• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge?

    2021-05-06 08:55:10XiangYunLv呂翔云FeiGao高飛QuanZhiZhang張權(quán)治andYouNianWang王友年
    Chinese Physics B 2021年4期
    關(guān)鍵詞:王友

    Xiang-Yun Lv(呂翔云), Fei Gao(高飛), Quan-Zhi Zhang(張權(quán)治), and You-Nian Wang(王友年)

    Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords: pulse inductively coupled plasma,overshoot,spatial distribution

    1. Introduction

    Pulse inductively coupled plasma (PICP) is widely used in various applied fields(semiconductor etching,surface modification, thin film deposition) due to its high etch selectivity and high etch rate, strong controllability of plasma parameters,good uniformity,and small substrate damage. Therefore,the characteristics in pulse inductively coupled plasma have been widely studied.[1–7]Kushner et al.[8]discussed the calculation results of pulsed ICP(power matching dynamics)by using a fixed impedance matching network and their influences on plasma characters. They found that H mode delays due to power mismatch in E mode. Then they used high-low pulsed power to adjust the minimum plasma density, which reduces ignition delay and enhances plasma stability.[9]Han et al.[10]measured the time-resolved magnetic field, electron density,and electron temperature for pulsed argon plasma. They found that a “ring” shape density profile appears at the initial stage of discharge,which then evolves to a peak in the middle of the chamber.

    In the investigations of pulsed discharge, the time evolution curve of plasma parameters (electron density, electron temperature, and relative light intensity) often has the phenomenon of overshoot at the initial pulse,[11–15]i.e.,they first increase to maximum and then drops to a stable value. Sirse et al.[16]observed overshoot phenomenon during pulse off when measuring electron density in oxygen plasma, and established a qualitative model to explain the variation trend of negative ion density and temperature. The overshoot and undershoot of coils current is greatly weaken by using exponentially rising control signals by Ye et al.[17]In the pressure range of 27 kPa–101 kPa, the overshoot in coils current of Ar–H2plasma is obvious,while the overshoot phenomenon in Ar–N2plasma almost vanishes with rising pressure.Subramonium et al.[18]simulated argon plasma by employing a twodimensional plasma model. Their models capture the overshoot of the electron temperature at the start-on-time, which become even more pronounced at low frequencies. Kwon et al.[19]analyzed the influence of time-varying edge-centre density ratio(h factor)on plasma parameters,and solved the space average transport equation in a self-consistent way. They found that when the h factor decreases, the electron temperature decreases at the active-glow,and the overshoot behavior of the electron temperature gradually disappears.

    In industry,overshoot phenomenon is an important issue which has effect on the uniformity of plasma and generating high-energy ions,which could damage the chip.The study of overshoot phenomenon is beneficial to understand it and improve the uniformity of plasma. The temporal evolutions of input power and electron density in Ar and Ar/CF4pulsed ICP were investigated by Gao et al.[20]They found that the input power appears two peaks and the electron density presents an overshoot during the initial pulse-on stage, and the overshoot decays at lower powers and higher pressures. The work in this paper goes into the previous work by focus more on the dependence of overshoot phenomenon on spatial positions. In fact,the closer to the coils and the discharge centre,the more obvious overshoot phenomenon appear,that is,stronger radio frequency induction field generally induces more pronounced overshoot phenomenon.

    In this work the temporal evolutions of the electron density and the relative light intensity in pulsed ICP are studied.The organization of this paper is as follows. In Section 2,descriptions of the experimental device are provided. In Section 3, experimental results of the time evolutions of electron density and relative light intensity in axial and radial distributions are given. Overshoot phenomenon appears near the coils location and varies at different spatial positions. Finally,a short conclusion will be given in Section 4.

    2. Experimental setup

    The experimental setup for this study is schematically shown in Fig.1. The ICP reactor is comprised of two planar spiral copper coils, which are cooled by recycling water inside. The coils have been energized by a 13.56-MHz radio frequency (RF) power through a matching network. The grounded substrate with a diameter of 26 cm, is placed at 10.5 cm below the quartz window. The vacuum reactor is connected to a turbine molecular pump and a mechanical pump,and the base pressure of the reactor can reach 10?3mTorr(1 Torr=1.33322×102Pa). More detailed description of the reactor can be found in our previous works.[21–23]A timeresolved power diagnostic system (Octiev Suite VI probe,Impedans,Ltd.),fixed between the matching network and the power source, can measure the instantaneous RF power and display complex waveform.

    Fig.1. The schematic diagram of the experimental apparatus.

    In addition,the temporal evolution of the electron density is measured by a commercial Langmuir probe,which is set at 3.0 cm and 7.0 cm away from the quartz window,and can be moved from the side wall to the centre of the chamber. The probe tip(5 mm in length and 0.2 mm in diameter)is made of tungsten wire.

    The plasma was generated by planar coils with a pulsed power of 13.56 MHz. The pulse frequency is 1 kHz with 50%duty cycle. The gas used in this paper is pure Ar and Ar/CF4mixture gas. The total flow rate is fixed at 50 sccm (standard cubic centimetres per minute). The pressure is between 1 mTorr and 80 mTorr, suitable for most plasma processing applications. The power is varied from 200 W to 700 W.

    3. Results and discussion

    3.1. Axial distribution in Ar discharge

    In Fig.2,the temporal evolutions of the relative intensity(a),electron density(b),and effective electron temperature(c)for different axial positions are given at 10 mTorr, 300 W, in Ar discharge, with a pulse frequency of 1 kHz and 50%duty cycle. The electron density and effective electron temperature are measured by Langmuir probe at 3 cm and 7 cm from coils at the discharge centre,due to the probe measurement limitation. The relative light intensity measurement is a line integral,measured every 2 cm by an optical probe at axial 1 cm–9 cm from the coils. We selected the strongest spectral line 811.5 nm,which is excited from Ar(2P9). There are two kinds of energy level transitions,see Eqs.(1)–(3),one direct excitation from ground state(Ar(1S0))with a threshold of 13.08 eV,the other is excited by the metastable state (Ar(1S5)) in two steps excitation with a threshold of 1.53 eV.[24,25]

    In Fig.2(a),when the power is applied,the relative light intensity at all positions first increases rapidly and then decreases. This is the so-called overshoot phenomenon(marked in Fig.2),which can be explained by the generation and transmission of plasma.[23]At the initial stage of the pulse,the remaining electrons in the previous pulse period are heated to high-energy electrons, promptly. Due to the relatively high temperature of electrons, the consequent ionization rate is higher than the loss rate of electrons. The plasma density finally reaches a steady state with convergent density. The overshoot phenomenon is distinct at various positions. As seen in Fig.2(a),the overshoot phenomenon is obvious near the coils(1 cm–5 cm). With the increase of axial distance, the overshoot phenomenon gradually decays. At 3 cm, the overshoot is about 19.4% higher than that in stable period. However,there is almost no overshoot at 9 cm. This is because that there are pretty few residual electrons left from the previous period,which allows the RF field to penetrate into a deep position at initial pulse-on stage. The residual electrons can respond instantly to the RF field and are heated into high-energy. The number of high-energy electrons decreases at a deeper location with reduced RF electric field,which can be revealed from the reduced high-energy tail(around 5 eV smaller)in EEPF at 7 cm than at 3 cm,resulting in lower ionization rate and excitation rate. The overshoot phenomenon thus becomes weaker when locating away from the coil.

    In addition,with the increase of axial distance, the overshoot phenomenon delays. For instance, it takes about 75 μs for the plasma to reach the maximum value at 3 cm, while it takes about 200 μs at 9 cm. This is because on one hand the energy near the coils is first coupled into the plasma, which takes a certain time to diffuse downward. On the other hand,the RF electric field strength is greater close to the coils,producing more high-energy electrons (as shown in Fig.3), the ionization rate and excitation rate are high, and the electron density and light intensity grow rapidly. Whereas, the light intensity increases slowly and the overshoot phenomenon decays at the location with a larger distance away from the coils.In addition,the strength of light intensity during pulse on first increases and then decreases slightly with the increase of the axial distance.[26]The light intensity at all positions immediately decreases to 0,when the power is turned off.

    Fig.2. Temporal evolutions of the relative intensity of 811.4 nm for different axial positions(a),the electron density(b),and the effective electron temperature(c)at 10 mTorr,300 W in Ar discharge,with a pulse frequency of 1 kHz and 50%duty cycle.

    Figure 2(b) exhibits the temporal evolutions of the electron density at different axial positions measured by Langmuir probe. Similar to the evolutions in Fig.2(a), when the power is turned on, the electron density first increases to a peak value,then decrease to a convergent value,i.e.,the overshoot phenomenon appears. When the power is turned off,the electron density first rises slightly to a peak and then significantly decrease. This density peak may be caused by the release of charge by capacitance and inductance in RF power resource.[20]

    Figure 2(c) displays the temporal evolutions of effective electron temperature at different axial positions. It can be seen from the diagram that the effective electron temperature is high when the power is turned on, and then decreases gradually. This change is with opposite trend of electron density(Fig.2(b)). It can be explained that when the power is turned on, the energy is directly coupled to a small amount of electrons left from the previous pulse period, producing high energy electron, and inducing very high electron temperature.The electron density increases due to the intense collisions caused by high energy electrons, while the average coupling power of a single electron gradually decreases, leading to a decreased effective electron temperature. When the electron density is stabilized, the effective electron temperature also reaches a stable value. After the power is turned off,the effective electron temperature drops rapidly. The effective electron temperature at 3 cm is always higher than that at 7 cm (with lower density).

    The EEPFs evolutions at different times with axial height of 3 cm and 7 cm are given in Fig.3. As can be seen from the figure, there are abundant high energy electrons at the early stage of pulse-on (50 μs), which dominates the initial discharge. These high energy electrons are mainly produced by the fact that the power is coupled to a small number of electrons at the initial stage of active-glow.This corresponds to the low electron density and high effective electron temperature at the initial active-glow, as shown in Figs. 2(b) and 2(c). Furthermore, the EEPF shows a maximum of high-energy electrons at 75 μs, which corresponds to the time of the overshoot in measured light intensities at 3 cm. When the plasma reaches the steady state, the electron energy distribution becomes rather stable(after 150μs).In addition,the high-energy electron tails in EEPF at 7 cm are relatively lower than that at 3 cm,due to the reduced RF field at 7 cm.

    Fig.3. EEPFs at different times with axial height of 3 cm(a)and 7 cm(b),at 10 mTorr,300 W,Ar discharge. The pulse frequency of 1 kHz with 50%duty cycle.

    3.2. Axial distribution in Ar/CF4 discharge

    Figure 4 reveals the temporal evolutions of the relative light intensities,the electron density,and the effective electron temperature at different axial positions at 10 mTorr, 300 W,Ar/CF4=90/10 discharges,with a pulse frequency of 1 kHz and 50%duty cycle. It is obvious that the temporal evolution of relative light intensities in Ar/CF4discharges exhibit similar characteristics with Ar discharges(Fig.2(a)). But the intensities decrease monotonously when increasing the axial distance from 3 cm to 9 cm away from the coils.

    The temporal evolutions of electron densities (shown in Fig.4(c)), measured by Langmuir probe, have similar trend with the relative light intensities, i.e., the electron density at 3 cm is about 1.75 times the value at 7 cm when the discharge approaches steady. It is worth noting that, the overshoot at 3 cm in Ar/CF4discharge is obviously smaller than that in pure Ar discharge, which almost presents no overshoot at 7 cm.Furthermore, it takes only 70 μs to reach the steady state in Ar/CF4discharge, which takes about 200 μs in pure Ar discharge. This is probably due to that there are much more collision reactions in Ar/CF4discharge, and consequently more loss channels of electrons (especially high energy electrons),limiting the development of overshoot phenomenon.[27,28]

    Figure 4(d) displays the temporal evolutions of the effective electron temperature measured by Langmuir probe at different axial positions. The evolution of the effective electron temperature also exhibits the same trend with pure Ar discharge, i.e., the electron temperature is pretty high when the power is turned on, and then decreases to a stable value, and finally becomes very small when the power is turned off.

    In Fig.5, the EEPFs at different time at 3 cm and 7 cm(axial distance from the coils)are shown at 10 mTorr,300 W with Ar/CF4=90/10 and the pulse frequency of 1 kHz and 50% duty cycle. As can be seen from Fig.5(b), the time for EEPF to reach the steady state is pretty short,which only took 75 μs at 7 cm in the Ar/CF4discharge. This is again due to the existence of more collision mechanisms in the Ar/CF4discharge.

    Fig.4. Temporal evolutions of the relative intensities of Ar 811.4 nm(a)and F 641.4 nm(b),the electron density(c),and the effective electron temperature(d)for different axial positions at 10 mTorr,300 W,in Ar/CF4 (90/10)discharge,with a pulse frequency of 1 kHz and 50%duty cycle.

    Fig.5. The EEPFs at different resolve times at 3 cm and 7 cm(axial distance from the coils),at 10 mTorr,300 W,Ar/CF4=90/10 and the pulse frequency of 1 kHz and duty 50%cycle.

    3.3. Radial distribution

    Figure 6 reveals the temporal evolutions of the electron density for different radial positions at 3 cm and 7 cm (axial distance from the coils) in Ar and Ar/CF4=90/10 discharges at 10 mTorr, 300 W, measured by Langmuir probe,with a pulse frequency of 1 kHz and 50% duty cycle. It can be seen from the diagram that the rising time of electron density at all radial positions are similar,which indicates that the plasma in the horizontal direction almost respond to the power supply at the same time when the pulse is turned on.

    The electron density gradually becomes smaller when approaching the reactor wall, and the overshoot phenomenon is most pronounced at the positions near the coils and the centre. With the increase of the radial and axial distances (from the centre and coils),the overshoot phenomenon gradually decays. In Ar/CF4discharge, the overshoot is significantly reduced with respect to the pure Ar discharge, due to the more collision mechanisms in CF4discharge.

    Fig.6. Temporal evolutions of the electron density at different radial positions at 3 cm(a)and 7 cm(b)in Ar discharge,3 cm(c)and 7 cm(d)in Ar/CF4=90/10 discharge at 10 mTorr,300 W,measured by Langmuir probe,with a pulse frequency of 1 kHz and 50%duty cycle.

    4. Conclusions

    In this work, we report for the first time the relationship between overshoot phenomenon and spatial positions in pulsed inductively coupled Ar and Ar/CF4discharges. The electron density, effective electron temperature, and relative light intensity at different spatial positions were measured by using a time-resolved diagnostic system,i.e.,Langmuir probe and optical probe, under the conditions of pulse frequency of 1 kHz and duty cycle of 50%.

    In pure Ar discharges, when the power is turned on, the relative light intensity first increases to a peak value,then falls to a stable value, i.e., the overshoot appears, which is related to the generation rate and loss rate of electrons. With the increase of axial position,the overshoot phenomenon decays and the time consumed for the relative light intensity to reaches the maximum becomes even longer,for instance it takes about 75 μs at 3 cm but 200 μs at 9 cm. The temporal evolutions of electron density are similar to those of relative light intensity,but the electron density at 3 cm responds faster to power supply comparing to the case at 7 cm, as the radio frequency electric field is stronger and consequently the number of highenergy electrons is larger for the position closer to the coils.

    The effective electron temperature is pretty high when the power is turned on,then gradually decreases to a stable value,and finally significantly decrease after the power is turned off.Therefore,the high-energy electrons dominate the discharge at the initial stage of the pulse,which is supposed to play a role in the overshoot phenomenon. The effective electron temperature is always higher for the position near the coils due to the stronger electric field.

    In Ar/CF4discharge, the temporal evolutions of relative light intensity have very similar trend with Ar discharge. But the relative light intensity greatly decreases when increasing the axial position from 3 cm to 9 cm away from the coils,and the overshoot phenomenon becomes much weaker, which is probably due to the more collision reactions in Ar/CF4discharge,inducing rapid reduction of high energy electrons.

    Furthermore,the overshoot phenomenon and plasma density are found to be more pronounced near the reactor centre,which gradually decays when approaching the reactor wall.

    猜你喜歡
    王友
    3D fluid model analysis on the generation of negative hydrogen ions for negative ion source of NBI
    Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
    Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas
    High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma
    Multi-layer structure formation of relativistic electron beams in plasmas
    Influence of magnetic filter field on the radiofrequency negative hydrogen ion source of neutral beam injector for China Fusion Engineering Test Reactor
    Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model?
    Modulation of the plasma uniformity by coil and dielectric window structures in an inductively coupled plasma
    Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas?
    Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area,very-high frequency capacitive argondischarge
    我要看日韩黄色一级片| 亚洲第一电影网av| 波多野结衣巨乳人妻| 国产亚洲精品久久久久久毛片| 国产精品久久久久久亚洲av鲁大| 波多野结衣高清作品| 一个人观看的视频www高清免费观看| 亚洲成a人片在线一区二区| 亚洲av成人精品一区久久| 黄色一级大片看看| 久久精品夜夜夜夜夜久久蜜豆| 有码 亚洲区| 久久九九热精品免费| 欧美国产日韩亚洲一区| 又紧又爽又黄一区二区| 久久婷婷人人爽人人干人人爱| 嫩草影院新地址| 国产日本99.免费观看| 国产欧美日韩精品一区二区| 国产爱豆传媒在线观看| 亚洲无线在线观看| 午夜激情福利司机影院| 成人精品一区二区免费| 日韩欧美国产一区二区入口| 听说在线观看完整版免费高清| 日本欧美国产在线视频| 联通29元200g的流量卡| 22中文网久久字幕| 淫秽高清视频在线观看| 日韩亚洲欧美综合| 美女被艹到高潮喷水动态| 国产极品精品免费视频能看的| 99热网站在线观看| 国内精品宾馆在线| 窝窝影院91人妻| 不卡一级毛片| 精品久久国产蜜桃| 亚洲欧美激情综合另类| 国产精品亚洲美女久久久| 日韩欧美国产一区二区入口| 舔av片在线| 午夜视频国产福利| 精品人妻1区二区| 久久久久久大精品| 最新在线观看一区二区三区| 国产精品野战在线观看| 91久久精品电影网| 淫秽高清视频在线观看| 成年女人毛片免费观看观看9| 可以在线观看毛片的网站| 精品一区二区三区视频在线观看免费| 亚洲内射少妇av| 久久久国产成人免费| 国内精品久久久久精免费| 午夜福利在线观看免费完整高清在 | 女人十人毛片免费观看3o分钟| 久久99热6这里只有精品| 国产精品不卡视频一区二区| 午夜福利在线在线| 长腿黑丝高跟| 很黄的视频免费| 免费av观看视频| 精品人妻偷拍中文字幕| 欧美性感艳星| 成人亚洲精品av一区二区| 黄色配什么色好看| 91麻豆精品激情在线观看国产| 97热精品久久久久久| 国内久久婷婷六月综合欲色啪| .国产精品久久| 久久精品国产亚洲av香蕉五月| 亚洲国产精品成人综合色| 91麻豆av在线| 小说图片视频综合网站| 国产一区二区在线av高清观看| 我的女老师完整版在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美国产日韩亚洲一区| 免费在线观看影片大全网站| 日韩强制内射视频| 老司机午夜福利在线观看视频| 亚洲最大成人中文| 他把我摸到了高潮在线观看| 在线免费十八禁| 国产伦精品一区二区三区四那| 国产乱人视频| 超碰av人人做人人爽久久| 成人二区视频| 亚洲经典国产精华液单| 五月玫瑰六月丁香| x7x7x7水蜜桃| 国产亚洲精品av在线| 中文亚洲av片在线观看爽| 1000部很黄的大片| 日本色播在线视频| 我的女老师完整版在线观看| 亚洲最大成人av| 久久久久国内视频| 欧美3d第一页| 日日夜夜操网爽| 国产精品久久久久久久久免| 联通29元200g的流量卡| 亚洲经典国产精华液单| 日韩欧美精品v在线| 天堂动漫精品| 国产精品久久视频播放| 欧美最黄视频在线播放免费| 精品久久久久久,| 亚洲七黄色美女视频| 中文字幕免费在线视频6| 成年版毛片免费区| 亚洲熟妇熟女久久| 欧美中文日本在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩中文字幕欧美一区二区| 99国产极品粉嫩在线观看| 在线观看一区二区三区| 变态另类丝袜制服| 毛片一级片免费看久久久久 | 亚洲在线观看片| 成年版毛片免费区| 最好的美女福利视频网| www.色视频.com| 观看美女的网站| 一级黄片播放器| 免费在线观看日本一区| 女同久久另类99精品国产91| 日本色播在线视频| 99九九线精品视频在线观看视频| 精品人妻熟女av久视频| 淫妇啪啪啪对白视频| 国产精品1区2区在线观看.| www.色视频.com| 桃红色精品国产亚洲av| 亚洲成a人片在线一区二区| 亚洲欧美日韩高清在线视频| 在线观看舔阴道视频| 欧美日韩综合久久久久久 | 99riav亚洲国产免费| 国产色婷婷99| 美女大奶头视频| 日本 欧美在线| 亚洲av成人精品一区久久| 在线观看av片永久免费下载| 亚洲aⅴ乱码一区二区在线播放| 黄色丝袜av网址大全| 免费在线观看影片大全网站| 欧美激情在线99| 久久人妻av系列| 久久热精品热| 午夜福利在线观看吧| 黄色欧美视频在线观看| 亚洲精品成人久久久久久| 欧美成人一区二区免费高清观看| 国产精品人妻久久久久久| 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 日日摸夜夜添夜夜添av毛片 | 别揉我奶头 嗯啊视频| 国产极品精品免费视频能看的| 亚洲最大成人av| 精品99又大又爽又粗少妇毛片 | 免费在线观看成人毛片| 小说图片视频综合网站| 最近最新免费中文字幕在线| 亚洲成av人片在线播放无| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 少妇的逼水好多| 美女免费视频网站| 国产人妻一区二区三区在| 老司机深夜福利视频在线观看| 亚洲美女视频黄频| 热99re8久久精品国产| 不卡视频在线观看欧美| 色哟哟·www| 免费看日本二区| 久久香蕉精品热| 国产精品日韩av在线免费观看| 亚洲精品456在线播放app | 热99re8久久精品国产| 国产精品国产高清国产av| 精品午夜福利在线看| 很黄的视频免费| 婷婷精品国产亚洲av| 亚洲内射少妇av| 婷婷丁香在线五月| 国产三级中文精品| 久久国内精品自在自线图片| 日本熟妇午夜| 色综合站精品国产| 国产色爽女视频免费观看| 午夜免费成人在线视频| 国产精品嫩草影院av在线观看 | 久久久久久久久中文| 三级毛片av免费| 观看免费一级毛片| 中文亚洲av片在线观看爽| 天堂动漫精品| 一进一出抽搐动态| 日韩在线高清观看一区二区三区 | 高清日韩中文字幕在线| 日韩亚洲欧美综合| 国产亚洲精品综合一区在线观看| 亚洲精品成人久久久久久| 精品久久久久久久末码| 校园春色视频在线观看| 一个人看视频在线观看www免费| 亚洲成人精品中文字幕电影| 亚洲精品影视一区二区三区av| 亚洲天堂国产精品一区在线| av.在线天堂| 女生性感内裤真人,穿戴方法视频| 啦啦啦啦在线视频资源| 欧美日韩瑟瑟在线播放| 久久中文看片网| 一进一出抽搐动态| 国产午夜精品论理片| 99国产极品粉嫩在线观看| 欧美性感艳星| 欧美色欧美亚洲另类二区| 麻豆一二三区av精品| 婷婷精品国产亚洲av在线| 极品教师在线免费播放| 国产欧美日韩一区二区精品| 窝窝影院91人妻| 国产高潮美女av| 热99在线观看视频| 欧美日韩乱码在线| 国产精品伦人一区二区| 日日摸夜夜添夜夜添小说| 亚洲精品一卡2卡三卡4卡5卡| 国产精品福利在线免费观看| a级毛片a级免费在线| 69av精品久久久久久| 极品教师在线视频| 国产免费男女视频| 少妇人妻一区二区三区视频| 亚洲性夜色夜夜综合| 亚洲va在线va天堂va国产| 12—13女人毛片做爰片一| 色综合亚洲欧美另类图片| 性插视频无遮挡在线免费观看| 国产久久久一区二区三区| 在线观看66精品国产| 五月伊人婷婷丁香| 日韩av在线大香蕉| 女的被弄到高潮叫床怎么办 | 天堂√8在线中文| 国产真实乱freesex| 国产在线男女| 婷婷精品国产亚洲av在线| 免费观看人在逋| 精品久久久久久成人av| av天堂中文字幕网| 高清日韩中文字幕在线| 高清毛片免费观看视频网站| 高清在线国产一区| 欧美日韩瑟瑟在线播放| 国产一区二区三区av在线 | 亚洲经典国产精华液单| 久久精品久久久久久噜噜老黄 | 99久久成人亚洲精品观看| 欧美区成人在线视频| 十八禁网站免费在线| 精品人妻熟女av久视频| 中国美白少妇内射xxxbb| 搡老岳熟女国产| 久久午夜福利片| 搡老熟女国产l中国老女人| 亚洲精品色激情综合| 免费黄网站久久成人精品| 免费看a级黄色片| 成年人黄色毛片网站| 国产精品一区二区三区四区免费观看 | 国产精品日韩av在线免费观看| 级片在线观看| 婷婷六月久久综合丁香| 精品日产1卡2卡| 91午夜精品亚洲一区二区三区 | 亚洲精品在线观看二区| 真人一进一出gif抽搐免费| 亚洲av二区三区四区| 欧美一区二区亚洲| 中国美白少妇内射xxxbb| 亚洲熟妇熟女久久| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 亚洲av不卡在线观看| 嫩草影视91久久| 精品欧美国产一区二区三| av天堂中文字幕网| 校园人妻丝袜中文字幕| a级一级毛片免费在线观看| 亚洲av.av天堂| 欧美日韩亚洲国产一区二区在线观看| 搡老岳熟女国产| 很黄的视频免费| 12—13女人毛片做爰片一| 亚洲va在线va天堂va国产| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 少妇的逼水好多| 久久人人爽人人爽人人片va| 免费观看精品视频网站| 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| 久久国产乱子免费精品| 老司机午夜福利在线观看视频| 久久久午夜欧美精品| 1024手机看黄色片| 国产一区二区三区视频了| 欧美成人一区二区免费高清观看| 国产精品98久久久久久宅男小说| 欧美在线一区亚洲| 成人永久免费在线观看视频| 听说在线观看完整版免费高清| 窝窝影院91人妻| 美女高潮喷水抽搐中文字幕| 久久久久久久亚洲中文字幕| 日韩欧美三级三区| 亚洲不卡免费看| 五月伊人婷婷丁香| 精品午夜福利视频在线观看一区| 午夜福利18| 国产精品美女特级片免费视频播放器| 午夜福利高清视频| 午夜精品久久久久久毛片777| 国产熟女欧美一区二区| 在线观看午夜福利视频| 波野结衣二区三区在线| 免费人成视频x8x8入口观看| 欧美日韩瑟瑟在线播放| 欧美zozozo另类| 国产精品亚洲美女久久久| 综合色av麻豆| 免费av观看视频| 欧美一区二区国产精品久久精品| 免费一级毛片在线播放高清视频| 天堂√8在线中文| 国产高清三级在线| 国产精品免费一区二区三区在线| 国产大屁股一区二区在线视频| 国产不卡一卡二| 欧美丝袜亚洲另类 | 极品教师在线视频| 欧美日韩精品成人综合77777| 国产亚洲欧美98| 大型黄色视频在线免费观看| 午夜精品久久久久久毛片777| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 九九在线视频观看精品| 18禁裸乳无遮挡免费网站照片| 国语自产精品视频在线第100页| 久久6这里有精品| 搡老熟女国产l中国老女人| 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 麻豆国产97在线/欧美| 99热精品在线国产| 女生性感内裤真人,穿戴方法视频| 免费观看精品视频网站| 国产一区二区激情短视频| 国内精品久久久久精免费| 国产精品,欧美在线| 在线播放国产精品三级| 在线免费观看的www视频| 国产aⅴ精品一区二区三区波| 搡女人真爽免费视频火全软件 | 成人欧美大片| 成年女人永久免费观看视频| 在线国产一区二区在线| 偷拍熟女少妇极品色| 久久久久免费精品人妻一区二区| 亚洲av一区综合| 国产午夜精品论理片| 深爱激情五月婷婷| 内射极品少妇av片p| 免费看美女性在线毛片视频| 日韩,欧美,国产一区二区三区 | 伦理电影大哥的女人| 一区二区三区四区激情视频 | a级一级毛片免费在线观看| 女生性感内裤真人,穿戴方法视频| 成人综合一区亚洲| 亚洲国产欧美人成| 中文资源天堂在线| 69人妻影院| 成人国产综合亚洲| 在线观看午夜福利视频| 国产午夜福利久久久久久| 久久九九热精品免费| 人妻夜夜爽99麻豆av| 午夜爱爱视频在线播放| 亚洲精品一区av在线观看| 国产日本99.免费观看| 午夜免费成人在线视频| 91精品国产九色| 搡老岳熟女国产| 校园春色视频在线观看| 高清日韩中文字幕在线| 啦啦啦韩国在线观看视频| 国产精品日韩av在线免费观看| 午夜日韩欧美国产| 搡老妇女老女人老熟妇| 亚洲av二区三区四区| 国产成人影院久久av| 亚洲中文字幕一区二区三区有码在线看| 给我免费播放毛片高清在线观看| 日本-黄色视频高清免费观看| 久久久色成人| 22中文网久久字幕| 99热这里只有是精品在线观看| 人人妻人人澡欧美一区二区| 干丝袜人妻中文字幕| 日韩中字成人| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产清高在天天线| 日日夜夜操网爽| 噜噜噜噜噜久久久久久91| 国产精品99久久久久久久久| 亚洲黑人精品在线| 国产老妇女一区| 国产精品嫩草影院av在线观看 | 国产亚洲av嫩草精品影院| 亚洲第一区二区三区不卡| 成人性生交大片免费视频hd| 男女啪啪激烈高潮av片| 日韩亚洲欧美综合| 在线观看免费视频日本深夜| 综合色av麻豆| 国产大屁股一区二区在线视频| 亚洲美女黄片视频| 日韩亚洲欧美综合| 国产黄片美女视频| 国产精品自产拍在线观看55亚洲| 中文字幕久久专区| 99热网站在线观看| 亚洲不卡免费看| 97人妻精品一区二区三区麻豆| 麻豆精品久久久久久蜜桃| 大型黄色视频在线免费观看| 日韩人妻高清精品专区| 国产黄色小视频在线观看| 成人精品一区二区免费| 日本精品一区二区三区蜜桃| 老女人水多毛片| 97人妻精品一区二区三区麻豆| 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| 久久久久久久精品吃奶| 亚洲午夜理论影院| 亚洲内射少妇av| 亚洲人成网站高清观看| 久久九九热精品免费| 亚洲国产日韩欧美精品在线观看| 美女黄网站色视频| 亚洲国产精品久久男人天堂| 一级a爱片免费观看的视频| 午夜激情福利司机影院| 精品久久久久久久人妻蜜臀av| 免费看美女性在线毛片视频| 国产高清不卡午夜福利| 能在线免费观看的黄片| 日韩欧美精品v在线| 亚洲第一电影网av| 久久久久久国产a免费观看| 老司机深夜福利视频在线观看| 欧美xxxx黑人xx丫x性爽| 不卡一级毛片| 免费看av在线观看网站| 91麻豆精品激情在线观看国产| 美女被艹到高潮喷水动态| 日韩欧美免费精品| 精品不卡国产一区二区三区| 亚洲成人久久爱视频| 日韩欧美精品v在线| 精品久久久久久久久久久久久| 久久精品影院6| 国产精品亚洲美女久久久| videossex国产| 老熟妇仑乱视频hdxx| 欧美中文日本在线观看视频| 美女黄网站色视频| 国产亚洲精品av在线| 天天躁日日操中文字幕| 国内少妇人妻偷人精品xxx网站| 免费看日本二区| 色吧在线观看| 亚洲成av人片在线播放无| 久久亚洲真实| 日本黄大片高清| 欧美色欧美亚洲另类二区| 婷婷六月久久综合丁香| a级一级毛片免费在线观看| 国产高清有码在线观看视频| 身体一侧抽搐| 啦啦啦啦在线视频资源| 久久精品国产亚洲av香蕉五月| 老师上课跳d突然被开到最大视频| 哪里可以看免费的av片| 老司机深夜福利视频在线观看| 午夜免费激情av| 午夜免费成人在线视频| 精品人妻一区二区三区麻豆 | 久久久成人免费电影| 啦啦啦观看免费观看视频高清| 美女xxoo啪啪120秒动态图| 欧美日韩综合久久久久久 | 亚洲中文字幕一区二区三区有码在线看| 麻豆精品久久久久久蜜桃| www.色视频.com| 看黄色毛片网站| 亚洲国产精品成人综合色| 亚洲成人久久性| 91麻豆av在线| 变态另类丝袜制服| 伦理电影大哥的女人| 简卡轻食公司| 色噜噜av男人的天堂激情| 99热精品在线国产| 日日干狠狠操夜夜爽| 三级国产精品欧美在线观看| 婷婷丁香在线五月| 亚洲熟妇熟女久久| 国产精品国产高清国产av| 午夜精品久久久久久毛片777| 日本色播在线视频| 联通29元200g的流量卡| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美 国产精品| 蜜桃亚洲精品一区二区三区| 国产精品人妻久久久影院| 国产伦在线观看视频一区| 桃红色精品国产亚洲av| 国产精品无大码| 男女那种视频在线观看| 嫩草影院新地址| 国产免费一级a男人的天堂| 精品午夜福利视频在线观看一区| 九色成人免费人妻av| 色综合色国产| 美女 人体艺术 gogo| 一a级毛片在线观看| 国产精品电影一区二区三区| 夜夜爽天天搞| 人人妻,人人澡人人爽秒播| 一本精品99久久精品77| 舔av片在线| 夜夜看夜夜爽夜夜摸| 欧美中文日本在线观看视频| 长腿黑丝高跟| 看十八女毛片水多多多| 三级毛片av免费| 一进一出好大好爽视频| 搡老熟女国产l中国老女人| 国产亚洲av嫩草精品影院| 亚洲精品日韩av片在线观看| 成人一区二区视频在线观看| 性插视频无遮挡在线免费观看| 久久久午夜欧美精品| 久久人妻av系列| 日本爱情动作片www.在线观看 | 亚洲无线在线观看| 九九在线视频观看精品| 久久精品国产99精品国产亚洲性色| 亚洲熟妇中文字幕五十中出| 99久久九九国产精品国产免费| bbb黄色大片| 国产免费av片在线观看野外av| 在线观看舔阴道视频| 国内精品宾馆在线| 男人舔女人下体高潮全视频| 日韩欧美在线乱码| 给我免费播放毛片高清在线观看| 日韩中字成人| 亚洲中文日韩欧美视频| 桃红色精品国产亚洲av| www日本黄色视频网| 小蜜桃在线观看免费完整版高清| www.www免费av| 国产精品无大码| 99精品在免费线老司机午夜| 嫩草影院入口| 欧美日本亚洲视频在线播放| 亚洲三级黄色毛片| 中亚洲国语对白在线视频| 最好的美女福利视频网| 大又大粗又爽又黄少妇毛片口| 亚洲黑人精品在线| 国产男靠女视频免费网站| 精品久久久噜噜| 少妇猛男粗大的猛烈进出视频 | 在线观看av片永久免费下载| 天堂影院成人在线观看| 日韩欧美免费精品| 国产爱豆传媒在线观看| 九九爱精品视频在线观看| 我要看日韩黄色一级片| 国产精品一区二区性色av| 国产久久久一区二区三区| 欧美一区二区亚洲| 国产精品综合久久久久久久免费| av黄色大香蕉| 日本免费a在线| 午夜福利高清视频| 国产 一区 欧美 日韩| 女人十人毛片免费观看3o分钟| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久久久免费视频| 啪啪无遮挡十八禁网站| 午夜福利18| 真人做人爱边吃奶动态| 国产亚洲精品久久久com|