• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Implementation of synaptic learning rules by memristors embedded with silver nanoparticles?

    2021-05-06 08:55:30YueNing寧玥YunfengLai賴(lài)云鋒JiandongWan萬(wàn)建棟ShuyingCheng程樹(shù)英QiaoZheng鄭巧andJinlingYu俞金玲
    Chinese Physics B 2021年4期

    Yue Ning(寧玥), Yunfeng Lai(賴(lài)云鋒), Jiandong Wan(萬(wàn)建棟),Shuying Cheng(程樹(shù)英), Qiao Zheng(鄭巧), and Jinling Yu(俞金玲)

    School of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China

    Keywords: resistive switching,synaptic plasticity,memristor

    1. Introduction

    Due to the drawbacks of processing analog information,computing based on traditional von Neumann architectures is facing challenges in the era of information explosion.[1–4]Human brain has the advantages of low power consumption,high fault tolerance,and large-scale parallel processing ability to be a desirable candidate for processing analog information.[5–8]In a neuronal system, synapses connect neurons with its synaptic plasticity describing connection strength.[9]The improvement of synaptic plasticity will make the system more brain-like, and will further help to simulate complex neural functionalities.[10]Improving synaptic plasticity is thus essential for neuromorphic computing.[11]

    A memristor, holding a sandwiched dielectric medium between electrodes,has a similar structure and functionalities to be an artificial counterpart of a biological synapse.[12–14]Tantalum oxide (TaOx) exhibits good thermal stability, suitable dielectric constant,and excellent resistive switching properties to be regarded as a potential dielectric of the memristorbased artificial synapse.[15,16]An ideal artificial synapse should be able to simulate bio-synapse behaviors as much as possible. Fast processing speed,greater processing capability and desirable linearity of weight change might be welcome to the application of an artificial synapse.[17,18]Presenting synaptic weights with electrical conductance favors the imitation of synaptic behavior. The conductance of a memristor is closely associated with internal defects.[19]Resistive switching mechanism of a memristor is complex and under debate.[20–23]Several techniques have been attempted to modify defects in a memristor.[3,19,24]Adding metal nanoparticles into the dielectric might significantly affect defects in the memristor to modulate its resistive switching behavior,[25–27]suggesting a possible way to improve synaptic behaviors. However,systematic researches on the nanoparticle-modulating synaptic properties of a memristor are still rare. Considering the good electrochemical activity and low-cost,Ag nanoparticles were embedded into the TaOxlayer in this work to study the effects of Ag nanoparticles on resistive switching and synaptic behavior. The physical model was also proposed to understand the improvements in synaptic behavior.

    2. Experimental details

    Figure 1(a) shows a schematic diagram of a biological synapse with a TaOxmemristor as its artificial counterpart. To fabricate the TaOxmemristor, ~15-nm TaOxthin films were firstly sputter-deposited onto a p+-Si bottom electrode (BE).Ultra-thin silver films were then deposited by thermal evaporation followed by 300-?C annealing for 3 min to form Ag nanoparticles (NPs). The morphologies of the Ag NPs covered surface are also shown in the inset of Fig.1(b) with the average Ag NPs diameter ~11 nm. Subsequently, ~15-nm TaOxthin films were deposited on the Ag NPs to complete the deposition of dielectric layer. Finally, the ~100-nm Ti top electrodes (TE) with a diameter of 75 μm were patterned to complete the fabrication of memristors. The TaOxmemristors without Ag NPs were also prepared for comparison.

    The current–voltage (I–V) characteristics of the devices were measured by using a semiconductor parameter analyzer(4200-SCS;Keithley,USA).Synaptic behaviors of the devices were also characterized using the same system with the top electrode as the pre-synapse and the bottom electrode as the post-synapse.

    Fig.1. (a)Schematic diagram of a biological synapse with a TaOx memristor as its artificial counterpart. (b)The morphologies of the annealed Ag/TaOx thin films(inset)with the size distribution of Ag NPs.

    3. Results and discussion

    3.1. Resistive switching

    Resistive switching properties of the devices with and without Ag NPs were shown in Fig.2. Resistance switches from a high resistance state (HRS) to a low resistance state(LRS) to finish a SET process if enough positive bias is applied[Fig.2(a)]. However, it switches from the LRS back to the HRS to complete a RESET process when enough negative bias is applied.

    Fig.2. Resistive switching characteristics of the memristors with and without Ag NPs. (a)I–V curves of the devices. (b)ln(I)–V1/2 fittings for the HRSs of the devices. (c)log(I)–log(V)fitting for the LRS of the device without Ag NPs,the inset shows the ln(I)–V1/2 fitting of the LRS under low voltage region. (d)ln(I/V)–V1/2 fitting for the LRS of the device with Ag NPs, the inset shows the ln(I)–V1/2 fitting of the LRS under low voltage region.

    To understand the conduction mechanism of the devices,we replotted the current as a function of the applied positive voltages,as shown in Figs.2(b)–2(d). As shown in Fig.2(b),the linear fittings of ln(I) versus V1/2imply a Schottkyemission driven HRS conduction for the two devices.[22]In this case,electrons have to overcome the barrier at the Si/TaOxinterface before getting into the TaOx, and they finally reach the Ti electrode to complete transport. We,therefore,can observe a Schottky-emission driven conduction in the HRS. As the increasing electrical field produces more traps in the TaOxto complete SET process,the device switches from an HRS to a LRS,exhibiting a space-charge-limited conduction(SCLC)for the memristor without Ag NPs due to three portions with different slopes (~1, ~2, and ~3) shown in Fig.2(c).[28]However,the embedment of Ag NPs significantly changes the conduction mechanism of the LRS device. Figure 2(d)shows a well linear fitting of ln(I/V) versus V1/2, which indicates that Poole–Frenkel emission dominates the conduction of the LRS of the Ag NPs embedded device. We could not deny Schottky-emission driven LRS conduction under low electric field,because the linear fittings of ln(I)versus V1/2in the insets of Figs. 2(c) and 2(d) might suggest Schottky-emission mechanism as well.

    Figure 3 shows the energy diagram of the Ag NPs embedded devices with the parameters extracted from reference.[29]With the application of electric fields on the Ag NPs embedded device,a large number of traps generate to assist electron transport even at the lower voltages as the Ag NPs enhance the surrounding electric fields.[30]As a result, more traps are generated at a lower voltage to facilitate the conduction driven by a Poole–Frenkel emission mechanism instead of an SCLC mechanism.Additionally,the Coulomb potential energy of the bound electrons could be reduced as well to facilitate electron transport.[22]Compared with the current of a device without Ag NPs, the LRS current of a device with Ag NPs slightly increases,which further confirms the enhancement of electric fields by Ag NPs to produce additional traps.

    Fig.3. Energy band diagrams of the Ag NPs embedded devices.

    3.2. Synaptic plasticity and learning

    In a biological system, the changes in synaptic strength can rapidly return to its initial state without sustaining stimulation,which is defined as short-term plasticity,[31]while if the synaptic strength is retained for a few hours or even a lifetime,long-term plasticity is available.[32]Long-term plasticity have been regarded as the basis of learning and memory.[33]Posttetanic potentiation (PTP) characteristics as a kind of shortterm plasticity, which corresponds to the enhancement effection on synaptic transmission efficiency after a series of repeated stimuli,[34]was mimicked by stimulating 10 electric pulses (amplitude=2 V). The currents in response to the 1st and 10th stimulating pulses are marked as I1and I10, respectively. Dependence of current change(?I=I10?I1)on pulse interval is then presented in Fig.4(a). The ?I decreases with the increase of pulse interval,indicating the same tendency for the two devices. However, the ?I margin of the Ag NPs embedded memristor is much larger,suggesting a larger learning strength by Ag NPs. The embedment of Ag NPs might take responsibility for the improvements. The enhanced electric fields by Ag NPs indeed increase the sensitivity of device to stimuli. The same stimuli usually trigger a much greater response for the Ag NPs embedded memristors. However,if the pulse interval extends,the traps excited by the enhanced electric fields might disappear before the arrival of next pulse.As a result,we can observe a greater margin for current modulation to favor a larger learning strength. Spike-timing-dependent plasticity(STDP)is a synaptic learning rule derived from biological Hebbian theory, which reflects the change of synaptic efficacy determined by the timing of the activity of pre- and post-neurons.[31]The synaptic weight changes (?w) can be obtained by modulating the temporal difference(?t)between pre- and post-synaptic spikes. Measurements were repeated three times for statistics. The relationship between ?w and ?t was calculated and the fitting formula is as follows:[35]

    The ?w is defined as (wpost–wpre)/wpre, where the wprerepresents initial conductance and the wpostrefers to the conductance after stimuli. A+/?and τ+/?mean the learning scaling factors and the learning time constants of the exponential functions, respectively. As shown in Fig.4(b), the stimuli of the pulse with width and interval of 20 ms were applied to the TE (pre-synapse) and the BE (post-synapse). When the presynaptic stimuli arrive earlier than the post-synaptic stimuli(?t >0), the synaptic weight is strengthened with the longterm potentiation(LTP).On the contrary,a decrease in synaptic weight would occur with long-term depression (LTD) if?t<0. Shorter temporal intervals lead to larger|?w|for both the potentiation and the depression processes. Ag NPs significantly extend the |?w| margin. The largest |?w| during the LTP process reaches ~150% instead of ~30% for the pure TaOxmemristor.The largest|?w|during the LTD process also increases to ~80%.The embedment of Ag NPs extends learning strength of the memristor,which is consistent with the observations in Fig.4(a). Additionally,both τ+and τ?extracted from the fitting curves slightly decrease, which suggests the embedded Ag NPs accelerate the learning speed of the device.It is known that the embedment of Ag NPs increases the surrounding electric fields even at a low voltage. Consequently,additional traps generate to shorten the distance between them under stimuli with even lower amplitude. Less displacement is required for those traps to reach another conductance state,and the memristor exhibits much faster learning speed.

    Fig.4. Synaptic behaviors of the TaOx memristors with and without Ag NPs. (a)PTP characteristics. The inset shows the pulse scheme and the response current. (b)STDP characteristics. The inset shows the pulse stimuli applied to the pre-and post-synapses. (c)Conductance change of the Ag NPs-embedded memristor after different numbers of stimuli. The inset shows the exciting(blue)and reading(green)pulse schemes.(d)Relationship between the correlation factor C0,relaxation time τ,and exciting pulse number during the transition from STP to LTP.EPSC of our devices without(e)and with(f)Ag NPs at an input presynaptic pulse of 2.3 V at 30 ms.

    Transformation from short-term plasticity(STP)to longterm plasticity(LTP)is essential for the learning and memory process.[36]Different numbers(N)of exciting pulses were applied to the devices to simulate the transformation. As the pulse scheme shown in the inset of Fig.4(c), initial conductance was acquired by a 0.3-V reading pulse, followed by 5-V exciting pulses (width=50 ms, interval=50 ms, and N = 10, 15, 20, 25, 30, or 35) to perform LTP. Once the exciting stimuli were removed, 100 reading pulses (amplitude=0.3 V, width=100 ms, and interval=400 ms) were applied to acquire conductance. The dependence of normalized synaptic weight change on the number of reading pulses are illustrated in Fig.4(c). The decrease in conductance represents the forgetting process,and the Hermann Ebbinghaus’s forgetting curves were fitted to discover the long-term learning ability and forgetting speed. The normalized conductance changes and the forgetting curves were fitted according to C =C0+A·exp(?t/τ),[36,37]where C0and A are the correlation factors. The forgetting amount and forgetting speed decrease with the increase of C0and τ, which actually represent the normalized initial conductance and the relaxation time during the forgetting process, respectively. The C0and τ under different N were extracted and shown in Fig.4(d). The C0and τ show an increasing trend with the increase in exciting pulse number,which indicates the transformation from STP to LTP.The embedment of Ag NPs increases C0and τ of the device, which implies that the Ag NPs can effectively enhance the memory strength of the TaOxmemristor and reduce its forgetting speed.The enhanced electric field by Ag NPs produces additional traps in the TaOxto consolidate the connections in between, which indeed enhances the memory strength to reduce forgetting amount and to slow down forgetting.

    Excitatory postsynaptic current (EPSC) stimulated by presynaptic potential spike is the response current. The EPSC of the devices without and with Ag NPs are respectively shown in Figs.4(e)and 4(f).The energy to complete the spiking event is ~73 nJ for the device without Ag NPs, while the required energy is reduced to be ~1.8 nJ by the embedment of Ag NPs.

    As a necessary functionality of a bio-synapse, the learning rule of the devices was simulated and shown in Fig.5.Pulses are schematically shown in Fig.5(a) with the blue pulses for stimulating the device and the green pulses for reading weight(or conductance)of the device. The weight change was calculated according to ?wlearning=[(It?I0)/I0]×100%,where I0represents the initial current, Itrepresents the current at any time during one learning process. While the forgetting curves were fitted by ?wforgetting=w0+A·exp(?t/τ),[36]in which the w0represents memory capacity, and the τ again represents relaxation time during the forgetting process. As shown in the figures, gradually increased weight changes are available during the learning process. Then the pulses are removed to mimic the forgetting behavior. Memory capacity reaches a stable level after the first forgetting stage. It takes less number (26–30) of pulses to get 100% weight change to complete the second learning stage, indicating an increased learning speed. Meanwhile,memory capability increases further at the second forgetting stage. A tiny number (4–5) of pulses are required to obtain a 100% weight change during the third learning stage. The above observations suggest that the high-efficiency learning modes of experiential learning are successfully implemented. The values of w0and τ are extracted and marked in Fig.5(b)to analyze the role of Ag NPs on learning. Ag NPs have neglectful effects on the w0due to quite similar values. However, Ag NPs remarkably increase the relaxation time from 2.73 s to 29.23 s with 9.7 times increasement during the first forgetting stage. The relaxation time is even extended 14.2 times during the second forgetting stage.Consequently,Ag NPs can consolidate the memory strength of the devices by decreasing forgetting speed, which well agrees with the observations in Fig.4.

    Fig.5. Simulation of learning and forgetting processes of the two devices. (a)Pulse scheme for simulating learning with black pulses for stimulating and green ones for reading. (b)Simulation of learning and forgetting processes.

    3.3. Linearity of conductance modulation

    The long-term characteristics of the devices are also important. The stimulating pulse scheme is schematically depicted in Fig.6(a). The dependence of conductance change on pulse number is shown in Fig.6(b) with the curves fitted by the following formula:[38]

    where G represents device conductance, t represents testing time, a and c are fitting parameters, β is an exponential factor to reflect the degree of deviation from linearity during the conductance modulation process. A small value of β,indicating better linearity, is welcome for the practical applications of the electronic synapse.[38]To further estimate the reproducibility of the devices, the LTP and LTD repeat five times and the acquired β presents in Fig.6(c). The β and its deviation are significantly decreased by Ag NPs during the LTP and LTD, which implies that the embedment of Ag NPs improves not only the linearity of conductance modulation but also reproducibility of the performance. The enhanced electric field by Ag NPs produces additional traps scattering in the TaOxto assist electron transport. Stimuli in smaller amplitude are able to trigger slight displacement of the traps to reach an intermediate conductance state. We could observe small conductance modulations in response to small increase in stimuli amplitude, exhibiting improved conductance linearity for the potentiation and depression processes. Also, additional traps in a large number suppress the effects of individual stochastic movements of traps on performance. Reproducibility of the memristor might be increased as well.

    Fig.6. Conductance modulation processes by stimuli. (a) Potentiating (in blue) and depressing (in red) pulse scheme. (b) Repeated conductance modulation during the LTP and LTD processes for the memristors with and without Ag NPs. (c)Comparison of β during the LTP and LTD processes.

    4. Conclusions

    The Ag NPs-embedded TaOxmemristors have been fabricated with a Poole–Frenkel emission governed conduction in the LRS and a Schottky-emission driven conduction in the HRS.The TaOxmemristors with and without Ag NPs are able to serve as artificial synapses to implement synaptic plasticity,learning and memory functions. The embedded Ag NPs improve synaptic performance of the device with a larger learning strength and faster learning speed. Additionally, the embedded Ag NPs significantly improve the linearity of conductance modulation and reproducibility of the devices. The enhanced electric fields by Ag NPs to produce additional traps are believed to be responsible for the above improvements.

    美女被艹到高潮喷水动态| 婷婷色麻豆天堂久久 | 亚洲国产欧洲综合997久久,| 午夜福利网站1000一区二区三区| 亚洲电影在线观看av| 美女脱内裤让男人舔精品视频| 欧美区成人在线视频| 全区人妻精品视频| 久久久欧美国产精品| 一级毛片aaaaaa免费看小| 国产亚洲av片在线观看秒播厂 | 99热全是精品| 成年av动漫网址| 99热精品在线国产| 国产免费又黄又爽又色| 小蜜桃在线观看免费完整版高清| 大香蕉久久网| 三级男女做爰猛烈吃奶摸视频| 成年版毛片免费区| 日韩,欧美,国产一区二区三区 | 中文精品一卡2卡3卡4更新| 久久国产乱子免费精品| 亚洲精品日韩av片在线观看| 少妇被粗大猛烈的视频| 26uuu在线亚洲综合色| 黄片无遮挡物在线观看| 国产免费一级a男人的天堂| 1000部很黄的大片| 精品国产露脸久久av麻豆 | www.av在线官网国产| 一区二区三区高清视频在线| 麻豆久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久大精品| 97热精品久久久久久| 免费观看的影片在线观看| 狂野欧美白嫩少妇大欣赏| 一区二区三区四区激情视频| 丝袜美腿在线中文| 日韩成人av中文字幕在线观看| 禁无遮挡网站| 嘟嘟电影网在线观看| 精品国内亚洲2022精品成人| 日韩欧美在线乱码| 色综合色国产| av在线亚洲专区| 91狼人影院| 美女脱内裤让男人舔精品视频| 亚洲乱码一区二区免费版| 久久精品夜夜夜夜夜久久蜜豆| 亚州av有码| 国产一区二区亚洲精品在线观看| 亚洲一级一片aⅴ在线观看| 中文字幕亚洲精品专区| 美女cb高潮喷水在线观看| 亚洲综合精品二区| 六月丁香七月| 色播亚洲综合网| 插阴视频在线观看视频| 久久久久久大精品| av在线老鸭窝| 国产精品永久免费网站| 亚洲欧美精品综合久久99| 十八禁国产超污无遮挡网站| 97超碰精品成人国产| 免费av观看视频| 日韩视频在线欧美| 国产日韩欧美在线精品| 国产又色又爽无遮挡免| 国产精品.久久久| 只有这里有精品99| 九色成人免费人妻av| 最近中文字幕高清免费大全6| 51国产日韩欧美| 国产一区有黄有色的免费视频 | 韩国高清视频一区二区三区| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久久免费av| 精品一区二区三区人妻视频| 久久热精品热| 99久久精品国产国产毛片| 国产精品久久视频播放| av国产久精品久网站免费入址| 简卡轻食公司| 久久久久久久国产电影| 亚洲精品乱码久久久v下载方式| 国产av在哪里看| 人人妻人人澡欧美一区二区| 国产精品一区二区三区四区久久| 色播亚洲综合网| 亚洲欧美一区二区三区国产| 天堂网av新在线| 亚洲,欧美,日韩| 一级黄色大片毛片| 美女脱内裤让男人舔精品视频| 成年女人看的毛片在线观看| 日韩,欧美,国产一区二区三区 | 麻豆一二三区av精品| 国内精品一区二区在线观看| 久久热精品热| 国产精品三级大全| 国产片特级美女逼逼视频| 午夜精品国产一区二区电影 | 国产真实伦视频高清在线观看| 久久精品国产自在天天线| 亚洲精品色激情综合| 免费大片18禁| 国产黄片视频在线免费观看| 免费搜索国产男女视频| 性色avwww在线观看| 欧美性猛交╳xxx乱大交人| 国产探花在线观看一区二区| 国产单亲对白刺激| 级片在线观看| 日韩,欧美,国产一区二区三区 | 久久久成人免费电影| 亚洲怡红院男人天堂| 国产视频首页在线观看| 最后的刺客免费高清国语| 久久精品久久久久久久性| 国产精品永久免费网站| 亚洲国产精品久久男人天堂| 亚洲一区高清亚洲精品| 桃色一区二区三区在线观看| 精品久久久久久久久久久久久| 天堂av国产一区二区熟女人妻| 最近中文字幕2019免费版| 99久久精品一区二区三区| 免费av毛片视频| 高清av免费在线| 国模一区二区三区四区视频| 水蜜桃什么品种好| 国产日韩欧美在线精品| 国产伦在线观看视频一区| 在线a可以看的网站| 国产精品综合久久久久久久免费| 18+在线观看网站| 大又大粗又爽又黄少妇毛片口| 精品久久久噜噜| 大香蕉久久网| 亚洲真实伦在线观看| 久久精品影院6| 免费搜索国产男女视频| 啦啦啦啦在线视频资源| 久久精品熟女亚洲av麻豆精品 | 久久草成人影院| 国产亚洲精品av在线| 亚洲精品aⅴ在线观看| av又黄又爽大尺度在线免费看 | 好男人视频免费观看在线| 天堂av国产一区二区熟女人妻| 一个人看视频在线观看www免费| 国产三级中文精品| 国产私拍福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 麻豆精品久久久久久蜜桃| videos熟女内射| 日韩在线高清观看一区二区三区| 国产老妇女一区| ponron亚洲| 麻豆成人av视频| 日本-黄色视频高清免费观看| 五月伊人婷婷丁香| 听说在线观看完整版免费高清| 国产人妻一区二区三区在| 亚洲欧美一区二区三区国产| 自拍偷自拍亚洲精品老妇| www.色视频.com| 亚洲综合色惰| 精品久久久久久久人妻蜜臀av| 麻豆成人av视频| 夫妻性生交免费视频一级片| 免费观看a级毛片全部| 亚洲av.av天堂| 亚洲av成人精品一二三区| 久久亚洲国产成人精品v| 99热这里只有是精品50| 最近手机中文字幕大全| 国产69精品久久久久777片| 国产成人午夜福利电影在线观看| 91午夜精品亚洲一区二区三区| av在线天堂中文字幕| 亚洲国产成人一精品久久久| 国产黄片美女视频| 国产精品久久久久久精品电影| 综合色丁香网| 亚洲久久久久久中文字幕| 一个人看的www免费观看视频| 精华霜和精华液先用哪个| 亚洲av电影在线观看一区二区三区 | 熟女电影av网| 日本午夜av视频| 亚洲国产欧美人成| 熟女人妻精品中文字幕| 在线播放国产精品三级| .国产精品久久| 午夜a级毛片| 少妇猛男粗大的猛烈进出视频 | 日韩中字成人| 一夜夜www| 欧美3d第一页| 国产成人精品一,二区| 如何舔出高潮| www日本黄色视频网| 日韩中字成人| 免费观看性生交大片5| 水蜜桃什么品种好| 一级毛片aaaaaa免费看小| 成人毛片a级毛片在线播放| 久久久久精品久久久久真实原创| 美女xxoo啪啪120秒动态图| 亚洲人与动物交配视频| 尾随美女入室| 久久99精品国语久久久| 久久人人爽人人爽人人片va| 国产精品,欧美在线| 国产精品电影一区二区三区| 欧美区成人在线视频| av又黄又爽大尺度在线免费看 | 一二三四中文在线观看免费高清| 非洲黑人性xxxx精品又粗又长| 国产 一区 欧美 日韩| 老司机影院毛片| av免费在线看不卡| 欧美成人一区二区免费高清观看| 欧美高清性xxxxhd video| kizo精华| 日日啪夜夜撸| 色综合站精品国产| 99热这里只有是精品在线观看| 天堂av国产一区二区熟女人妻| 国产精品福利在线免费观看| 国产一区二区亚洲精品在线观看| 成人性生交大片免费视频hd| 亚洲人成网站高清观看| 99久久九九国产精品国产免费| 99在线视频只有这里精品首页| 青春草亚洲视频在线观看| 亚洲国产最新在线播放| 亚洲国产精品久久男人天堂| 免费av不卡在线播放| 视频中文字幕在线观看| 秋霞在线观看毛片| 国产色爽女视频免费观看| 亚洲第一区二区三区不卡| 99久久中文字幕三级久久日本| 免费观看性生交大片5| 我要看日韩黄色一级片| 国产av在哪里看| 狂野欧美激情性xxxx在线观看| 一本一本综合久久| 啦啦啦韩国在线观看视频| 又粗又爽又猛毛片免费看| 我的女老师完整版在线观看| 69av精品久久久久久| 99热这里只有是精品在线观看| 亚洲av电影不卡..在线观看| 看黄色毛片网站| 大话2 男鬼变身卡| 亚洲av男天堂| 在现免费观看毛片| 免费观看精品视频网站| 少妇高潮的动态图| 在线播放国产精品三级| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 深爱激情五月婷婷| 1024手机看黄色片| 日韩国内少妇激情av| 99久久精品热视频| 在线免费观看不下载黄p国产| 欧美激情久久久久久爽电影| 黑人高潮一二区| 建设人人有责人人尽责人人享有的 | 亚洲内射少妇av| 韩国av在线不卡| 亚洲欧美日韩东京热| 少妇人妻一区二区三区视频| 舔av片在线| 国产老妇伦熟女老妇高清| 亚洲成色77777| 我要搜黄色片| 最近手机中文字幕大全| 可以在线观看毛片的网站| 夜夜看夜夜爽夜夜摸| 国产欧美另类精品又又久久亚洲欧美| 人妻少妇偷人精品九色| 亚洲无线观看免费| 成人国产麻豆网| 日韩高清综合在线| av在线老鸭窝| 精品久久久噜噜| 最后的刺客免费高清国语| 国产亚洲一区二区精品| 亚洲在久久综合| www日本黄色视频网| 日韩成人av中文字幕在线观看| 欧美成人精品欧美一级黄| 亚洲最大成人中文| av国产免费在线观看| 91在线精品国自产拍蜜月| 欧美3d第一页| 成年版毛片免费区| 免费播放大片免费观看视频在线观看 | 欧美激情国产日韩精品一区| 男人舔奶头视频| 99九九线精品视频在线观看视频| 欧美成人午夜免费资源| 中文亚洲av片在线观看爽| 国产精品人妻久久久影院| 一夜夜www| 国语自产精品视频在线第100页| 日韩av不卡免费在线播放| 一级毛片电影观看 | 国产91av在线免费观看| 亚洲美女视频黄频| 一本久久精品| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 久久久久九九精品影院| 国产日韩欧美在线精品| 1000部很黄的大片| 超碰av人人做人人爽久久| 久久精品久久久久久久性| 看免费成人av毛片| 亚洲成色77777| 一级av片app| 黄色一级大片看看| 精品久久国产蜜桃| 亚洲av电影不卡..在线观看| 成年女人看的毛片在线观看| 色综合站精品国产| 免费黄网站久久成人精品| 国产爱豆传媒在线观看| 97在线视频观看| 非洲黑人性xxxx精品又粗又长| 波野结衣二区三区在线| 久久精品综合一区二区三区| 国产精品永久免费网站| 午夜福利网站1000一区二区三区| or卡值多少钱| 干丝袜人妻中文字幕| 99久久成人亚洲精品观看| 少妇人妻精品综合一区二区| 秋霞伦理黄片| 波野结衣二区三区在线| 丰满人妻一区二区三区视频av| 乱系列少妇在线播放| 天堂av国产一区二区熟女人妻| 国产不卡一卡二| 少妇猛男粗大的猛烈进出视频 | 久久久久久九九精品二区国产| 亚洲欧洲日产国产| 久久久国产成人精品二区| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 亚洲人成网站高清观看| 欧美日韩在线观看h| 97热精品久久久久久| 亚洲精品一区蜜桃| 亚洲经典国产精华液单| 精品人妻一区二区三区麻豆| 欧美区成人在线视频| 国产成人精品婷婷| 久久精品国产99精品国产亚洲性色| 美女脱内裤让男人舔精品视频| 床上黄色一级片| 国产单亲对白刺激| 最近中文字幕2019免费版| 在线免费观看的www视频| 水蜜桃什么品种好| 99久久九九国产精品国产免费| 爱豆传媒免费全集在线观看| 午夜爱爱视频在线播放| 搞女人的毛片| 久久久久久久久大av| 非洲黑人性xxxx精品又粗又长| 白带黄色成豆腐渣| 国产精品三级大全| 久久久久久久久久久丰满| 汤姆久久久久久久影院中文字幕 | 欧美三级亚洲精品| 少妇的逼好多水| 禁无遮挡网站| 国产精品久久久久久精品电影小说 | 成人高潮视频无遮挡免费网站| 日韩精品青青久久久久久| 91久久精品国产一区二区成人| 精品国内亚洲2022精品成人| 国产乱人视频| 亚洲aⅴ乱码一区二区在线播放| 国产一区有黄有色的免费视频 | 一级毛片aaaaaa免费看小| 精品人妻视频免费看| 久久人人爽人人爽人人片va| 草草在线视频免费看| 男女视频在线观看网站免费| 欧美97在线视频| 亚洲成人精品中文字幕电影| 岛国在线免费视频观看| 成人综合一区亚洲| 亚洲精品,欧美精品| videossex国产| 国产 一区 欧美 日韩| 免费看a级黄色片| 性色avwww在线观看| 亚洲在久久综合| 男女边吃奶边做爰视频| 晚上一个人看的免费电影| 小蜜桃在线观看免费完整版高清| 日韩欧美国产在线观看| 国产一区二区三区av在线| 性插视频无遮挡在线免费观看| 国产探花在线观看一区二区| 国产伦精品一区二区三区视频9| 好男人在线观看高清免费视频| 色5月婷婷丁香| 在线免费观看的www视频| 免费看日本二区| 成年女人看的毛片在线观看| 亚洲av电影在线观看一区二区三区 | 国产成人aa在线观看| 大香蕉97超碰在线| 欧美变态另类bdsm刘玥| 久久精品国产自在天天线| 亚洲国产精品成人久久小说| 亚洲经典国产精华液单| 国产亚洲午夜精品一区二区久久 | 神马国产精品三级电影在线观看| 天天躁日日操中文字幕| 国产成人午夜福利电影在线观看| 亚洲av男天堂| 麻豆乱淫一区二区| 日韩欧美 国产精品| 免费搜索国产男女视频| 日韩国内少妇激情av| 91久久精品国产一区二区三区| 男女那种视频在线观看| 久久精品久久久久久噜噜老黄 | 成人毛片60女人毛片免费| 欧美激情在线99| 国产精品人妻久久久久久| 久热久热在线精品观看| 最近最新中文字幕免费大全7| 亚洲国产欧美人成| 观看免费一级毛片| 久久这里只有精品中国| 久久精品久久久久久久性| ponron亚洲| 六月丁香七月| 精品少妇黑人巨大在线播放 | 亚洲电影在线观看av| 国产av不卡久久| 级片在线观看| 久久亚洲精品不卡| 少妇人妻精品综合一区二区| 纵有疾风起免费观看全集完整版 | 精品午夜福利在线看| 国产v大片淫在线免费观看| 中文字幕av成人在线电影| 日本一二三区视频观看| 欧美区成人在线视频| 嫩草影院入口| 国产毛片a区久久久久| 日本爱情动作片www.在线观看| 国产精品99久久久久久久久| 青青草视频在线视频观看| 中文字幕av在线有码专区| 国产一区二区在线av高清观看| 精品国内亚洲2022精品成人| 国产一区亚洲一区在线观看| av黄色大香蕉| 男女下面进入的视频免费午夜| 久久精品久久久久久久性| 边亲边吃奶的免费视频| 午夜福利在线观看吧| 精品少妇黑人巨大在线播放 | 又爽又黄a免费视频| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 插逼视频在线观看| 国语对白做爰xxxⅹ性视频网站| 大香蕉久久网| 成人午夜高清在线视频| 日本熟妇午夜| 两个人视频免费观看高清| 免费看光身美女| 青青草视频在线视频观看| 中文资源天堂在线| 一级二级三级毛片免费看| 国产午夜精品一二区理论片| 精品久久国产蜜桃| 啦啦啦观看免费观看视频高清| 美女国产视频在线观看| 成年女人永久免费观看视频| 女的被弄到高潮叫床怎么办| 欧美又色又爽又黄视频| 简卡轻食公司| 看十八女毛片水多多多| 日韩av在线免费看完整版不卡| 日本欧美国产在线视频| 久久久久久久久久久免费av| 校园人妻丝袜中文字幕| 国产欧美日韩精品一区二区| 亚洲欧洲日产国产| 久久这里有精品视频免费| 99在线人妻在线中文字幕| 国产色婷婷99| 精品国产三级普通话版| 亚洲av电影不卡..在线观看| 国产av在哪里看| 一级av片app| 久久精品夜夜夜夜夜久久蜜豆| 亚洲久久久久久中文字幕| 国产三级在线视频| 免费在线观看成人毛片| 久久欧美精品欧美久久欧美| 精品人妻熟女av久视频| 国产免费男女视频| 久久精品影院6| 国产精品野战在线观看| 久久久久久久久久黄片| 晚上一个人看的免费电影| av在线观看视频网站免费| 久久久久性生活片| 男女啪啪激烈高潮av片| 美女高潮的动态| 久久精品久久久久久噜噜老黄 | 日韩欧美 国产精品| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类| 欧美又色又爽又黄视频| 少妇熟女欧美另类| 午夜福利在线在线| 国产精品国产三级国产专区5o | 欧美成人一区二区免费高清观看| 少妇人妻精品综合一区二区| 日本免费在线观看一区| 视频中文字幕在线观看| 国产中年淑女户外野战色| 日韩一本色道免费dvd| 99久国产av精品国产电影| 寂寞人妻少妇视频99o| 99久久精品国产国产毛片| 91久久精品电影网| 人妻系列 视频| 美女大奶头视频| 女的被弄到高潮叫床怎么办| 91av网一区二区| 日本三级黄在线观看| 丰满人妻一区二区三区视频av| 色尼玛亚洲综合影院| 亚洲av免费在线观看| 国产在线男女| 我要看日韩黄色一级片| 精品酒店卫生间| 亚洲aⅴ乱码一区二区在线播放| 国产精品.久久久| 亚洲五月天丁香| 白带黄色成豆腐渣| 久久午夜福利片| 日本免费在线观看一区| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜 | 成人毛片a级毛片在线播放| 国产精华一区二区三区| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 在线天堂最新版资源| 午夜免费激情av| 国产高潮美女av| 青春草国产在线视频| 日韩精品有码人妻一区| 午夜久久久久精精品| 高清日韩中文字幕在线| 国产色婷婷99| 成人特级av手机在线观看| 国产成人一区二区在线| 久久99热这里只频精品6学生 | 久久久久精品久久久久真实原创| 午夜久久久久精精品| 麻豆国产97在线/欧美| 国产午夜精品论理片| 国产精品久久视频播放| 麻豆久久精品国产亚洲av| 色视频www国产| 九九久久精品国产亚洲av麻豆| 国产色婷婷99| 国产精品精品国产色婷婷| 人人妻人人澡人人爽人人夜夜 | 偷拍熟女少妇极品色| 久久鲁丝午夜福利片| 亚洲天堂国产精品一区在线| 有码 亚洲区| 不卡视频在线观看欧美| 国模一区二区三区四区视频| 国产极品精品免费视频能看的| 好男人在线观看高清免费视频| 日韩精品青青久久久久久| 久久韩国三级中文字幕| 国产精品嫩草影院av在线观看| 国产成人精品久久久久久| 国产成人aa在线观看| 日本色播在线视频| 国产大屁股一区二区在线视频| 国产视频首页在线观看| 国产精品.久久久| 亚洲欧美日韩高清专用| 国产午夜精品久久久久久一区二区三区| 国产精品伦人一区二区| 免费不卡的大黄色大毛片视频在线观看 | av又黄又爽大尺度在线免费看 | 18禁在线播放成人免费| 国产亚洲精品av在线|