are shown in Fig.3(a)in the frequency domain of 0.625 Hz< f <100 Hz. By log–log fitting as shown in Fig.3(a)together with the simultaneously measured V, two parameters, the normalized resistance noise SR/R2≡SV/V2at 1 Hz and the exponent α, are extracted as a function of T, and the results presented in Figs.3(b)and 3(c),respectively. It is found that the normalized resistance noise power SR/R2peaks at Tp≈100 K,about 20 K below the corresponding resistance hump (~122 K).Based on a generalized activation fluctuation model originally proposed by Dutta,Dimon,and Horn(DDH),the 1/fαnoise spectrum is simply deduced from an integration of the Lorenzian spectra over the distribution of the activation energies for more and less conductive phases.[34]The α exponent of the 1/fαspectral density and the temperature dependence of the noise are related by[34–36]

    with kBthe Boltzmann constant. This means,in our case,that the 1/fαnoise we measure between 0.1 Hz and 100 Hz and 40 K and 300 K arises from the transition energies between 0.09 eV and 0.6 eV, indicating a highly inhomogeneous energy distribution configuration.

    Fig.3. (a)Typical voltage noise spectrum at various Ts for SMP#1. The colored solid lines are the fits to the data in log–log plot to display the nature of the low frequency 1/fα-type noise. (b)Normalized resistance noise SR/R2 at 1 Hz and resistance R as functions of T. (c) The corresponding frequency exponent of the 1/fα noise as a function of temperature, α(T).Circles are the values extracted from the fits to the individual spectra at different temperatures, as in (a). The red solid line is the best fit to the α(T)data from the data of SV(f =1 Hz,T),see text.

    A feature in SR/R2of the present samples is that in the superconducting transition region, as illustrated in Fig.3(b),the magnitude of the resistance noise shows a narrow plateau at Tonset,then a substantial rise follows with decreasing T. We have measured 4 crystals from the same patch, the noise behaviors are almost identical. The steep rise in SR/R2at Tonsethas also been observed for granular superconductors,[37]high-Tc-cuprates,[38,39]and organic superconductors,[40]and is interpreted as a result of the percolative nature of the superconducting transition in these systems. In general, for homogeneous superconducting transitions, one expects small fluctuations in the resistance with T decrease, since more quasiparticles condense into cooper pairs leading to a less noisy volume in bulk. In contrast,for inhomogeneous superconductors,large fluctuations in the resistance in the transition regime are expected, because in strongly disordered conductors, the resistance fluctuations are determined not by the entire volume of the conductor but by an essentially smaller volume,leading to a large noise level.[41,42]In other words, strongly disordered superconductors exhibit an extremely enhanced resistance noise due to the strongly nonuniform critical current density and electric field distribution confined to narrow paths,forming a normal metal(insulator)-superconductor Josephson junction-like network. To substantiate this percolative picture for the present samples,we study the nature of the resistance fluctuations in more details in the critical superconducting transition regime. The percolation theory has an important application for the real disordered systems that the relative resistance noise SR/R2scales with resistance by a power-law as[39,42]

    where lrsis the resistor–superconductor network scaling exponent which is related to the index of percolative conduction path. In our case of SMP#1, such scaling law expressed in Eq.(2)is illustrated in Fig.4 as we tune R through changing T. In Fig.4, SR/R2scales with R excellently with lrs~=1.38±0.06 in T-domain as R drops to 20%of the normalstate resistance,details in T-domain are shown in the inset of Fig.4.

    Fig.4. Scaling of the normalized resistance noise SR/R2 versus the resistance R of SMP#1. The red solid line is the log–log fitting line based on Eq.(2). Inset: normalized resistance noise SR/R2 at f =1 Hz(red solid dots)and resistance R(black solid dots)as functions of T in the vicinity to the superconducting fluctuation region.

    For a comparison, we have performed isothermal resistance noise measurements under magnetic field in percolative regime (Fig.5(a)). The results are shown in the inset of Fig.5(b)with T =29.6 K.By applying H to tune R from the normal-state at H = 6.5 T to the superconducting transition regime of H =0, the corresponding resistance noise level increases by more than one order of magnitude from H=2 T to H =0,as expected according to the percolation theory. Similarly,SR/R2scales with R rather well with lrs~=1.48±0.04,as shown in Fig.5(b). Considering that random magnetic flux motion in a superconducting cluster is one of the sources of resistance noise when H is applied, the two scaling exponents lrsin T-domain and H-domain are highly self-consistent.In the existing percolation models accounting for the resistance noise behavior,Kiss et al. predicted that at a given current the number of Josephson junctions in the superconductive state fluctuates. It is equivalent to fluctuations δ p(t) of the portion p of short-circuited resistors for a normal–metal–superconductor mixture. Taking account of the fluctuations in p, the noise exponent lrs~=2.74 differs from lrs~=0.9±0.32 of the“classical”three-dimensional(3D)random percolation model in which the noise is generated only by fluctuations of the non-short-circuited normal resistors.[43]However, our result of lrs~=1.4 in K0.76Fe1.71Se2is quite different from those of the p-fluctuation or classical 3D random percolation models. From microstructure point of view, we suggest that the new noise exponent in K0.76Fe1.71Se2is correlated to the formation of an orientation-ordered rather than random minor superconducting phase 122 in the matrix of the AFM insulating phase 245.

    Fig.5. (a)Typical voltage noise spectrum under various magnetic field H and T =29.6 K for SMP#1. The colored solid lines are the fits to the data in log–log plot to display the nature of the low frequency 1/fαtype noise.(b)Normalized resistance noise spectrum SR/R2 at f =1 Hz as a function of the resistance R in the vicinity to the superconducting fluctuation region.The red solid line is the scaling line based on Eq.(2).Inset: normalized resistance noise SR/R2 at f =1 Hz (red solid dots)and resistance R (black solid dots) as functions of T in the vicinity to the superconducting fluctuation region(T =29.6 K).

    Fig.6.(a)The T-dependence of resistance of SMP#2(K0.76Fe1.70Se2).Inset: typical SEM images of the microstructure of SMP#2. (b)Normalized resistance noise SR/R2 at f =1 Hz as a function of T for SMP#2. Arrows indicate the onset of the superconductive transition in R at low-T and a peak in normalized resistance noise at high-T.

    To verify the effect of microstructure of iron vacancy order on the percolative process in KxFe2?ySe2, we measured the resistance noise of another superconducting K0.76Fe1.70Se2(SMP#2)crystal.It is noted that this crystal has the same material composition with SMP#1 but with a different quench temperature of 673 K (above the AFM ordering temperature~550 K,leading to a different iron vacancy-order state(inset of Fig.6(a)).[32]From a comparison in Fig.6,the effect of the iron vacancies on both normal and superconducting states can be seen clearly by a higher T of 210 K for resistance hump,one order of magnitude lower residue resistivity,an enhanced Tonsetof 32.4 K,and a narrower transition region ?Tc=0.9 K[Fig.6(b)]. These results imply a larger metallic phase in SMP#2. Correspondingly, the magnitude of the resistance noise shown in Fig.6(b) is reduced comparing with that of SMP#1 by a factor of 2–5 at high Ts. It is interesting to note a similar peak in SR/R2at T ≈100 K,indicating a characteristic energy distribution for the insulator–metal crossover with that of SMP#1. However, in the superconducting transition region the level of SR/R2is greatly suppressed by an order of magnitude with decreasing T, in strong contrast to the case of SMP#1. In phase separation scenario, this strongly suppressed resistance noise indicates the improvement of the Josephson tunnel-junction network,suggesting a possible occurrence of geometrical phase transition for conduction channels,similar to the case of granular superconductors.[43]

    4. Summary

    We performed low frequency resistance fluctuation spectroscopy measurement on several superconducting KxFe2?ySe2single crystals. A resistance noise peak is observed corresponding to the well-observed resistance hump.Based on a generalized DDH model the resistance noise peak together with the resistance hump is interpreted as insulator–metal transition with a characteristic transition energy about 0.1–0.6 eV. We find evidence of a Josephson junction-like network in the superconducting transition region, and the resistance noise power scales with resistance R excellently as SR/R2∝R?lrswith the noise exponent lrs≈1.4. With improved microstructure of iron vacancy order to enhance the superconductivity of KxFe2?ySe2crystals,the resistance fluctuations are greatly suppressed due to the establishment of a much effective conduction/superconducting network.

    猜你喜歡
    紅星
    郭紅星:扶危濟困終不悔
    華人時刊(2023年1期)2023-03-14 06:43:38
    友善紅星小隊成長記
    少先隊活動(2021年3期)2021-12-04 13:08:26
    紅星照耀下的湘鄂贛蘇區(qū)
    紅星花鳳蝶
    紅星照耀中國(節(jié)選4)
    紅星照耀中國(節(jié)選3)
    紅星照耀中國(節(jié)選1)
    紅星照我去戰(zhàn)斗
    閃閃的《紅星》
    傳媒評論(2017年4期)2017-07-10 09:22:56
    長征中的《紅星》報
    一本精品99久久精品77| 国内精品一区二区在线观看| 亚洲电影在线观看av| 91aial.com中文字幕在线观看| 丰满人妻一区二区三区视频av| 美女xxoo啪啪120秒动态图| 精品欧美国产一区二区三| 99久久人妻综合| 亚洲,欧美,日韩| 夜夜看夜夜爽夜夜摸| 亚洲欧洲国产日韩| 国产黄片视频在线免费观看| 干丝袜人妻中文字幕| 波多野结衣巨乳人妻| 不卡一级毛片| 久久人人爽人人爽人人片va| 国产片特级美女逼逼视频| av黄色大香蕉| 亚洲电影在线观看av| 久久久久久伊人网av| 亚洲aⅴ乱码一区二区在线播放| 亚洲成a人片在线一区二区| 免费一级毛片在线播放高清视频| 在线观看av片永久免费下载| 国产午夜精品久久久久久一区二区三区| 亚洲成人中文字幕在线播放| 久久热精品热| 看免费成人av毛片| 三级经典国产精品| 欧美日韩精品成人综合77777| 亚洲综合色惰| 婷婷六月久久综合丁香| 欧美日韩精品成人综合77777| 九九在线视频观看精品| 亚洲人成网站在线播放欧美日韩| 国产伦精品一区二区三区视频9| 成人午夜高清在线视频| 蜜桃久久精品国产亚洲av| 伦精品一区二区三区| 12—13女人毛片做爰片一| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 成人一区二区视频在线观看| 国产精品综合久久久久久久免费| 国产精品爽爽va在线观看网站| 国产麻豆成人av免费视频| 大又大粗又爽又黄少妇毛片口| 欧美日韩一区二区视频在线观看视频在线 | 精品熟女少妇av免费看| 深夜精品福利| 简卡轻食公司| 国产成人午夜福利电影在线观看| 久久人人精品亚洲av| 国产精品女同一区二区软件| 又爽又黄无遮挡网站| 日日摸夜夜添夜夜添av毛片| 国产亚洲5aaaaa淫片| 综合色av麻豆| 国产单亲对白刺激| 国产精品.久久久| 少妇被粗大猛烈的视频| 欧美zozozo另类| 国产精品蜜桃在线观看 | 亚洲欧洲日产国产| 青春草国产在线视频 | 欧美精品国产亚洲| 少妇人妻精品综合一区二区 | 爱豆传媒免费全集在线观看| 成人性生交大片免费视频hd| 亚洲欧美成人精品一区二区| 蜜臀久久99精品久久宅男| 久久精品影院6| 1024手机看黄色片| 亚洲人成网站在线观看播放| 神马国产精品三级电影在线观看| 欧美一区二区亚洲| 亚洲一区高清亚洲精品| eeuss影院久久| 国产成年人精品一区二区| 亚洲精品久久国产高清桃花| 又爽又黄a免费视频| 夫妻性生交免费视频一级片| 亚洲国产欧洲综合997久久,| 乱系列少妇在线播放| av专区在线播放| 久久久久久九九精品二区国产| 精品久久久久久久久av| 色视频www国产| 日韩在线高清观看一区二区三区| 亚洲精品成人久久久久久| 九九热线精品视视频播放| 我要看日韩黄色一级片| 亚洲欧洲日产国产| 免费大片18禁| 日日摸夜夜添夜夜爱| 午夜福利在线观看吧| 国产老妇伦熟女老妇高清| 亚洲最大成人手机在线| 男人和女人高潮做爰伦理| 插阴视频在线观看视频| 国产中年淑女户外野战色| 美女 人体艺术 gogo| 别揉我奶头 嗯啊视频| 亚洲在线观看片| 国产伦在线观看视频一区| 一个人看的www免费观看视频| 一区二区三区高清视频在线| 18禁黄网站禁片免费观看直播| 亚洲自偷自拍三级| 夜夜爽天天搞| 一进一出抽搐动态| 美女高潮的动态| 久久人妻av系列| 成人一区二区视频在线观看| 国产免费男女视频| 波野结衣二区三区在线| 大型黄色视频在线免费观看| av免费观看日本| 国产精品av视频在线免费观看| 久久精品国产清高在天天线| 成人特级av手机在线观看| 超碰av人人做人人爽久久| 简卡轻食公司| 亚洲av电影不卡..在线观看| 久久这里有精品视频免费| 亚洲色图av天堂| 波多野结衣高清无吗| 国产精品爽爽va在线观看网站| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 国产精品,欧美在线| 日本欧美国产在线视频| 亚洲,欧美,日韩| 精品国产三级普通话版| 久久午夜亚洲精品久久| 亚洲欧美成人精品一区二区| 日韩制服骚丝袜av| 国产片特级美女逼逼视频| 在线播放无遮挡| 免费观看a级毛片全部| 卡戴珊不雅视频在线播放| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| 听说在线观看完整版免费高清| 亚洲欧美精品综合久久99| 人人妻人人澡人人爽人人夜夜 | 国产极品精品免费视频能看的| 国产成人福利小说| 欧洲精品卡2卡3卡4卡5卡区| 在线国产一区二区在线| 三级男女做爰猛烈吃奶摸视频| 高清午夜精品一区二区三区 | 少妇猛男粗大的猛烈进出视频 | 极品教师在线视频| 大又大粗又爽又黄少妇毛片口| 精品国内亚洲2022精品成人| 日本熟妇午夜| 亚洲第一区二区三区不卡| 日韩人妻高清精品专区| 亚洲成人中文字幕在线播放| or卡值多少钱| 亚洲va在线va天堂va国产| 色视频www国产| 最近最新中文字幕大全电影3| 赤兔流量卡办理| 91狼人影院| 国产熟女欧美一区二区| av在线观看视频网站免费| 美女黄网站色视频| 成人特级av手机在线观看| 毛片一级片免费看久久久久| 久久精品国产99精品国产亚洲性色| av在线老鸭窝| www.av在线官网国产| 一进一出抽搐gif免费好疼| 精品人妻视频免费看| 久久久久久久久大av| 一夜夜www| 99热这里只有精品一区| 国产精品综合久久久久久久免费| 好男人视频免费观看在线| 啦啦啦观看免费观看视频高清| 久久99蜜桃精品久久| 男女视频在线观看网站免费| 波多野结衣巨乳人妻| 久久精品久久久久久噜噜老黄 | 老师上课跳d突然被开到最大视频| 在线观看av片永久免费下载| 一本久久精品| 黄色一级大片看看| 久久精品综合一区二区三区| 尤物成人国产欧美一区二区三区| 亚洲真实伦在线观看| 国产成人a∨麻豆精品| 可以在线观看毛片的网站| eeuss影院久久| 精品欧美国产一区二区三| 亚洲在久久综合| 免费搜索国产男女视频| 国产色婷婷99| 亚洲欧美成人综合另类久久久 | 国产精品电影一区二区三区| 最新中文字幕久久久久| 亚洲欧美日韩高清专用| 欧美激情久久久久久爽电影| 九九热线精品视视频播放| 亚洲美女搞黄在线观看| av在线观看视频网站免费| 午夜老司机福利剧场| 看片在线看免费视频| 日韩精品有码人妻一区| 日韩一区二区三区影片| 欧美日韩一区二区视频在线观看视频在线 | 国产淫片久久久久久久久| 91狼人影院| 久久久成人免费电影| 六月丁香七月| 成人亚洲精品av一区二区| 亚洲美女搞黄在线观看| 人妻制服诱惑在线中文字幕| 网址你懂的国产日韩在线| 国产女主播在线喷水免费视频网站 | 观看美女的网站| 51国产日韩欧美| 国产久久久一区二区三区| 成人午夜精彩视频在线观看| 免费av不卡在线播放| 一区二区三区高清视频在线| 国产精品免费一区二区三区在线| 亚洲av一区综合| 国产黄色视频一区二区在线观看 | 亚洲欧美日韩高清在线视频| 天天一区二区日本电影三级| 国产乱人视频| 爱豆传媒免费全集在线观看| 国产高清有码在线观看视频| 国产精品美女特级片免费视频播放器| 日韩大尺度精品在线看网址| 国产老妇女一区| 99久久精品热视频| 18禁在线播放成人免费| 精品欧美国产一区二区三| 99久久人妻综合| 欧美不卡视频在线免费观看| av在线观看视频网站免费| 国产精品三级大全| 最近的中文字幕免费完整| 免费看光身美女| 亚洲欧洲日产国产| 天堂影院成人在线观看| 成人国产麻豆网| 国产淫片久久久久久久久| 亚洲av二区三区四区| 91久久精品国产一区二区三区| 亚洲国产精品国产精品| 欧美日本亚洲视频在线播放| 午夜爱爱视频在线播放| 日本黄色视频三级网站网址| 午夜福利在线观看吧| 欧美+日韩+精品| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲av天美| 亚洲真实伦在线观看| 久久久久网色| 全区人妻精品视频| 日本免费a在线| 国产精品麻豆人妻色哟哟久久 | 身体一侧抽搐| 免费观看的影片在线观看| 国产成人freesex在线| 欧美一区二区国产精品久久精品| 国产日韩欧美在线精品| 久久久久久久久大av| 极品教师在线视频| 少妇人妻一区二区三区视频| 国产黄色视频一区二区在线观看 | 免费观看a级毛片全部| 国产美女午夜福利| 身体一侧抽搐| 国内精品宾馆在线| 日本成人三级电影网站| 男女视频在线观看网站免费| 亚洲,欧美,日韩| 国国产精品蜜臀av免费| 国产 一区 欧美 日韩| 亚洲精品成人久久久久久| 99热全是精品| 日韩av不卡免费在线播放| 性色avwww在线观看| 精品少妇黑人巨大在线播放 | 国产中年淑女户外野战色| h日本视频在线播放| 国产 一区精品| 久久韩国三级中文字幕| 亚洲av电影不卡..在线观看| 麻豆成人av视频| 国产真实伦视频高清在线观看| 卡戴珊不雅视频在线播放| 十八禁国产超污无遮挡网站| 日产精品乱码卡一卡2卡三| 最近视频中文字幕2019在线8| 久久久国产成人精品二区| 欧美人与善性xxx| www日本黄色视频网| 一边摸一边抽搐一进一小说| 白带黄色成豆腐渣| 99热网站在线观看| 国产精华一区二区三区| 欧美最黄视频在线播放免费| 亚洲一区二区三区色噜噜| 哪里可以看免费的av片| 国产成人aa在线观看| 亚洲av中文字字幕乱码综合| 村上凉子中文字幕在线| 91在线精品国自产拍蜜月| 一级av片app| 亚洲国产精品合色在线| 黄片wwwwww| 能在线免费看毛片的网站| 男女那种视频在线观看| 国产精品久久久久久久电影| 久久久久久久久大av| 久久久久九九精品影院| 黄色欧美视频在线观看| 村上凉子中文字幕在线| videossex国产| 久久人妻av系列| 国产爱豆传媒在线观看| 一夜夜www| 人妻系列 视频| 欧美激情在线99| 亚洲精品影视一区二区三区av| 啦啦啦韩国在线观看视频| 国产视频内射| 久久精品91蜜桃| 天美传媒精品一区二区| 成年av动漫网址| 亚洲精品自拍成人| 色播亚洲综合网| 久久久a久久爽久久v久久| 精华霜和精华液先用哪个| 国产黄色视频一区二区在线观看 | 国内精品久久久久精免费| 你懂的网址亚洲精品在线观看 | 欧美性猛交╳xxx乱大交人| 精品久久久久久成人av| 欧美又色又爽又黄视频| 青春草亚洲视频在线观看| 韩国av在线不卡| 亚洲,欧美,日韩| 亚洲欧洲国产日韩| 日韩高清综合在线| 联通29元200g的流量卡| 亚洲乱码一区二区免费版| 在线观看美女被高潮喷水网站| 欧美3d第一页| 91精品一卡2卡3卡4卡| 国产私拍福利视频在线观看| 午夜爱爱视频在线播放| 国内精品久久久久精免费| 麻豆久久精品国产亚洲av| 一级毛片电影观看 | 在线 av 中文字幕| 十八禁网站网址无遮挡| 五月玫瑰六月丁香| 成年女人在线观看亚洲视频| 国产视频首页在线观看| 欧美+日韩+精品| 人人妻人人添人人爽欧美一区卜| 欧美激情极品国产一区二区三区 | 亚洲美女搞黄在线观看| 久久久久久伊人网av| videos熟女内射| 我的女老师完整版在线观看| 又黄又爽又刺激的免费视频.| 亚州av有码| 国产日韩欧美在线精品| 夫妻午夜视频| 国产精品人妻久久久久久| 在线观看国产h片| 国产毛片在线视频| 免费观看无遮挡的男女| 人人妻人人澡人人爽人人夜夜| 亚洲婷婷狠狠爱综合网| 久久人妻熟女aⅴ| 亚洲四区av| 精品熟女少妇av免费看| 精品人妻熟女av久视频| 汤姆久久久久久久影院中文字幕| 久久久精品区二区三区| 26uuu在线亚洲综合色| 亚洲不卡免费看| 日韩精品有码人妻一区| 在线观看人妻少妇| 中文精品一卡2卡3卡4更新| 久久婷婷青草| 成人影院久久| 国产日韩欧美在线精品| 日韩中字成人| 天堂中文最新版在线下载| 人妻夜夜爽99麻豆av| 国产精品无大码| 亚洲四区av| 午夜免费男女啪啪视频观看| 亚洲精品乱码久久久久久按摩| 一级毛片我不卡| 国产日韩欧美在线精品| 国产一区二区在线观看日韩| 大香蕉97超碰在线| 亚洲在久久综合| 男女高潮啪啪啪动态图| 国产精品麻豆人妻色哟哟久久| 国产精品一国产av| 色婷婷久久久亚洲欧美| 国产高清不卡午夜福利| 亚洲欧洲精品一区二区精品久久久 | 免费不卡的大黄色大毛片视频在线观看| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av涩爱| 有码 亚洲区| 欧美成人午夜免费资源| 欧美日韩视频精品一区| 亚洲精品一区蜜桃| 在线观看三级黄色| 赤兔流量卡办理| 国产综合精华液| 国产精品.久久久| av电影中文网址| 国产女主播在线喷水免费视频网站| 国产黄色视频一区二区在线观看| 国产精品偷伦视频观看了| 亚洲av不卡在线观看| 九九久久精品国产亚洲av麻豆| av在线老鸭窝| 亚洲精品国产色婷婷电影| 精品少妇黑人巨大在线播放| 成人无遮挡网站| 欧美xxⅹ黑人| a级毛色黄片| 国产一区二区在线观看日韩| av在线老鸭窝| 搡老乐熟女国产| 人妻制服诱惑在线中文字幕| 日韩免费高清中文字幕av| 亚洲精品aⅴ在线观看| 久久久久国产精品人妻一区二区| 欧美人与性动交α欧美精品济南到 | 亚洲av福利一区| 久久精品国产亚洲av涩爱| 日日爽夜夜爽网站| 99国产综合亚洲精品| 在现免费观看毛片| 在线观看免费日韩欧美大片 | 亚洲精品色激情综合| 日韩电影二区| 一级二级三级毛片免费看| 久久鲁丝午夜福利片| 美女福利国产在线| 成年美女黄网站色视频大全免费 | 最新中文字幕久久久久| 精品久久久噜噜| 欧美少妇被猛烈插入视频| 久久精品国产亚洲av涩爱| 国模一区二区三区四区视频| 人成视频在线观看免费观看| 国产无遮挡羞羞视频在线观看| 国产欧美日韩综合在线一区二区| 欧美一级a爱片免费观看看| av天堂久久9| 女人久久www免费人成看片| 丰满少妇做爰视频| 男女边摸边吃奶| 欧美 日韩 精品 国产| 99久久中文字幕三级久久日本| 精品人妻在线不人妻| 人人妻人人添人人爽欧美一区卜| 高清午夜精品一区二区三区| 亚洲精品第二区| 国产精品国产三级专区第一集| 51国产日韩欧美| 国产成人精品福利久久| 女性生殖器流出的白浆| 国产片内射在线| 精品一区二区三卡| 十分钟在线观看高清视频www| 日本欧美视频一区| 亚洲欧洲日产国产| 一区二区日韩欧美中文字幕 | 老司机影院毛片| 能在线免费看毛片的网站| 多毛熟女@视频| 男女无遮挡免费网站观看| 在线观看三级黄色| 精品视频人人做人人爽| 一边亲一边摸免费视频| 亚洲国产精品国产精品| 日日撸夜夜添| 日本91视频免费播放| 精品久久蜜臀av无| av专区在线播放| 亚洲欧洲精品一区二区精品久久久 | 麻豆精品久久久久久蜜桃| 亚洲精品自拍成人| 国产精品嫩草影院av在线观看| av.在线天堂| 欧美 亚洲 国产 日韩一| 熟女电影av网| 大片免费播放器 马上看| 免费av不卡在线播放| 丰满少妇做爰视频| 中文字幕人妻丝袜制服| 亚洲四区av| 伊人亚洲综合成人网| 日本欧美国产在线视频| 永久网站在线| 91在线精品国自产拍蜜月| 亚洲成色77777| 国语对白做爰xxxⅹ性视频网站| 狠狠婷婷综合久久久久久88av| 性色avwww在线观看| 精品少妇黑人巨大在线播放| 9色porny在线观看| 99久久精品一区二区三区| 国产欧美日韩综合在线一区二区| 97精品久久久久久久久久精品| 亚洲精品自拍成人| 免费观看的影片在线观看| videosex国产| 一级二级三级毛片免费看| 久久久久久久久久成人| 久久影院123| 亚洲,欧美,日韩| 中文字幕最新亚洲高清| 另类亚洲欧美激情| 亚洲内射少妇av| 午夜影院在线不卡| 一级片'在线观看视频| 青春草视频在线免费观看| 99热网站在线观看| 国产乱人偷精品视频| 观看av在线不卡| 亚洲精品中文字幕在线视频| 亚洲av中文av极速乱| 精品人妻熟女av久视频| 中文天堂在线官网| 水蜜桃什么品种好| 男女边摸边吃奶| 丰满饥渴人妻一区二区三| 久久精品国产自在天天线| 18禁动态无遮挡网站| 人人妻人人澡人人看| av在线老鸭窝| 丰满乱子伦码专区| 午夜免费男女啪啪视频观看| 亚洲国产欧美在线一区| tube8黄色片| 久久久久视频综合| 日本欧美视频一区| 美女国产视频在线观看| 老女人水多毛片| 日本猛色少妇xxxxx猛交久久| 欧美激情 高清一区二区三区| 9色porny在线观看| 不卡视频在线观看欧美| 中文字幕av电影在线播放| 麻豆成人av视频| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| 如何舔出高潮| av免费在线看不卡| 中文字幕久久专区| av天堂久久9| 亚洲中文av在线| 午夜老司机福利剧场| 人成视频在线观看免费观看| 久久久精品区二区三区| 搡女人真爽免费视频火全软件| 亚洲欧美色中文字幕在线| 色哟哟·www| 国产毛片在线视频| 99久久综合免费| 国产女主播在线喷水免费视频网站| 国产乱来视频区| 国产一区二区在线观看日韩| 久久久a久久爽久久v久久| 欧美少妇被猛烈插入视频| 99国产精品免费福利视频| 国模一区二区三区四区视频| 寂寞人妻少妇视频99o| 日韩成人av中文字幕在线观看| 成人免费观看视频高清| 春色校园在线视频观看| 男女啪啪激烈高潮av片| 在线亚洲精品国产二区图片欧美 | 免费看av在线观看网站| 精品久久久久久电影网| 中文字幕久久专区| 亚洲欧洲精品一区二区精品久久久 | 国产69精品久久久久777片| 久久99精品国语久久久| 九九爱精品视频在线观看| 七月丁香在线播放| 国产淫语在线视频| 天堂8中文在线网| 大陆偷拍与自拍| 亚洲欧美一区二区三区国产| 亚洲天堂av无毛| 亚洲精品乱码久久久v下载方式| 自拍欧美九色日韩亚洲蝌蚪91| 久久亚洲国产成人精品v| 美女福利国产在线| 欧美三级亚洲精品| 女性被躁到高潮视频|