• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles calculations of F-,Cl-,and N-related defects of amorphous SiO2 and their impacts on carrier trapping and proton release?

    2021-05-06 08:55:22XinGao高鑫YunliangYue樂云亮YangLiu劉楊andXuZuo左旭
    Chinese Physics B 2021年4期
    關(guān)鍵詞:高鑫

    Xin Gao(高鑫), Yunliang Yue(樂云亮), Yang Liu(劉楊), and Xu Zuo(左旭),5,6,?

    1College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300071,China

    2School of Information Engineering,Yangzhou University,Yangzhou 225127,China

    3Microsystem and Terahertz Research Center,China Academy of Engineering Physics,Chengdu 610200,China

    4Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang 621999,China

    5Municipal Key Laboratory of Photo-electronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China

    6Engineering Research Center of Thin Film Optoelectronics Technology,Ministry of Education,Tianjin 300071,China

    Keywords: first-principles calculation,doping,defect,proton

    1. Introduction

    SiO2/Si interface plays an important role in semiconductor devices and has a great influence on device reliability. Ionization radiation can induce electron-hole pairs in SiO2,which will drift under the gate electric field. The holes will migrate to the interface transition area and activate the interface defects.[1]Protons will also activate the hydrogenated defects and degrade the interface performance. These reactions ultimately lead to ionization damage at the a-SiO2/Si interface that causes device degeneration or even failure.[2–5]

    In this paper, the first-principles calculations based on density functional theory are performed to study F-, Cl-, and N-related defects of a-SiO2and their impacts on proton release. There are two main processes for generating protons.First, hydrogenation defects and protons (H+) will form if hydrogen molecules break at positively charged oxygen vacancy defects.[6,7]Second, the H-containing defects could also release protons by hole capture under the irradiation condition.[7,8]Previous studies have also shown that the suspension bond of oxygen vacancy can be terminated by doping of Cl to reduce oxygen vacancy and improve the reliability of a-SiO2.[9]In this work, we have investigated the possible configurations formed by the interaction of F,Cl,and oxygen vacancy defects. After the conversion of the oxygen vacancy defects to F/Cl related structures,the concentration of oxygen vacancies is reduced,and the reaction of molecular hydrogen and positively charged oxygen vacancy defects is suppressed.The newly formed defects are found to be effective deep traps,which reduce the amount of the holes that can be trapped by the hydrogen-containing defects. Both effects suppress the proton release process.

    Due to the anti-radiation properties of N-containing SiO2,[10,11]Jeong et al. constructed several N-containing defect models and suggested that the coexistence of N and H improves the electrical reliabilities of Si oxynitride films.[12]Orellana et al. studied NO, NH, N2, and atomic N interacting with a Si-Si bond of an otherwise perfect SiO2.[13]In this paper, we discuss the neutral defect configuration of N in the a-SiO2model,positively charged structures formed after neutral defects trap holes,and the formation energy of these structures. N-containing defects will compete with oxygen vacancies defects or hydrogenated defects to reduce the latter’s probability of trapping holes. Further,the N-containing defects are found to be proton traps,which prevent protons from spreading to the interface.

    2. Methods

    Under the theoretical framework of density functional theory (DFT), the Perdew–Burke–Ernzerhof (PBE) parameterization of general gradient approximation(GGA)is used to perform the first-principles calculation in the Vienna ab initio simulation package(VASP)software. The role of the valence electron and the real part of the atom is described by the projected augmented-wave method. The cut-off energy of plane wave expansion is set to 520 eV.Brillouin-zone integration is performed on the Γ point due to the large size of the unit cell.The convergence criterion for structural optimization is that the total energy difference is lower than 10?4eV,and the criterion for electronic self-consistent iteration is raised to 10?5eV.The defect-free a-SiO2model is taken from Ref. [14], where 216 atoms in a periodic unit are considered and the dimension of the supercells in this work is about 16.5×16.5×12.4 ?A3.

    To determine the relative stability and electrical properties of the impurity-forming structure, the formation energy and transition energy levels of various defect structures in the neutral and positively charged states are calculated under the O-rich and Si-rich conditions. The bandgap of a-SiO2is underestimated by GGA. To relieve the problem, we apply the unscreened hybrid functional in which 35%of PBE exchange is replaced by the Hartree–Fock exchange. In the present work, the formula of formation energy is referred to as the formalism defined by Van de Walle et al.[15]

    where Etot[Xq]is the total energy of a-SiO2model containing defect X with charge q, and Etot[bulk] is the total energy of the same bulk a-SiO2model,niuiis the chemical potential for adding or subtracting atoms. At the O-rich condition(oxidizing condition), μO=1/2μO2. Ecorris the correction term due to system electrification. In this work, the energy of the state of charge is corrected by calculating the change in electrostatic potential from the period to the open boundary condition.Ecorris the correction for charged systems proposed by Freysoldt,Neugebauer,and Van de Walle.[16]

    3. Results and discussions

    3.1. The configurations of atomic F/Cl decorated oxygen vacancies and N related defects

    To simulate the interaction between atomic F, Cl, and oxygen vacancies in a-SiO2,the central oxygen atom bonding with Si atoms is removed,and all systems are relaxed to make O vacancy in defect-free a-SiO2. Ten neutral dimer configurations are obtained. The length of the Si-Si dimer is 2.43 ?A on average,similar to the values in the previous report.[17]

    An atomic F is added in the a-SiO2model surrounding the vacancy as the starting structure. After relaxation, the structure shown in Fig.1 is obtained. The F atom is connected to one of the Si atoms, and the other Si atom carries an unpaired electron. The length between two Si atoms increases to 3.31 ?A,and the average Si–F length is 1.62 ?A.The interaction structure of the Cl atom and the oxygen vacancy is the same as that of the F atom,and the only difference is the bond length.For the Cl passivated defect,the length between two Si atoms increases to 3.06 ?A, and the average Si–Cl length is 2.12 ?A,which is 0.5 ?A longer than the Si–F length.

    Fig.1. Defect configuration generated by the interaction of an F or Cl atom and an oxygen vacancy.

    It has been reported that the coexistence of N and H can effectively eliminate the hole trap.[18]During the proton release process,N-doped a-SiO2may react with both holes and protons,thereby influencing the proton release process.Therefore, possible configurations of N-related defects in a-SiO2were investigated (Fig.2). Substituting an N atom for an O atom in the defect-free silica network, connecting two Si atoms and performing structural relaxation, the N(2)o structure is obtained (Fig.2(b)). The length of Si–N is 1.71 ?A on average.This article adopts the same structure naming method as in Ref.[19]. The symbol N represents N atom,the number represents the N atom coordination number, and the lowercase O represents N atom instead of O atom. In the N(2)o=O structure(Fig.2(c)),an O atom is added to the N(2)o structure and an N–O bond is formed;the average Si–N bond length is about 1.78 ?A.The structure of N(2)o–H is similar to N(2)o=O,an H atom is added to the N(2)o structure and an N–H bond is formed (Fig.2(d)), the Si–N bond length does not change much compared to that of N(2)o. The average value is about 1.72 ?A.Based on the N(2)o structure,the N atom is connected with another Si atom to form a threefold N atom, the N(3)o structure is obtained (Fig.2(f)); the connecting oxygen atom of this silicon atom is removed to form a new structure named N(3)o–Voas shown in Fig.2(e). The Si–N bond length is increased by 0.05 ?A compared to the N(2)o structure, reaching an average value of 1.76 ?A, and the bond angle of the threefold N atom is between 116?and 120?.In the meantime,the N atom and the three Si atoms connected are almost in the same plane. The bond length and bond angle of these structures are very similar to those previously reported in α-quartz.[12]All structures have been observed in experiments.[20–23]N(2)o and N(3)o are the two structures that occur most frequently.[20]

    Fig.2. Possible configurations of N-related defects in a-SiO2(a)defect-free a-SiO2,(b)N(2)o,(c)N(2)o=O,(d)N(2)o–H,(e)N(3)o–Vo,(f)N(3)o.

    3.2. Hole trapping at the neutral defect centers

    Hole trapping at a-SiO2doped defects was simulated by removing an electron from the unit cell and then optimized the structure. F- and Cl-defects of a-SiO2converge into two different structures via hole trapping(Fig.3). First,the atomic F or Cl is connected between two Si atoms to form a Si–F–Si/Si–Cl–Si bridge configuration(Fig.3(a)). Alternatively,the doping atoms are connected to the one Si atom,and the other is in an sp2state at a threefold coordinated silicon atom(Fig.3(b)).In this configuration, the Si–O bond decreases to an average value of 1.57 ?A compared to the neutral charge state and the four atoms are almost in the same plane.

    Fig.3. Positively charged F- and Cl-related defect configuration (a)Si–F/Cl–Si bridge configuration,(b)sp2 Si configuration.

    As for N-related defects, all of them still maintain the original configuration, but the bond length and the bond angle have changed with respect to the neutral structure. In the positively charged N(2)o configuration shown in Fig.4(a),the Si–Si distance increases to 3.46 ?A on average and the Si–N distance increases to about 1.78 ?A compared to the neutral charge state. The total magnetic moment increases from 1.0 μBto 2.0 μB, and the spin density mainly resides on the nitrogen atom. Some of them spread over the two connected silicon atoms and the three coordination oxygen atoms adjacent to the silicon atoms. In the positively charged N(2)o=O(Fig.4(b)),the Si–N bonds (bond lengths ~1.95 ?A) are longer than the Si–N bonds (average bond length ~1.78 ?A) in the neutral structure and the Si–N–Si bond angle increases from 105?to 112?. The positively charged structure is closer to a planar structure than a neutral structure. The total magnetic moment decreases from 1.0μBto 0μB. The spin densities in the neutral structure show that the unpaired electron spins are mainly located on p orbitals of the nitrogen and oxygen atoms. In the positively charged N(2)o–H configurations shown in Fig.4(c),the average Si–Si distance increases to 3.28 ?A and the Si–N distance increases to about 1.78 ?A compared to the neutral charge state.

    Fig.4. Positively charged N-related defect configurations(a)N(2)o,(b)N(2)o=O,(c)N(2)o–H.

    The spin density is mostly localized at the silicon dangling bond in the neutral N(3)o–Voconfigurations, and the three coordination silicon atom is in the sp2state after capturing the hole,as shown in Fig.5(a). When the neutral structure in Fig.5(b)captures hole,unlike in Fig.5(a),the spin-charge density is localized on the three-coordinated N atom instead of being captured by the oxygen atom connected to the Si atom.The spin density mainly resides on the nitrogen and oxygen atoms, and the total magnetic moment changed from 1 μBto 2μB.

    Fig.5.Positively charged N-related defect configurations.(a)N(3)o-Vo,(b)N(3)o.

    3.3. Formation energy

    Based on the above research, the formation energies of neutral and ±1 charged F-, Cl-, and N-related defects were calculated. The results are shown in Fig.6. The slope of the straight line indicates the charged state, and the sloping-up,horizontal, and slopping down segments are associated with the+1,0,and ?1 charge states,respectively. The meter level is aligned with the top of the valence band of a-SiO2without defects,and the shaded area indicates the bandgap of Si. The transition levels of different structures can be obtained from Fig.6.

    Fig.6. Formation energy as a function of Fermi energy for the F-, Cl-,and N-related defect. The sloping-up,horizontal,and slopping down segments are associated with the+1,0,and ?1 charge states,respectively.

    The results show that the Cl formation energy is the highest when the system is uncharged. And the energy levels suggest the defects are deep energy traps that prevent the holes from diffusing to the interface.

    The Fermi energy lies approximately in the middle of silicon bandgap for most devices.For several structures obtained by N doping,N(2)o–H has the lowest formation energy while the Fermi level in the silicon bandgap. In contrast,N(3)structure has the highest formation energy. N(2)o–H, N(2)o=O,and N(3)o–Voduring device operation exist in a neutral state and act as shallow traps to transport holes. The N(2)o and N(3)o configurations, whose transition levels from neutral to negatively charged states are in the silicon bandgap,could be negatively charged as the deep electron traps during the oxide charge buildup after ionization radiation.

    3.4. Proton traps

    N-containing defects will become proton traps to prevent protons from spreading to the interface due to the coordination number of N. To simulate the reaction of a proton with an N-containing defect,an H atom is placed near the gap,and an electron is subtracted from the system to simulate a proton. According to the Bader charge analysis, the numbers of valence electrons on H atoms are zero in all four of these structures. The structures are shown in Fig.7.

    Fig.7. Proton captured by the N-related defects. (a)N(2)o,(b)N(2)o=O,(c)N(2)o–H,(d)N(3)o.

    In the N(2)o configuration shown in Fig.7(a),a proton attaches to the atomic N and the average Si–N distance increases to 1.78 ?A.In the N(2)o=O configuration, the proton attaches to the oxygen bonded to the atomic N.The Si–N bonds(bond lengths ~1.86 ?A) are longer than the Si–N bonds (average bond length ~1.78 ?A)in the structure without proton and the Si–N-Si bond angle increases from 105?to 112?. The latter configuration is closer to a planar structure than the former.For the N(2)o–H configuration, the proton attaches to atomic N and the Si–N bonds increase to 1.89 ?A on average. For the N(3)o configuration,the Si–N bonds(bond lengths ~1.89 ?A)are longer than the Si–N bonds(average bond length ~1.76 ?A)in the structure without proton.

    Previous studies have calculated the energies of the three coordination N configurations in SiO2before and after the trap of protons. It has been claimed that nitrogen can be an effective trapping center for hydrogen ions.[24]However,the paper only considered the capability to capture protons by the tricoordination N defect but did not consider that whether the trapped hydrogen ions can continue to diffuse along with the oxygen atoms or not. Protons usually jump and diffuse between adjacent oxygen atoms in silica.[25]Depassivation occurs when protons diffuse to the interface,which will degrade the interface performance.[26,27]For the N(2)o structure, the diffusion process of hydrogen ions from N-containing defects to oxygen atoms is simulated by the nudged elastic band calculation,which gives the reaction curve connecting the initial and final states and the transition state associated with the energy barrier(Fig.8). The reaction starts from the initial state where the proton is attached to an N atom. The energy of the reaction curve increases and reaches the maximum in the transition state when the proton moves to the adjacent oxygen atom. In the final state,the proton is connected to the O atom.The energy is 1.25 eV higher than the initial state,so the reaction is endothermic. The reaction from the initial state to the final state is more difficult;hence protons(H+)tend to attach to the nitrogen bridges in a-SiO2.

    Fig.8. The reaction curve of the detrap of the proton captured by the N(2)o configuration. The initial, transition, and final structures are illustrated in the insets.

    For the N(2)o–H structure,the diffusion process of a proton from N(2)o–H to oxygen atoms is also investigated, and the reaction curve is plotted in Fig.9. In the final state,the energy is 1.71 eV higher than the initial state. We can draw the same conclusion as N(2)o, that is N(2)o–H defects are easier to capture protons and it is difficult for the captured protons to diffuse along with the oxygen.

    Fig.9. The reaction curve of the detrap of the proton in N(2)o–H structure.The initial,transition,and final structures are illustrated in the insets.

    Fig.10. The reaction curve of the detrap of the proton captured by N(3)o structure. The initial, transition, and final structures are illustrated in the insets.

    For the N(3)o structure,the diffusion process of the proton is plotted in Fig.10. The reaction starts from the initial state where the proton is attached to a threefold N atom.When the proton moves to the adjacent oxygen atom,the positive reaction barrier is as high as 2.28 eV,and it is almost impossible to dissociate. In the final state, the energy is 0.72 eV higher than the initial state, so the reaction is also endothermic and protons tend to attach to nitrogen; thus, the defect center of tricoordinate N is more comfortable to capture proton.

    The diffusion of protons from the N(2)o=O structure to the oxygen atom has also been studied. However,in the NEB calculation process, the final state of the proton connected to the adjacent oxygen atom cannot be obtained because the oxygen atom connected to the N atom in the initial structure is easy to capture protons. In summary,N-containing defects are easier to capture protons,and it is challenging for the captured protons to diffuse along with the oxygen. Thus N-containing defects can prevent the occurrence of interface depassivation reaction.

    4. Conclusion

    The F-, Cl-, and N-related defects in a-SiO2are studied by the first-principles calculations based on density functional theory.The defects are obtained by interacting an F or Cl atom with an oxygen vacancy or by optimizing the N-related defects constructed in the defect-free models. The structure relation and the formation energies of the F-, Cl-, and N-related defects after trapping a hole are investigated. The results suggest that F and Cl atoms can passivate oxygen vacancy defects.The resulting defects induce the charge transition levels deep in the bandgap, which can trap holes and then suppress their diffusion. In a practical transistor, if the silicon base attached to the a-SiO2is not highly p-doped, the two configurations of N-related defects(N(2)o and N(3)o)are negative charge traps which can also compensate the excess holes excited by the irradiations. The capability of the N-related defects to capture protons is also investigated. It is shown by the calculations that the N-related defects can trap protons hence can serve as proton sink to suppress proton diffusion and the following depassivation of a-SiO2/Si interface. This work pushes forward the research of the impurity-related defects in a-SiO2by providing the fundamental parameters of the structure,formation energy, charge transition level, and proton capture reaction.These findings contribute to understanding the impacts of impurities on the ionization damage of semiconducting devices and pave a way to alleviate the damage by rationally doping of a-SiO2.

    猜你喜歡
    高鑫
    “下沉”長壽里
    配電網(wǎng)防風(fēng)抗災(zāi)加固措施優(yōu)化決策方法
    中央支持零售高鑫免受貿(mào)戰(zhàn)沖擊
    高鑫阿里合作成效逐顯現(xiàn)
    跨越“婚變”門,“蘇明哲"和妻子一路《都挺好》
    饋贈與托孤:萍水相逢的溫暖何去何從(上)
    印象·杭州雪
    高鑫低調(diào)入戲
    鳳凰生活(2016年5期)2016-06-20 16:08:34
    高鑫:太子的深情
    意林(2016年9期)2016-05-31 23:20:11
    高鑫:不是每個太子都懂量子力學(xué)
    音樂周刊(2015年22期)2015-05-30 18:38:57
    春色校园在线视频观看| 男人的好看免费观看在线视频| 久久草成人影院| 赤兔流量卡办理| 不卡一级毛片| 国产精品国产三级国产av玫瑰| 夜夜爽天天搞| 亚洲人成伊人成综合网2020| 中文字幕av在线有码专区| 小说图片视频综合网站| 3wmmmm亚洲av在线观看| 中国美女看黄片| 免费看av在线观看网站| av在线亚洲专区| 嫩草影视91久久| 国产亚洲91精品色在线| 99精品久久久久人妻精品| 久久国产精品人妻蜜桃| 国产精品一区二区性色av| 色综合亚洲欧美另类图片| 免费搜索国产男女视频| 级片在线观看| 日本黄色视频三级网站网址| 国产欧美日韩精品亚洲av| 美女cb高潮喷水在线观看| 色av中文字幕| av天堂中文字幕网| 男女做爰动态图高潮gif福利片| 精品免费久久久久久久清纯| 99热这里只有是精品在线观看| 午夜精品一区二区三区免费看| 全区人妻精品视频| 长腿黑丝高跟| bbb黄色大片| 成人一区二区视频在线观看| 久久欧美精品欧美久久欧美| 在线观看美女被高潮喷水网站| 99热6这里只有精品| 99精品在免费线老司机午夜| 嫩草影视91久久| 国国产精品蜜臀av免费| 久久久久性生活片| 欧美+日韩+精品| 免费看a级黄色片| 听说在线观看完整版免费高清| 99精品久久久久人妻精品| 啦啦啦韩国在线观看视频| 不卡一级毛片| 九九热线精品视视频播放| 18禁黄网站禁片午夜丰满| 欧美最黄视频在线播放免费| 白带黄色成豆腐渣| 又粗又爽又猛毛片免费看| 88av欧美| 性插视频无遮挡在线免费观看| 能在线免费观看的黄片| 女人被狂操c到高潮| 免费人成在线观看视频色| 亚洲va日本ⅴa欧美va伊人久久| 免费观看在线日韩| 18禁黄网站禁片免费观看直播| 国产精品一及| 亚洲av一区综合| 久久午夜福利片| x7x7x7水蜜桃| 国产又黄又爽又无遮挡在线| 看片在线看免费视频| 国产中年淑女户外野战色| 国产精品久久电影中文字幕| 成人美女网站在线观看视频| 欧美日韩国产亚洲二区| 欧美日韩综合久久久久久 | 亚洲18禁久久av| 成人午夜高清在线视频| x7x7x7水蜜桃| 久久久精品大字幕| 免费无遮挡裸体视频| 97碰自拍视频| www.色视频.com| 麻豆国产97在线/欧美| 69av精品久久久久久| 国产单亲对白刺激| 亚洲性久久影院| 免费在线观看影片大全网站| 日本五十路高清| 99久久中文字幕三级久久日本| 91久久精品国产一区二区三区| 午夜福利在线观看吧| 国产精品美女特级片免费视频播放器| 欧美高清性xxxxhd video| 成人精品一区二区免费| 国产视频一区二区在线看| 亚洲av中文av极速乱 | 欧美日韩亚洲国产一区二区在线观看| 大又大粗又爽又黄少妇毛片口| 黄色日韩在线| 国产欧美日韩精品亚洲av| 国产成人aa在线观看| 国产精品不卡视频一区二区| 国内揄拍国产精品人妻在线| 久久午夜亚洲精品久久| 亚洲无线观看免费| 一区福利在线观看| 在现免费观看毛片| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| 超碰av人人做人人爽久久| 可以在线观看的亚洲视频| 国产av一区在线观看免费| 亚洲精华国产精华液的使用体验 | 久久久国产成人精品二区| 久久久精品大字幕| 日韩精品中文字幕看吧| 亚洲精品亚洲一区二区| 他把我摸到了高潮在线观看| 成人特级av手机在线观看| 亚洲va在线va天堂va国产| 干丝袜人妻中文字幕| 啦啦啦观看免费观看视频高清| 伦理电影大哥的女人| 亚洲美女黄片视频| 国产亚洲91精品色在线| 午夜免费激情av| 欧美另类亚洲清纯唯美| 欧美高清成人免费视频www| 日本-黄色视频高清免费观看| www日本黄色视频网| 国产精品三级大全| 97热精品久久久久久| 免费一级毛片在线播放高清视频| 又黄又爽又免费观看的视频| 男女啪啪激烈高潮av片| 哪里可以看免费的av片| 国产精品久久久久久av不卡| 午夜激情欧美在线| 国产在线精品亚洲第一网站| 波多野结衣巨乳人妻| 亚洲一区二区三区色噜噜| 成人特级av手机在线观看| 免费看日本二区| .国产精品久久| 亚洲av成人av| 精品99又大又爽又粗少妇毛片 | 成人性生交大片免费视频hd| 伊人久久精品亚洲午夜| 床上黄色一级片| 在线看三级毛片| 久久久久国产精品人妻aⅴ院| 国产私拍福利视频在线观看| 精品一区二区三区视频在线| 一个人看视频在线观看www免费| 成人国产麻豆网| 99久久精品国产国产毛片| 成人精品一区二区免费| 日日撸夜夜添| 午夜激情福利司机影院| 麻豆成人av在线观看| 久久精品影院6| 啦啦啦啦在线视频资源| 黄色日韩在线| 国国产精品蜜臀av免费| 欧美日韩亚洲国产一区二区在线观看| 999久久久精品免费观看国产| 国产男人的电影天堂91| 特大巨黑吊av在线直播| 男女啪啪激烈高潮av片| 高清毛片免费观看视频网站| 国产午夜精品论理片| 婷婷六月久久综合丁香| 一级黄片播放器| 国产精品一区二区三区四区免费观看 | 永久网站在线| 欧美zozozo另类| 最近最新中文字幕大全电影3| 国产爱豆传媒在线观看| 亚洲精品影视一区二区三区av| 亚洲在线观看片| 亚洲美女黄片视频| 成人av在线播放网站| 久久久久久久久久成人| 国产欧美日韩精品亚洲av| 又爽又黄无遮挡网站| 在线天堂最新版资源| 久久精品综合一区二区三区| 欧美极品一区二区三区四区| 久久精品人妻少妇| 男人的好看免费观看在线视频| 日韩欧美在线乱码| 99久久精品热视频| 男人狂女人下面高潮的视频| 日韩欧美 国产精品| 91在线精品国自产拍蜜月| 日本一本二区三区精品| 日韩中字成人| 国产日本99.免费观看| 亚洲av二区三区四区| 成年女人永久免费观看视频| 中文字幕人妻熟人妻熟丝袜美| 日韩一本色道免费dvd| 成人午夜高清在线视频| 在线播放无遮挡| 亚洲综合色惰| 久久久国产成人精品二区| 免费观看在线日韩| 一夜夜www| 黄色欧美视频在线观看| 搡老岳熟女国产| 在现免费观看毛片| 色综合色国产| 亚洲国产欧洲综合997久久,| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 亚洲av熟女| 免费观看精品视频网站| 婷婷色综合大香蕉| 简卡轻食公司| 一区二区三区激情视频| 免费人成视频x8x8入口观看| 在线观看舔阴道视频| 国产私拍福利视频在线观看| 亚洲avbb在线观看| 国产男靠女视频免费网站| 成人无遮挡网站| 在线观看舔阴道视频| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品久久久久久一区二区三区 | 亚洲最大成人av| 欧美国产日韩亚洲一区| 亚洲精品日韩av片在线观看| 真人一进一出gif抽搐免费| av在线亚洲专区| 日本精品一区二区三区蜜桃| 亚洲图色成人| 美女大奶头视频| 亚洲无线观看免费| 天堂动漫精品| 婷婷丁香在线五月| 久久热精品热| 真人一进一出gif抽搐免费| 欧美激情久久久久久爽电影| 欧美性猛交╳xxx乱大交人| 国产高清三级在线| www日本黄色视频网| 国产人妻一区二区三区在| 国产伦一二天堂av在线观看| 久久精品久久久久久噜噜老黄 | 伦精品一区二区三区| 99热只有精品国产| 欧美极品一区二区三区四区| 无遮挡黄片免费观看| 午夜精品久久久久久毛片777| 亚洲av五月六月丁香网| 天美传媒精品一区二区| 国产亚洲精品av在线| 亚洲18禁久久av| 国产精品久久电影中文字幕| 一级a爱片免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 白带黄色成豆腐渣| 日日干狠狠操夜夜爽| 中文字幕高清在线视频| 十八禁网站免费在线| 亚洲av电影不卡..在线观看| 亚洲成人精品中文字幕电影| 久久久久性生活片| 亚洲精品亚洲一区二区| 久99久视频精品免费| 欧美区成人在线视频| 日本a在线网址| 真人做人爱边吃奶动态| 亚洲av成人av| 久久久久久久亚洲中文字幕| 丰满的人妻完整版| 男人的好看免费观看在线视频| 日韩欧美在线乱码| 国产一区二区激情短视频| 中文在线观看免费www的网站| 亚洲欧美日韩无卡精品| 欧美xxxx性猛交bbbb| 国产精品亚洲一级av第二区| 久久亚洲真实| 成人国产综合亚洲| 最近中文字幕高清免费大全6 | 美女高潮喷水抽搐中文字幕| 午夜福利成人在线免费观看| 美女大奶头视频| 少妇人妻精品综合一区二区 | 亚洲欧美日韩高清在线视频| 久久中文看片网| 精品99又大又爽又粗少妇毛片 | 级片在线观看| 色综合亚洲欧美另类图片| 国产v大片淫在线免费观看| 99国产极品粉嫩在线观看| 日韩亚洲欧美综合| 亚洲国产高清在线一区二区三| 免费人成视频x8x8入口观看| 国产毛片a区久久久久| 美女xxoo啪啪120秒动态图| 啦啦啦观看免费观看视频高清| 99久久精品热视频| 欧美国产日韩亚洲一区| 久久精品国产亚洲av香蕉五月| 中出人妻视频一区二区| 午夜福利18| 熟女人妻精品中文字幕| 成人毛片a级毛片在线播放| 日韩欧美精品免费久久| 国产精品亚洲一级av第二区| 69av精品久久久久久| 国产伦在线观看视频一区| 国产精品三级大全| a级一级毛片免费在线观看| 国产精品一区二区三区四区久久| 在线播放国产精品三级| 久久99热这里只有精品18| 蜜桃亚洲精品一区二区三区| 亚洲成人精品中文字幕电影| 成人二区视频| 亚洲国产精品sss在线观看| 亚洲人与动物交配视频| 国内少妇人妻偷人精品xxx网站| 99久久精品国产国产毛片| 一级黄色大片毛片| 国产精品久久视频播放| 国产老妇女一区| 天天躁日日操中文字幕| av天堂中文字幕网| 国产成人影院久久av| 亚洲av二区三区四区| 69av精品久久久久久| 日韩国内少妇激情av| 俄罗斯特黄特色一大片| 美女被艹到高潮喷水动态| 欧美日韩精品成人综合77777| 禁无遮挡网站| 搞女人的毛片| 国产高清有码在线观看视频| 国产精品一区二区三区四区免费观看 | 精品久久久久久久末码| 国产老妇女一区| 一区二区三区免费毛片| 国产亚洲精品久久久久久毛片| 色播亚洲综合网| 黄色一级大片看看| 久久亚洲真实| 麻豆成人av在线观看| 最近最新免费中文字幕在线| 在线观看免费视频日本深夜| 久久国内精品自在自线图片| 永久网站在线| 国产人妻一区二区三区在| 亚洲成人久久性| 日本欧美国产在线视频| 悠悠久久av| 一本一本综合久久| ponron亚洲| 可以在线观看的亚洲视频| 国产精品综合久久久久久久免费| 国产成人av教育| 国产爱豆传媒在线观看| 国产成人aa在线观看| 精品人妻偷拍中文字幕| 国产中年淑女户外野战色| 男人舔奶头视频| 非洲黑人性xxxx精品又粗又长| 欧美+亚洲+日韩+国产| 亚洲人与动物交配视频| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| 别揉我奶头 嗯啊视频| 亚洲美女视频黄频| 观看免费一级毛片| 国产男人的电影天堂91| 真人做人爱边吃奶动态| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久久中文| 亚洲最大成人av| 韩国av一区二区三区四区| 亚洲性夜色夜夜综合| av在线亚洲专区| 观看美女的网站| 久久久久久久久久成人| 91久久精品国产一区二区成人| 免费无遮挡裸体视频| 色精品久久人妻99蜜桃| 精品一区二区三区视频在线观看免费| 亚洲va在线va天堂va国产| 国产成人一区二区在线| 长腿黑丝高跟| 欧洲精品卡2卡3卡4卡5卡区| 22中文网久久字幕| 国产精品久久久久久av不卡| 欧美日本视频| 免费高清视频大片| 九九爱精品视频在线观看| 亚洲自拍偷在线| 乱系列少妇在线播放| 又紧又爽又黄一区二区| 一个人免费在线观看电影| 联通29元200g的流量卡| 日本 av在线| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在 | 成人一区二区视频在线观看| 日韩精品有码人妻一区| 欧美色欧美亚洲另类二区| 免费观看在线日韩| 久久久久久久精品吃奶| 韩国av一区二区三区四区| 亚洲精品粉嫩美女一区| 欧美潮喷喷水| 久久久精品欧美日韩精品| 欧美+日韩+精品| 久久6这里有精品| 国产精品1区2区在线观看.| 99riav亚洲国产免费| 国产一区二区三区视频了| 成人性生交大片免费视频hd| 神马国产精品三级电影在线观看| 91精品国产九色| 男人舔女人下体高潮全视频| 九色国产91popny在线| 国产精品一区二区三区四区久久| 看黄色毛片网站| 免费大片18禁| 亚洲精品一卡2卡三卡4卡5卡| 一边摸一边抽搐一进一小说| 日韩欧美 国产精品| 很黄的视频免费| 久久国产乱子免费精品| 久久久久精品国产欧美久久久| 88av欧美| 亚洲午夜理论影院| 久久6这里有精品| 在线观看免费视频日本深夜| 久99久视频精品免费| 99国产极品粉嫩在线观看| 蜜桃亚洲精品一区二区三区| 久久久久久久久大av| 精品久久久久久久久久免费视频| 国国产精品蜜臀av免费| 免费看光身美女| 亚洲精品影视一区二区三区av| av.在线天堂| 国产成人aa在线观看| 久久人人精品亚洲av| 特大巨黑吊av在线直播| 97超视频在线观看视频| 午夜日韩欧美国产| 狠狠狠狠99中文字幕| 在线a可以看的网站| 麻豆成人午夜福利视频| 国产午夜精品久久久久久一区二区三区 | bbb黄色大片| 亚洲成人精品中文字幕电影| 尤物成人国产欧美一区二区三区| 婷婷亚洲欧美| 麻豆国产97在线/欧美| av在线亚洲专区| 欧美黑人巨大hd| av.在线天堂| 午夜激情欧美在线| avwww免费| 最近最新中文字幕大全电影3| 色哟哟·www| 特级一级黄色大片| 国模一区二区三区四区视频| 国产爱豆传媒在线观看| 国产v大片淫在线免费观看| 香蕉av资源在线| 日日摸夜夜添夜夜添小说| 欧美性感艳星| 精品不卡国产一区二区三区| 熟女人妻精品中文字幕| 欧美bdsm另类| 亚洲三级黄色毛片| 在线观看美女被高潮喷水网站| 亚洲精品一卡2卡三卡4卡5卡| 久久久色成人| 国产精品福利在线免费观看| 别揉我奶头 嗯啊视频| 国产国拍精品亚洲av在线观看| av在线亚洲专区| 嫩草影院入口| 99久久久亚洲精品蜜臀av| 亚洲成a人片在线一区二区| 搡女人真爽免费视频火全软件 | 久久久久久久久久成人| 一本久久中文字幕| 国产av在哪里看| 色尼玛亚洲综合影院| 床上黄色一级片| 亚洲va日本ⅴa欧美va伊人久久| 俺也久久电影网| 波多野结衣高清无吗| 国产精品久久电影中文字幕| 国产成人福利小说| 亚洲国产精品合色在线| 成年人黄色毛片网站| 欧美日本亚洲视频在线播放| 久久精品国产鲁丝片午夜精品 | 看免费成人av毛片| 禁无遮挡网站| 无遮挡黄片免费观看| 国产大屁股一区二区在线视频| 国产精品三级大全| 国产亚洲精品综合一区在线观看| 成年女人永久免费观看视频| 国产精品电影一区二区三区| 天堂√8在线中文| 欧美日韩国产亚洲二区| 春色校园在线视频观看| av中文乱码字幕在线| 久久久久精品国产欧美久久久| 丰满乱子伦码专区| 国语自产精品视频在线第100页| 国产真实乱freesex| 精品久久久久久久久亚洲 | 超碰av人人做人人爽久久| 国产视频一区二区在线看| 国产中年淑女户外野战色| 黄色女人牲交| 免费av观看视频| 国产精品久久视频播放| 午夜福利在线在线| 级片在线观看| 99九九线精品视频在线观看视频| 亚洲成人免费电影在线观看| 啦啦啦啦在线视频资源| 国产精品人妻久久久影院| 欧美绝顶高潮抽搐喷水| 好男人在线观看高清免费视频| 搡老岳熟女国产| 亚洲欧美日韩高清在线视频| 国产高清有码在线观看视频| 91久久精品电影网| 九九爱精品视频在线观看| 久久久久久久午夜电影| 在线观看66精品国产| 亚洲欧美激情综合另类| 久久久久久伊人网av| 亚洲国产日韩欧美精品在线观看| 嫁个100分男人电影在线观看| 国产精品福利在线免费观看| 亚洲人成网站高清观看| а√天堂www在线а√下载| 两个人的视频大全免费| 亚洲男人的天堂狠狠| 欧美一区二区国产精品久久精品| 三级男女做爰猛烈吃奶摸视频| 免费在线观看成人毛片| 久久精品国产清高在天天线| 成人永久免费在线观看视频| 久久午夜亚洲精品久久| 国产一区二区在线观看日韩| a级一级毛片免费在线观看| 色精品久久人妻99蜜桃| 免费看a级黄色片| 国产在线精品亚洲第一网站| 国产高清有码在线观看视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品乱码久久久v下载方式| a级毛片免费高清观看在线播放| 三级男女做爰猛烈吃奶摸视频| 中文资源天堂在线| 久久国内精品自在自线图片| 亚洲精品成人久久久久久| 成人一区二区视频在线观看| 最近最新免费中文字幕在线| 日本五十路高清| 亚洲人成网站高清观看| 岛国在线免费视频观看| 中文字幕av成人在线电影| 黄色丝袜av网址大全| 免费看美女性在线毛片视频| av在线蜜桃| 亚洲人成网站在线播| a级毛片免费高清观看在线播放| 欧美日韩综合久久久久久 | 中文字幕av成人在线电影| 黄色丝袜av网址大全| 少妇裸体淫交视频免费看高清| 两个人的视频大全免费| 国产久久久一区二区三区| 极品教师在线免费播放| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看 | 亚洲一区高清亚洲精品| 天堂√8在线中文| 国产精品98久久久久久宅男小说| 欧美色欧美亚洲另类二区| 亚洲国产欧洲综合997久久,| 成年版毛片免费区| 亚洲成a人片在线一区二区| 国产亚洲91精品色在线| 欧美最新免费一区二区三区| 干丝袜人妻中文字幕| 麻豆国产97在线/欧美| 国产老妇女一区| 91麻豆av在线| 亚洲最大成人av| 国内精品美女久久久久久| 日韩欧美在线二视频| 超碰av人人做人人爽久久| 日韩欧美 国产精品| 日韩欧美国产在线观看| 最近中文字幕高清免费大全6 | 亚洲av免费高清在线观看| 男人舔女人下体高潮全视频| 在线观看舔阴道视频| 久9热在线精品视频| 久久久久久伊人网av|