• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor?

    2021-05-06 08:55:22SiDeSong宋思德SuZhenWu吳素貞GuoZhuLiu劉國(guó)柱WeiZhao趙偉YinQuanWang王印權(quán)JianWeiWu吳建偉andQiHe賀琪
    Chinese Physics B 2021年4期
    關(guān)鍵詞:國(guó)柱趙偉

    Si-De Song(宋思德), Su-Zhen Wu(吳素貞), Guo-Zhu Liu(劉國(guó)柱), Wei Zhao(趙偉),Yin-Quan Wang(王印權(quán)), Jian-Wei Wu(吳建偉), and Qi He(賀琪)

    The 58th Institution of Electronic Science and Technology Group Corporation of China,Wuxi 214000,China

    Keywords: high-electron-mobility transistors(HEMTs),stress,degradation,threshold voltage

    1. Introduction

    AlGaN/GaN high-electron-mobility transistors(HEMTs)have been considered as the next generation power switching devices due to its outstanding combination of high breakdown strength,low ON-state resistance and high on/off ratio.[1–3]A naturally formed two-dimensional electron gas(2DEG)at the interface of AlGaN/GaN by spontaneous and piezoelectric polarization effects leads to a depletion mode device,[4]which is not preferred for circuit design and system reliability. Thus more and more attentions are paid now to the enhancementmode GaN-on-Si power applications.

    In recent years,different approaches have been proposed to design enhancement-mode high-electron-mobility transistors (HEMTs), such as a recessed gate structure,[5]or the same structure with metal–oxide–semiconductor (MOS) gate or metal–insulator–semiconductor (MIS) gate[6–8]to achieve low gate leakage current and positive threshold voltage devices, fluorine plasma ion implantation into the AlGaN or GaN to deplete the 2DEG in the channel,[9,10]by introducing a piezo neutralization layer on top of AlGaN barrier layer[11]or by adopting a p-GaN gate to pull up the conduction band of AlGaN at the AlGaN/GaN heterointerface,sometimes also called gate injection transistors.[12]Among these approaches,p-GaN gate solution has been proved to be a promising candidate for its good trade-off between cost and reliability,[13]and the normally-off p-GaN gate AlGaN/GaN HEMTs are already available in the market. However, gate-related reliability research in p-GaN gate HEMTs is limited and the gate breakdown mechanisms have not been reported extensively yet.[14–20]Herein, a completive investigation on the degradation mechanism of the p-GaN gate HEMTs is necessary aiming to push it further into the market of power switching applications.

    In this paper,emphasis was put on the I–V characteristics of the device before and after stressing in high voltage drain bias,forward gate bias and reverse gate bias. The degradation mechanism for the forward gate bias stress was analyzed and modeled in detail,illustrating a possible“weak points”in the gate diode structure. The results are meaningful,valuable and provide a guide to realize high voltage and reliable enhanced mode p-GaN Gate AlGaN/GaN HEMT.

    2. Device structure and measurement technique

    Figure 1(a) depicts the schematic cross section of p-GaN gate HEMTs, The devices are fabricated on 6-inch(1 inch=2.54 cm) p-type Si (111) substrate. The epitaxial structure is grown by means of metal–organic chemical vapor deposition(MOCVD)and features a stack of 3.5-μm-thick GaN buffer on top of the Si substrate, followed by 150-nmthick GaN channel and 15-nm-thick Al15Ga85N barrier.Afterwards,a 70-nm-thick p-GaN was grown by MOCVD with Mg atoms density of 1×1019cm?3,the p-GaN hole concentration is 1×1017cm?3,corresponding to 1%Mg activation rate.The Ti/Au(45 nm/200 nm)gate metal is evaporated on the top of p-GaN to form a Schottky barrier structure, Ohmic contact is formed by deposition of Ti/Al/Ni/Au metal stack with a whole thickness of 270 nm on the source and drain region,150-nmthick SiN is deposited by plasma enhanced chemical vapor deposition(PECVD)as the surface passivation layer. The device under test(DUT)features a gate length Lg=2.5μm,gate-tosource and gate-to-drain spacing Lgs=2.5μm,Lgd=12μm,respectively, and the gate width is 0.18 mm. The microscope photo of fabricated p-GaN gate AlGaN/GaN HEMT is shown in Fig.1(b).

    Fig.1.(a)Schematic cross section of the p-GaN gate HEMT;(b)photograph of p-GaN gate HEMT.

    On wafer characterization was performed on KEISIGHT B1505,which features in high voltage and high current monitor module,and a probe stage with temperature controller for loading and heating the device. The DUT was summoned to three different stress conditions:high drain voltage bias stress,forward gate bias stress and reverse gate bias stress. Each stress condition is carried out on fresh device,and at least five devices were selected in order to increase the accuracy, for concise of the paper, the electrical characteristics of the most representative devices were monitored and analyzed in details in the following parts.

    3. Results and discussion

    3.1. High voltage drain stress in off-state

    Figure 2(a) depicts the breakdown characteristics of the p-GaN gate AlGaN/GaN HEMT, with drain voltage scanning from 0 V to 800 V, source and gate grounded. The current/voltage of all three terminals (Ig/Vg, the gate current/voltage; ID/Vd, the drain current/voltage; and Is/Vs, the source current/voltage) were monitored, a rapid increase of both Idand Iswere found at drain voltage of about 600 V,indicating the breakdown happens at this point. The threshold voltage is calculated to be 1.5 V by constant current at Id=1μA/mm,as shown in Fig.2(b),while the threshold voltage remains almost unaltered even after a 104-s drain stress at 500 V;The output current atVg=6 V andVd=10 V(Fig.2(c))exhibits a first decrease and then increase behavior with increasing the drain stress voltage. This can be explained by the trapping and de-trapping process, when stressed at moderate voltage,electron is trapped in the SiN/AlGaN interface,as the voltage becomes sufficiently high, a high field-assisted de-trapping process may be initiated.[21]However, this effect is rather small due to the high qualified surface passivation and GaN buffer.

    The Ig–Vgcharacteristic is also monitored and described in Fig.2(d),only several nano ampere variations in the reverse gate region was observed,illustrating the P-GaN gate structure was not influenced by the high drain voltage stress.

    Fig.2. (a) Breakdown characteristics; (b) transfer characteristic curve; (c) output characteristic curve; (d) gate diode characteristic, before and after drain stress.

    3.2. Forward gate bias

    In the forward gate bias stress experiment, a large deviation in threshold voltage and output current were observed as shown in Fig.3. The threshold voltage shifts about 0.2 V and 1.5 V toward the negative direction when subjected to forward gate bias stress at Vg=6 V and Vg=7 V for 104s (Tsin the figure denotes stress time),respectively. And the output current calculated at Vg=6 V and Vd=10 V varies 0.7%for Vg=6 V stress and 25% for Vg=7 V stress condition, see Figs.3(a)and 3(b). Also,the off state leakage,Ioffversus time curve is reported in Fig.3(c), where a continuous increasing of the leakage at gate, drain, and source were observed, and the leakage in the source side is larger than the drain side.

    Fig.3. (a)Transfer characteristic curve;(b)output characteristic curve;(c)gate diode characteristic;(d)possible hole injection schematics.

    Fig.4. (a)Conduction band diagram of the metal/pGaN/AlGaN/GaN system at zero bias;(b)changes in conduction band diagram when stress-induced positive charges accumulate in p-GaN layer.

    There have been explanations to this forward gate bias stress induced degradation. In Ref. [19] a donor-like trap generation in the P-GaN layer close to AlGaN is responsible for the localized leakage path. While Tallarico proposed in Ref. [20] a back to back connected junction of metal/PGaN schottky diode and PiN diode,where gate voltage mainly drops in the former and defects are generated in P-GaN close to the metal/P-GaN interface. While in our case,the progressive increasing of leakage is thought to be caused by hole injection from the top gate to the AlGaN,leading to a negative threshold voltage shift and increase in 2DEG concentration,as described in Fig.3(d). In the metal/pGaN/AlGaN/GaN system,by using the potential diagram shown in Fig.4(a),threshold voltage VTcan be described as follows:

    where ΦBis the difference between the work function of the metal and the electron affinity of the semiconductor, VpGaNis the potential drop in p-GaN depletion layer due to the metal/pGaN Schottky barrier,?Ec1is the band offset between p-GaN and AlGaN, ?Ec2is the band offset between AlGaN and GaN,and VAlGaNis the potential drop in AlGaN layer due to the 2DEG response to the polarization electric field. We assumed that,positive charges will accumulated in the p-GaN layer as holes injection from the top gate to inner layer when the gate is biased at a large forward voltage. It is reasonable since the presence of defects related to Mg doping and the generation of defects due to the presence of a high electric field can lead to an increase of hole trap sites. As a mount of positive charges accumulate in p-GaN layer, the metal/pGaN Schottky barrier height is equivalent to be reduced,which induce a negative threshold voltage shift as described in Eq.(1).Another effect is that the positive charges in p-GaN/AlGaN interface could induce increased electrons in AlGaN/GaN interface, leading a larger potential drop VAlGaN, which also make a negative threshold voltage shift as described in Eq.(1).

    In addition, the time when the fastest degradation happens is specified in Fig.5. When stressed at Vg=7 V,in the first 100-s duration there is not any degradation;While in the durations of 100 s–1000 s and 1000 s–10000 s, the threshold voltage shifts about 0.2 V and 1.5 V,respectively,as shown in Fig.5(c). This indicates that degradation mainly happens in the durations of 1000 s–10000 s;it can also be deduced in the Ig–Vgcurve at different time intervials, see Fig.5(d), where large gate degradation leakage current happens only in the durations of 1000 s–10000 s.

    Fig.5. (a) Transfer characteristic curve; (b) output characteristic curve; (c) threshold voltage versus stress time; (d) gate diode characteristic; all at different durations in the 104-s forward gate stress.

    3.3. Negative gate bias

    Reverse gate bias stress was also performed, to our surprise, the degradation described in Ref. [18] did not occur in our case, even at an extremely high negative gate bias of?50 V, which is much higher than the “critical voltage” in Ref. [18]. This insensitive property under reverse gate bias stress may benefit from the high qualified GaN buffer, corresponding to the drain voltage stress experiment. By the way,this also guarantees a large gate swing in the negative direction. Figure 6 depicts the main I–V characteristic before and after reverse gate bias stresses.

    Fig.6. (a)Transfer characteristic curve;(b)output characteristic curve;(c)gate diode characteristic,all before and after reverse gate bias stresses.

    4. Conclusion and perspectives

    The reliability of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor was evaluated extensively by drain voltage stress,forward and reverse gate stresses. The insensitivity of the DUT under high drain stress and reverse gate stresses indicate a high qualified GaN buffer and SiN surface passivation layer, however, degradation is found severe when summoned to forward gate stress at Vg=7 V, and becomes more significant with increasing stressing time. We assume this degradation is mainly caused by hole accumulation in the AlGaN barrier close to p-GaN/AlGaN interface at high electric field. While this degradation mainly occurs in the gate to source region,process technology may be refined and controlled in this region to manufacture high voltage, more reliable normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor.

    猜你喜歡
    國(guó)柱趙偉
    Fully relativistic many-body perturbation energies,transition properties,and lifetimes of lithium-like iron Fe XXIV
    到底誰(shuí)會(huì)贏?
    3秒給答案
    假如你有很多錢,該怎么花?
    3秒給答案
    逃出魚人國(guó)!
    Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
    如何求函數(shù)y=Asin(ωx+φ)中φ的值
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    閉著眼睛的男孩
    女士(2015年3期)2015-07-05 01:11:32
    午夜精品国产一区二区电影| 999久久久国产精品视频| 80岁老熟妇乱子伦牲交| 亚洲av熟女| 99精品久久久久人妻精品| 午夜成年电影在线免费观看| 欧美日韩国产mv在线观看视频| 黄色 视频免费看| 国产91精品成人一区二区三区| 高清黄色对白视频在线免费看| 色婷婷av一区二区三区视频| xxxhd国产人妻xxx| 亚洲国产欧美日韩在线播放| 亚洲精品一二三| 免费人成视频x8x8入口观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲精品一区二区www| 少妇粗大呻吟视频| 国产黄a三级三级三级人| 久久性视频一级片| 人人澡人人妻人| 亚洲五月色婷婷综合| 美女午夜性视频免费| 19禁男女啪啪无遮挡网站| 国产精品偷伦视频观看了| 丰满人妻熟妇乱又伦精品不卡| 国产伦一二天堂av在线观看| 日本欧美视频一区| 久久中文字幕人妻熟女| 亚洲一区高清亚洲精品| 日韩国内少妇激情av| 欧美日本亚洲视频在线播放| 中文字幕另类日韩欧美亚洲嫩草| 精品无人区乱码1区二区| 国产激情欧美一区二区| 天天躁夜夜躁狠狠躁躁| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av五月六月丁香网| 99re在线观看精品视频| 亚洲七黄色美女视频| 在线av久久热| 欧美乱色亚洲激情| 国产真人三级小视频在线观看| 亚洲九九香蕉| 可以免费在线观看a视频的电影网站| 香蕉久久夜色| 国产xxxxx性猛交| 欧美日韩乱码在线| 99久久综合精品五月天人人| 欧美精品啪啪一区二区三区| 精品一区二区三卡| 精品福利永久在线观看| 一级片'在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 99精国产麻豆久久婷婷| 久久精品国产99精品国产亚洲性色 | 黄色丝袜av网址大全| 777久久人妻少妇嫩草av网站| 在线观看一区二区三区| 丝袜人妻中文字幕| 精品久久久久久久久久免费视频 | 男女下面插进去视频免费观看| 国产单亲对白刺激| 国产精品免费视频内射| 中文字幕人妻丝袜一区二区| 青草久久国产| 精品高清国产在线一区| 乱人伦中国视频| 淫秽高清视频在线观看| 久久精品国产99精品国产亚洲性色 | 精品国内亚洲2022精品成人| 成人国产一区最新在线观看| 香蕉丝袜av| 久久精品国产99精品国产亚洲性色 | 狂野欧美激情性xxxx| 久久精品亚洲精品国产色婷小说| 日韩精品免费视频一区二区三区| 18美女黄网站色大片免费观看| 亚洲精品国产色婷婷电影| 国产视频一区二区在线看| 亚洲激情在线av| 超色免费av| 午夜免费鲁丝| 乱人伦中国视频| 久久久国产精品麻豆| 精品国产一区二区久久| 国产亚洲精品一区二区www| 亚洲欧美日韩无卡精品| 人成视频在线观看免费观看| 久久热在线av| 自线自在国产av| 亚洲狠狠婷婷综合久久图片| 婷婷丁香在线五月| 亚洲欧美精品综合一区二区三区| 91精品三级在线观看| 亚洲人成电影免费在线| 午夜福利影视在线免费观看| av视频免费观看在线观看| 一级,二级,三级黄色视频| 中文字幕最新亚洲高清| ponron亚洲| 黑丝袜美女国产一区| 最新在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲片人在线观看| a在线观看视频网站| 亚洲欧美日韩高清在线视频| 日本五十路高清| 欧美日韩乱码在线| 欧美久久黑人一区二区| 午夜免费成人在线视频| 一级片免费观看大全| 搡老乐熟女国产| 妹子高潮喷水视频| 一个人免费在线观看的高清视频| 欧洲精品卡2卡3卡4卡5卡区| 精品国产超薄肉色丝袜足j| 日本黄色日本黄色录像| 18禁黄网站禁片午夜丰满| 久久精品国产综合久久久| 新久久久久国产一级毛片| 18禁美女被吸乳视频| 日韩欧美在线二视频| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 欧美人与性动交α欧美精品济南到| 国产精品电影一区二区三区| 欧美在线黄色| 国产黄色免费在线视频| 精品国内亚洲2022精品成人| 巨乳人妻的诱惑在线观看| 视频在线观看一区二区三区| 一级毛片精品| 日韩精品免费视频一区二区三区| 91国产中文字幕| 国产成人精品无人区| 成年女人毛片免费观看观看9| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 国产麻豆69| 免费观看精品视频网站| 十八禁人妻一区二区| 青草久久国产| 欧美中文日本在线观看视频| 脱女人内裤的视频| 亚洲国产精品合色在线| 不卡一级毛片| 日韩精品免费视频一区二区三区| 亚洲性夜色夜夜综合| 成年人黄色毛片网站| 成年女人毛片免费观看观看9| 久久国产亚洲av麻豆专区| 国产视频一区二区在线看| 91字幕亚洲| 美女午夜性视频免费| 99精国产麻豆久久婷婷| 一区在线观看完整版| 亚洲免费av在线视频| 久久人妻av系列| 热99国产精品久久久久久7| 国产精品亚洲一级av第二区| 男女午夜视频在线观看| 深夜精品福利| av网站免费在线观看视频| 99香蕉大伊视频| xxx96com| 国产欧美日韩一区二区三区在线| 91精品三级在线观看| 欧美精品一区二区免费开放| 午夜老司机福利片| 天天添夜夜摸| 日韩人妻精品一区2区三区| 大码成人一级视频| 精品一区二区三区av网在线观看| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 亚洲精品粉嫩美女一区| 香蕉国产在线看| 久久人妻av系列| 亚洲五月色婷婷综合| 国产精品久久久人人做人人爽| 亚洲一码二码三码区别大吗| 夜夜夜夜夜久久久久| 9191精品国产免费久久| 精品电影一区二区在线| 国产精品九九99| 99精品久久久久人妻精品| 国产精品电影一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲激情在线av| 18禁裸乳无遮挡免费网站照片 | 久久人人97超碰香蕉20202| 久久99一区二区三区| 亚洲欧美日韩高清在线视频| 一区二区日韩欧美中文字幕| 日本wwww免费看| 国产乱人伦免费视频| 99在线人妻在线中文字幕| 国产成人欧美在线观看| 久久久久久人人人人人| 国产精品久久视频播放| 亚洲专区字幕在线| 黄片小视频在线播放| 久久99一区二区三区| 亚洲精品国产色婷婷电影| 乱人伦中国视频| 中国美女看黄片| 国产成人免费无遮挡视频| avwww免费| 99香蕉大伊视频| 又黄又爽又免费观看的视频| 天天添夜夜摸| 亚洲精品久久午夜乱码| 亚洲激情在线av| 97超级碰碰碰精品色视频在线观看| 在线观看66精品国产| 国产精品日韩av在线免费观看 | 亚洲av五月六月丁香网| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图| 日本五十路高清| 十八禁人妻一区二区| 9191精品国产免费久久| 国产高清激情床上av| 国产欧美日韩综合在线一区二区| 国产亚洲精品久久久久久毛片| 日韩视频一区二区在线观看| 黄片播放在线免费| 久久亚洲精品不卡| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩另类电影网站| 久久精品国产亚洲av高清一级| 看免费av毛片| 91麻豆精品激情在线观看国产 | 他把我摸到了高潮在线观看| 操出白浆在线播放| 又黄又粗又硬又大视频| 不卡一级毛片| 精品一区二区三区四区五区乱码| av网站在线播放免费| 精品第一国产精品| 亚洲人成网站在线播放欧美日韩| av在线播放免费不卡| 免费av毛片视频| 一级片免费观看大全| 成人18禁高潮啪啪吃奶动态图| 热re99久久精品国产66热6| 亚洲熟妇熟女久久| bbb黄色大片| 亚洲一区二区三区不卡视频| 日本欧美视频一区| 高清黄色对白视频在线免费看| 欧美成人免费av一区二区三区| 无限看片的www在线观看| 亚洲国产精品999在线| 国产成人精品久久二区二区91| 亚洲国产中文字幕在线视频| 精品福利观看| 亚洲视频免费观看视频| 青草久久国产| 国产成人免费无遮挡视频| av天堂在线播放| 最近最新中文字幕大全免费视频| 成人18禁在线播放| 精品一区二区三区视频在线观看免费 | 久久欧美精品欧美久久欧美| 日本a在线网址| 多毛熟女@视频| 午夜两性在线视频| 亚洲aⅴ乱码一区二区在线播放 | 又大又爽又粗| 亚洲一区中文字幕在线| 日本a在线网址| 99国产精品99久久久久| 国产黄a三级三级三级人| 成人18禁在线播放| 午夜a级毛片| av片东京热男人的天堂| 12—13女人毛片做爰片一| 电影成人av| 亚洲一区二区三区不卡视频| 嫩草影院精品99| 久久人人爽av亚洲精品天堂| 亚洲第一青青草原| 国产高清国产精品国产三级| 国产主播在线观看一区二区| 精品午夜福利视频在线观看一区| 亚洲国产毛片av蜜桃av| 日韩一卡2卡3卡4卡2021年| 黄色 视频免费看| 这个男人来自地球电影免费观看| 欧美日韩av久久| 久久中文字幕人妻熟女| 欧美日韩国产mv在线观看视频| 欧美日本中文国产一区发布| 日韩大尺度精品在线看网址 | 久久精品成人免费网站| 手机成人av网站| 91av网站免费观看| 久久精品亚洲精品国产色婷小说| 叶爱在线成人免费视频播放| 精品久久久精品久久久| 欧美黑人欧美精品刺激| 视频区图区小说| 99久久综合精品五月天人人| 午夜精品久久久久久毛片777| 色综合欧美亚洲国产小说| 曰老女人黄片| 亚洲男人天堂网一区| 99久久精品国产亚洲精品| 亚洲一区二区三区不卡视频| av在线播放免费不卡| 久久天躁狠狠躁夜夜2o2o| 成人18禁高潮啪啪吃奶动态图| www.自偷自拍.com| 精品免费久久久久久久清纯| 国产精品一区二区在线不卡| 午夜视频精品福利| 性色av乱码一区二区三区2| 成人18禁在线播放| 午夜视频精品福利| 精品免费久久久久久久清纯| 制服人妻中文乱码| 日本五十路高清| 国产精品久久视频播放| 日日摸夜夜添夜夜添小说| 国产xxxxx性猛交| 一级作爱视频免费观看| 老司机亚洲免费影院| 中文字幕人妻丝袜一区二区| 性欧美人与动物交配| 欧美成人午夜精品| 亚洲av熟女| 国产免费男女视频| 黄频高清免费视频| 又黄又粗又硬又大视频| 精品免费久久久久久久清纯| 女性被躁到高潮视频| 精品国产乱码久久久久久男人| 午夜日韩欧美国产| 国产精品自产拍在线观看55亚洲| 女人爽到高潮嗷嗷叫在线视频| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 免费在线观看完整版高清| 亚洲精品国产色婷婷电影| 国产主播在线观看一区二区| www.熟女人妻精品国产| 久久天堂一区二区三区四区| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区久久 | 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| 中文字幕最新亚洲高清| 深夜精品福利| 国产精品电影一区二区三区| 久久久国产精品麻豆| 真人做人爱边吃奶动态| www.999成人在线观看| 91老司机精品| 国产av一区二区精品久久| 三级毛片av免费| netflix在线观看网站| 欧美日韩国产mv在线观看视频| 他把我摸到了高潮在线观看| 久久久国产成人免费| 国产熟女xx| 人人妻人人爽人人添夜夜欢视频| 久久久国产成人精品二区 | 精品日产1卡2卡| 精品福利观看| 国产不卡一卡二| 国产国语露脸激情在线看| 精品国产国语对白av| 亚洲,欧美精品.| 欧美日韩一级在线毛片| 午夜91福利影院| 巨乳人妻的诱惑在线观看| 99热国产这里只有精品6| 午夜激情av网站| 啦啦啦 在线观看视频| 少妇的丰满在线观看| 国产激情欧美一区二区| 亚洲精品久久成人aⅴ小说| 日本一区二区免费在线视频| 国产精品乱码一区二三区的特点 | 午夜影院日韩av| 免费观看人在逋| 老司机午夜福利在线观看视频| 亚洲五月色婷婷综合| 免费观看人在逋| 国产成人免费无遮挡视频| 国产高清激情床上av| e午夜精品久久久久久久| 黄色 视频免费看| 色精品久久人妻99蜜桃| 亚洲专区字幕在线| 18禁国产床啪视频网站| 黄色片一级片一级黄色片| 在线观看免费视频日本深夜| 99精国产麻豆久久婷婷| 91麻豆av在线| 少妇粗大呻吟视频| av在线天堂中文字幕 | 亚洲va日本ⅴa欧美va伊人久久| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 久久久久久久精品吃奶| 老司机在亚洲福利影院| 黄片大片在线免费观看| 国产高清视频在线播放一区| 精品国产一区二区久久| 在线观看一区二区三区激情| svipshipincom国产片| 少妇被粗大的猛进出69影院| 9色porny在线观看| 成人免费观看视频高清| 欧美 亚洲 国产 日韩一| 亚洲av熟女| 变态另类成人亚洲欧美熟女 | 精品久久久久久久久久免费视频 | 丰满迷人的少妇在线观看| www.999成人在线观看| 国产1区2区3区精品| 黄色视频,在线免费观看| 无限看片的www在线观看| 99国产精品一区二区蜜桃av| 黑人巨大精品欧美一区二区mp4| 久久九九热精品免费| 午夜视频精品福利| 亚洲一区高清亚洲精品| 久热这里只有精品99| 久久国产精品人妻蜜桃| 久久精品人人爽人人爽视色| av片东京热男人的天堂| 欧美av亚洲av综合av国产av| 多毛熟女@视频| 午夜福利,免费看| 一级毛片精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲专区国产一区二区| 如日韩欧美国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲av第一区精品v没综合| 桃色一区二区三区在线观看| 亚洲 欧美一区二区三区| 午夜影院日韩av| 99精品久久久久人妻精品| 亚洲专区国产一区二区| 国产伦人伦偷精品视频| 中文字幕av电影在线播放| 亚洲第一av免费看| av片东京热男人的天堂| 色哟哟哟哟哟哟| 午夜亚洲福利在线播放| 美女福利国产在线| 国产成年人精品一区二区 | 天堂俺去俺来也www色官网| 久久99一区二区三区| 亚洲av成人一区二区三| 国产精品一区二区三区四区久久 | 涩涩av久久男人的天堂| 欧美日韩一级在线毛片| 中文亚洲av片在线观看爽| 啪啪无遮挡十八禁网站| 一二三四在线观看免费中文在| 成年人黄色毛片网站| 波多野结衣高清无吗| 一级片'在线观看视频| 黄片小视频在线播放| 在线观看免费高清a一片| 天堂中文最新版在线下载| 精品少妇一区二区三区视频日本电影| 久99久视频精品免费| 欧美av亚洲av综合av国产av| 久久午夜综合久久蜜桃| 国产成人精品在线电影| 水蜜桃什么品种好| 亚洲人成电影免费在线| 国产xxxxx性猛交| 国产日韩一区二区三区精品不卡| 国产一区二区三区在线臀色熟女 | 久9热在线精品视频| 最好的美女福利视频网| 黑人猛操日本美女一级片| 欧美日本中文国产一区发布| 不卡av一区二区三区| 这个男人来自地球电影免费观看| 韩国精品一区二区三区| 校园春色视频在线观看| 99国产精品免费福利视频| 9191精品国产免费久久| 国产精品久久视频播放| 自线自在国产av| 国产亚洲欧美精品永久| 十八禁网站免费在线| av电影中文网址| 久久久久国内视频| 乱人伦中国视频| 国产精品 欧美亚洲| 日本精品一区二区三区蜜桃| 在线国产一区二区在线| 久久亚洲真实| 午夜视频精品福利| 成熟少妇高潮喷水视频| 天堂√8在线中文| 一本综合久久免费| a在线观看视频网站| 人人妻,人人澡人人爽秒播| 国产激情久久老熟女| 啦啦啦 在线观看视频| 老司机亚洲免费影院| 大香蕉久久成人网| 日韩精品青青久久久久久| av网站在线播放免费| 亚洲av成人av| 欧美性长视频在线观看| 男人操女人黄网站| 丁香欧美五月| 看免费av毛片| 国产成人精品久久二区二区91| 国产一区二区三区视频了| 性欧美人与动物交配| 午夜福利,免费看| av电影中文网址| 一区二区三区精品91| 91成人精品电影| 久久热在线av| 国产伦人伦偷精品视频| 身体一侧抽搐| 亚洲欧美激情综合另类| 天天躁狠狠躁夜夜躁狠狠躁| 精品日产1卡2卡| 欧美黑人精品巨大| 一个人观看的视频www高清免费观看 | 亚洲人成网站在线播放欧美日韩| 真人一进一出gif抽搐免费| 国产精品综合久久久久久久免费 | 成年人黄色毛片网站| 色哟哟哟哟哟哟| 美女 人体艺术 gogo| 久久久国产欧美日韩av| svipshipincom国产片| 老汉色av国产亚洲站长工具| 亚洲欧美一区二区三区久久| 99国产精品一区二区蜜桃av| 久久香蕉精品热| av福利片在线| 欧美日本亚洲视频在线播放| 狂野欧美激情性xxxx| 欧美av亚洲av综合av国产av| 在线播放国产精品三级| 国产欧美日韩精品亚洲av| 国产成人免费无遮挡视频| 免费观看人在逋| 97人妻天天添夜夜摸| 国产精品成人在线| 91字幕亚洲| e午夜精品久久久久久久| 丁香欧美五月| 日韩欧美在线二视频| 国产精品二区激情视频| 欧美性长视频在线观看| 亚洲人成电影免费在线| 国产免费av片在线观看野外av| 热re99久久国产66热| 日韩高清综合在线| 亚洲自拍偷在线| 免费观看精品视频网站| 久久久久久久久久久久大奶| 国产精品影院久久| 精品第一国产精品| 日日干狠狠操夜夜爽| 大型黄色视频在线免费观看| 中文字幕最新亚洲高清| 免费女性裸体啪啪无遮挡网站| 国产99白浆流出| 亚洲第一欧美日韩一区二区三区| 国产一区二区在线av高清观看| 一级a爱视频在线免费观看| 热99re8久久精品国产| 国产91精品成人一区二区三区| 欧美人与性动交α欧美软件| av福利片在线| 免费av毛片视频| 国产精品久久久久成人av| av福利片在线| 亚洲视频免费观看视频| 超碰成人久久| bbb黄色大片| 久久中文看片网| 色婷婷久久久亚洲欧美| 国产精品美女特级片免费视频播放器 | 久久精品国产清高在天天线| 成人永久免费在线观看视频| 别揉我奶头~嗯~啊~动态视频| 两个人免费观看高清视频| av电影中文网址| 99精品久久久久人妻精品| 另类亚洲欧美激情| 国产精品久久久久成人av| 国产欧美日韩综合在线一区二区| 91麻豆精品激情在线观看国产 | 国产精品成人在线| 久久狼人影院| 国产亚洲精品综合一区在线观看 | 无遮挡黄片免费观看| 日日夜夜操网爽| 丝袜人妻中文字幕| 久久国产精品男人的天堂亚洲| 国产99久久九九免费精品| 免费看十八禁软件| 天天影视国产精品| 男男h啪啪无遮挡|