• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2?

    2021-05-06 08:54:24XiChen陳熙ZhengZheLin林正喆andLiRongCheng程麗蓉
    Chinese Physics B 2021年4期

    Xi Chen(陳熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程麗蓉)

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    Keywords: two-dimensional(2D)ferromagnetism,spin wave,magnetic anisotropy

    1. Introduction

    Atomically thin two-dimensional (2D) crystals can present exceptional electronic structures as a result of reduced dimensionality. The success in 2D material research brings vast opportunities to pursue emerging physical properties.Various 2D crystals are discovered,ranging from semiconductors,highly correlated materials to superconductors. Recently,magnetic crystals are added to the 2D material family.[1–3]In particular, intrinsic ferromagnetism in 2D materials is a new form of condensed matter. Unlike the ferromagnetism in conventional ultrathin metals, ferromagnetic (FM) 2D materials hold magnetic order in reduced dimensionality and may exhibit new physics for spintronics.

    With the rapid development, 2D materials have permeated into many research areas[4–9]and also bring opportunities for finding ferromagnetism in reduced dimensionality.Although the Mermin–Wagner theorem[10]asserts that 2D longrange FM order cannot exist in isotropic magnetic systems,a recent discovery has found 2D layered systems possessing intrinsic magnetocrystalline anisotropy against thermal fluctuations (e.g., CrI3,[11–15]Cr2Ge2Te6,[16]and CrSiTe3[17]).However, the Curie temperatures of CrI3, Cr2Ge2Te6, and CrSiTe3are only dozens of Kelvin. In recent years,Fe3GeTe2has been found to have a Curie temperature close to room temperature[18–25](150–220 K depending on Fe occupancy).By the doping of the ionic gate, the Curie temperature of atomically thin Fe3GeTe2is dramatically elevated to room temperature.[18,26]The discovery of Fe3GeTe2provides a new chance for ultra-thin spintronics. Magnetically ordered 2D crystals open vast possibilities for novel physical phenomena and new device concepts.

    In this paper, a theoretical model is proposed to understand the magnetic interactions in 2D Fe3GeTe2,and the density functional theory (DFT) calculations are employed to evaluate the key parameters. We uncover the mechanism of magnetic anisotropy in maintaining the magnetic order of 2D systems. The model reveals a new form of long-range ferromagnetism and suggests a physical picture beyond the Stoner model. The Curie temperature of Fe3GeTe2is then predicted by the model. Our theoretical model can also be applied to other 2D itinerant ferromagnetism systems.

    2. Theory

    In traditional theory,the Mermin–Wigner theorem[10]asserts that gapless excitation can occur in systems with continuous symmetry. In isotropic 2D systems,the gapless quasiparticle spectrum leads to a divergence of thermal distribution,which indicates the absence of magnetic order at finite temperature. However,anisotropic 2D systems hold low-energy gaps which protect the long-range magnetic order. To understand the magnetic order in Fe3GeTe2,let us start with the spin wave theory. The possible Heisenberg Hamiltonian in anisotropic 2D systems reads

    In the absence of magnetic anisotropy(i.e., D=0 and λ =0 which leads to Eg=0),the integral goes

    This divergence is consistent with the Mermin–Wagner theorem, indicating that 2D ferromagnetism cannot exist without magnetic anisotropy.

    3. Model and computation

    The 2D Fe3GeTe2lattice(Fig.1(a))has hexagonal symmetry with the primitive cell belonging to the space group Pˉ6m2.The Fe atoms in one primitive cell are located in two inequivalent Wyckoff sites. In each primitive cell,two Fe atoms are located at the same position in the 2D plane at different heights(atoms 1 and 2 in Fig.1(b)).The last Fe atom(atoms 3 in Fig.1(b)) is sandwiched between the two Te atoms. The neighboring Fe atoms 1 and 2 constitute a magnetic group. J1and J2denote its Heisenberg coupling with 1stNNs and 2ndNNs. The magnetization of Fe3GeTe2lattice is mainly decided by these groups. The magnetic moments of atom 3 are then induced by the three adjacent groups(which is explained in supplementary section 3). In the following text, we treat each Fe atom group (composed of 1 and 2) as a whole magnetic object.

    Fig.1. Structure and magnetic coupling of Fe3GeTe2. (a)The structure of Fe3GeTe2 with the primitive cell shown by dashed lines. (b)The atomic group composed of atoms 1 and 2,and the coupling J1 with 1st NNs and J2 with 2nd NNs. (c)6×1 supercell and four different configurations for the magnetization of the atomic groups. The arrows denote the directions of magnetic moments on the Fe atomic groups.

    It is worth discussing the choice of DFT functional here. To verify the reliability of LDA, we also perform comparison calculations using the Perdew–Burke–Ernzerhof(PBE)functional[41]and the hybrid Heyd–Scuseria–Ernzerhof(HSE06) functional.[42,43]The LDA functional gives a magnetic moment m = 4.55μBper primitive cell, which is in the range of experimental values (m=3.60–4.89 μB).[20,21]However, the obtained magnetic moments by the PBE (m=6.32μB)and HSE06(m=7.11μB)functionals are drastically overestimated. The band structures (supplementary Fig.S1)show a feature of band shift in FM Fe3GeTe2monolayer.The PBE or HSE06 functional present a larger band shift than LDA. The disagreement between theoretical (PBE or HSE06) and experimental magnetic moments also appears in the case of Fe-based superconductors.[44]This suggests that LDA, which is used throughout this work, is suitable to describe the electronic structure of Fe3GeTe2.

    Within the Heisenberg model, the interatomic couplings are evaluated via the energy-mapping method.[45]A 6×1 supercell(Fig.1(c))is employed as a model. The configurations α, β, γ, and δ exhibit different magnetic moments on the Fe atomic groups. DFT calculations without SOC count the energy of Heisenberg coupling without magnetic anisotropy.According to the Heisenberg model,their energies read

    Based on the DFT total energies without SOC,the Heisenberg coupling parameters J1and J2are obtained by the ordinary least squares method(see supplementary section 2).

    4. Results and discussion

    4.1. DFT calculations

    The mission of DFT calculations is to obtain the spin S of the Fe atomic group and the parameters in Eq.(1)(D,λ,J1and J2). LDA provides a total magnetic moment m=4.55μBper primitive cell,and the magnetic moment of the Fe atomic group is 3.58 μB. In DFT, the calculations of magnetic moments are based on atomic Wigner–Seitz radii, which are somewhat vague. Here we take an integral on the magnetic moment and can convince that S=2 is the spin owing by the Fe atomic group.

    Next, D and λ can be fitted from the MAE calculation. DFT calculations reveal that 2D Fe3GeTe2monolayer is uniaxial with the easy axis along the z-direction perpendicular to the 2D surface. Based on the hexagonal symmetry of Fe3GeTe2, the MAE only depends on θ, which is the angle between lattice magnetization and the z axis.[46]According to Eq. (1), the MAE can be written as MAE =(D+n1λ)S2sin2θ. On the other hand, the MAE of a hexagonal crystal can be fit into[46]MAE ≈K sin2θ. DFT calculation results (Fig.3(c)) fit K = 2.46 meV/cell. So we get D+n1λ ≈K/S2=0.62 meV.

    4.2. Magnon spectrum

    The magnon spectrum can be obtained from the spin wave Hamiltonian Eq.(5).The hexagonal Fe3GeTe2has 1stNN and 2ndNN number n1=6 and n2=6. The Bloch Hamiltonian for the lattice reads

    Fig.2. Magnon spectrum and the Curie temperature. (a) The energy spectrum of spin wave magnon. (b) Three-dimensional plot of the magnon spectrum. (c)The magnetic moment of one primitive cell versus temperature T.

    4.3. Curie temperature

    We now provide a rough estimate of the Curie temperature based on nonlinear spin wave theory. We use the expressions Eqs.(2)and(3)for spin operators, and expand them to fourth order in the bosonic operators

    At intermediate temperatures,there is a finite number of spin waves that are accounted for the high-order terms in bosonic operators when substituting the previous expansion in the spin Hamiltonian. The spin Hamiltonian contains four field operators and therefore is not rigorously solvable. Here, the effect of the spin wave population in the Hamiltonian is described by the substitution

    Here Ciis the perturbation terms. The last step removes the constant term (do not affect the physics of Hamiltonian) and ignores the high-order perturbation. Using a mean-field approximation,we have

    By Eqs.(12)and(13)we have

    The above formulas result in a substitution DS →DM,λS →λM, J1S →J1M, and J2S →J2M in the Hamiltonian HSWA.So, the magnetization is expressed by a self-consistent equation

    At a given temperature T, the magnetization M(T) can then be derived by numerically solving this equation. This equation implies that the temperature T reduces quasiparticle energy and decreases the low-energy gap of magnon. The effect destroys the magnetic order in the system. The numerical results are shown in Fig.2(c). M(T)drastically decreases with increasing temperature when T >100 K. According to the results,we get a Curie temperature Tc=154 K.In a recent experiment,[18]the magnetic hysteresis of monolayer and bilayer Fe3GeTe2is detected to vanish at T =100 K.People also used polar refractive magnetic circular dichroism microscopy to measure layer-dependent Tcof Fe3GeTe2and detected a Curie temperature of about 70 K with a size of 2μm.[18]These experiment results are generally consistent with our calculation.

    4.4. Stoner ferromagnetism

    Fe3GeTe2monolayer is metallic with a non-integer magnetic moment. This inspires us to apply the Stoner model to understand the mechanism of yielding the magnetic order.The DFT bands of Fe3GeTe2monolayer(Fig.3(a))show a feature of band shift. The shapes of corresponding spin-up and spindown bands are similar. The spin-up band has lower energy,while the spin-down band has higher energy. From the density of states (DOS) (Fig.3(b)), we can see that the electron states near the Fermi level are mainly contributed by Fe 3d orbitals.To calculate the average band splitting ?near the Fermi level, five corresponding bands (bold lines in Fig.3(a)) are chosen. Their average energy gap is ?=1.17 eV.According to the Stoner model,[47]we have ?=Um0,where m0=m/3=1.52 μBis the average magnetic moment per Fe atom. Then the Hubbard U=0.77 eV is determined.It is worth noting that this U is the result of electron interactions within LDA,which does not have to add it into LDA (if U is added to LDA, the exchange-correlation is stronger and that results in a band profile more close to PBE (see supplementary Fig.S1(d)) and a larger magnetic moment m). By spin-non-polarized DFT calculations,we obtain a DOS DNM(EF)=1.76 states/eV/atom at the Fermi level of non-magnetic (NM) Fe3GeTe2monolayer.Finally, the Stoner criterion, i.e., UDNM(EF)=1.36>1, is examined to establish. This criterion reveals that the ferromagnetism of Fe3GeTe2monolayer is spontaneous. To further consider the influence of magnetic anisotropy, SOC is added to the calculation of Hubbard U. For the magnetization angle θ =0?–90?,U =0.78–0.77 eV, which changes only by 1%.Thus,the SOC has little effect on the electron correlation. The magnetic anisotropy should arise from the energy difference of the crystal field acting on the itinerant electrons with different magnetization directions.

    To understand the formation of ferromagnetism in Fe3GeTe2, we further analyze the mechanism by the Stoner model. When a rigid band splitting ? happens in NM Fe3GeTe2(Fig.3(d)), the spin-up electron number n↑is then larger than the spin-down electron number n↓,for which their sum n↑+n↓=n should be a constant and equal to the total electron number. By the DOS of NM Fe3GeTe2, the electron numbers per Fe atom can be counted as

    Then we express the magnetic moment per atom as m0(?)=n↑?n↓, by which an inverse function ?=?(m0)can be obtained numerically. On the other hand,the band splitting ?is decided by the Hubbard model. On every Fe atom,the repulsion between spin-up and spin-down electrons in 3d orbitals leads to an energy difference of single quasiparticle,i.e.,

    Then the band splitting reads ?=U(n↑?n↓)=Um0.The above two equations,?=?(m0)and ?=U(n↑?n↓)=Um0,are plotted in Fig.3(d) with increasing m0. It can be seen that they have a trivial intersection m0=0 and a non-trivial intersection m0=1.9 which is close to the previous DFT calculation (m0=1.52). The above analysis provides an understanding of the spontaneous magnetization in Fe3GeTe2.

    Fig.3. (a) Spin-resolved band structure of Fe3GeTe2 monolayer without SOC. Red (blue) lines denote spin-up (spin-down) bands. (b)DOS of Fe3GeTe2 monolayer. (c)MAE of Fe3GeTe2 monolayer. (d)Band shift and the Stone criterion.

    5. Conclusion

    In this work, we attempt to unravel the origin of 2D ferromagnetism in Fe3GeTe2monolayer. By combining the theoretical model and DFT simulations,a physical picture is built to describe the magnetic interactions in 2D Fe3GeTe2. DFT calculations are employed to evaluate the Heisenberg coupling and magnetic anisotropy. The model reveals long-range ferromagnetic order in 2D systems should be maintained by magnetic anisotropy. The predicted Curie temperature agrees with a recent experiment. The Stoner model provides an insight into the spontaneous magnetization in Fe3GeTe2and results in a prediction close to DFT calculations. Our model is successful in understanding the magnetization mechanism in 2D Fe3GeTe2. In future studies, the model can be extended to other 2D systems.

    18禁在线无遮挡免费观看视频 | 嫩草影院精品99| 国产成人影院久久av| 色视频www国产| 亚洲av成人精品一区久久| 欧美激情久久久久久爽电影| 久久精品国产自在天天线| 噜噜噜噜噜久久久久久91| 欧美色视频一区免费| 一本精品99久久精品77| 国产老妇女一区| 3wmmmm亚洲av在线观看| 亚洲av第一区精品v没综合| 久久精品国产亚洲网站| 国产成人a∨麻豆精品| 美女 人体艺术 gogo| 国产成人a区在线观看| 免费av不卡在线播放| 亚洲成人精品中文字幕电影| 观看美女的网站| 秋霞在线观看毛片| 在线播放无遮挡| 欧美一区二区精品小视频在线| 精品乱码久久久久久99久播| 国内精品宾馆在线| 可以在线观看毛片的网站| 国产一级毛片七仙女欲春2| 99热网站在线观看| 亚洲欧美清纯卡通| 久久久精品大字幕| 国产精品综合久久久久久久免费| 色哟哟·www| 亚洲av免费高清在线观看| 精品人妻一区二区三区麻豆 | 露出奶头的视频| 人妻少妇偷人精品九色| 成人欧美大片| 神马国产精品三级电影在线观看| 舔av片在线| 狂野欧美白嫩少妇大欣赏| 欧美潮喷喷水| 久久精品人妻少妇| 午夜福利在线观看免费完整高清在 | 人妻夜夜爽99麻豆av| 99久久中文字幕三级久久日本| 亚洲高清免费不卡视频| 久久人妻av系列| 国产熟女欧美一区二区| 国产成年人精品一区二区| 性色avwww在线观看| 国产精品永久免费网站| 久久精品91蜜桃| 色吧在线观看| 好男人在线观看高清免费视频| 国产综合懂色| 日韩欧美 国产精品| 十八禁网站免费在线| 一本一本综合久久| 看片在线看免费视频| 日本免费一区二区三区高清不卡| 国产一区二区三区在线臀色熟女| 免费看日本二区| 搞女人的毛片| 国产精品av视频在线免费观看| 国产成人a∨麻豆精品| 亚洲美女搞黄在线观看 | 亚洲欧美日韩高清专用| 99热这里只有是精品50| 欧美一区二区精品小视频在线| 国产黄a三级三级三级人| 好男人在线观看高清免费视频| 大又大粗又爽又黄少妇毛片口| 色哟哟哟哟哟哟| 少妇的逼好多水| av女优亚洲男人天堂| 精品国内亚洲2022精品成人| 国产av在哪里看| 99九九线精品视频在线观看视频| 老司机福利观看| 国产白丝娇喘喷水9色精品| 亚洲美女视频黄频| 九九热线精品视视频播放| 午夜激情福利司机影院| 日韩,欧美,国产一区二区三区 | 久久久久久九九精品二区国产| 麻豆国产97在线/欧美| 久久精品夜色国产| 日韩,欧美,国产一区二区三区 | 最好的美女福利视频网| 18禁在线播放成人免费| 亚洲人成网站在线播| 免费无遮挡裸体视频| 国产伦精品一区二区三区视频9| 国产精品久久视频播放| 免费观看精品视频网站| 大型黄色视频在线免费观看| 国产高清有码在线观看视频| 99热这里只有精品一区| 亚洲第一区二区三区不卡| 日本精品一区二区三区蜜桃| 韩国av在线不卡| 亚洲国产日韩欧美精品在线观看| 91av网一区二区| 久久韩国三级中文字幕| 亚洲在线自拍视频| 老熟妇仑乱视频hdxx| 狂野欧美激情性xxxx在线观看| 久久久久性生活片| 成年版毛片免费区| 久久精品国产清高在天天线| 久99久视频精品免费| 欧美高清成人免费视频www| 亚洲乱码一区二区免费版| 日本a在线网址| 日本在线视频免费播放| 一进一出抽搐gif免费好疼| 欧美一区二区国产精品久久精品| 欧美另类亚洲清纯唯美| 国产一级毛片七仙女欲春2| 国产精品日韩av在线免费观看| 韩国av在线不卡| 日本熟妇午夜| 丰满人妻一区二区三区视频av| 老司机影院成人| 免费一级毛片在线播放高清视频| 18禁黄网站禁片免费观看直播| 国产成人a∨麻豆精品| 久久久a久久爽久久v久久| 麻豆久久精品国产亚洲av| 九九热线精品视视频播放| 一级av片app| 看十八女毛片水多多多| 精品久久久久久久久av| 老司机午夜福利在线观看视频| 看十八女毛片水多多多| 成年女人永久免费观看视频| 免费看av在线观看网站| 国产老妇女一区| 变态另类丝袜制服| 99久国产av精品| 在线观看66精品国产| 免费高清视频大片| 蜜桃亚洲精品一区二区三区| 亚洲一区二区三区色噜噜| 99在线人妻在线中文字幕| 国产视频内射| 国产视频一区二区在线看| 长腿黑丝高跟| 欧美极品一区二区三区四区| av在线蜜桃| 国产成人福利小说| 性色avwww在线观看| 亚洲不卡免费看| 天天一区二区日本电影三级| 日本精品一区二区三区蜜桃| 国产v大片淫在线免费观看| 三级男女做爰猛烈吃奶摸视频| 波多野结衣高清作品| 日本撒尿小便嘘嘘汇集6| 看免费成人av毛片| 国产一区二区亚洲精品在线观看| 精品99又大又爽又粗少妇毛片| 九九在线视频观看精品| 欧美性猛交╳xxx乱大交人| 免费黄网站久久成人精品| 九九在线视频观看精品| 我要搜黄色片| 国产 一区 欧美 日韩| 在线观看av片永久免费下载| 一区二区三区免费毛片| 午夜视频国产福利| 久久精品国产清高在天天线| 欧美3d第一页| 国产精品一区二区性色av| av在线天堂中文字幕| 精品99又大又爽又粗少妇毛片| 不卡一级毛片| 亚洲欧美日韩卡通动漫| 亚洲在线观看片| 亚洲激情五月婷婷啪啪| 国产成人a∨麻豆精品| 国产探花在线观看一区二区| 午夜a级毛片| 99久国产av精品国产电影| 18+在线观看网站| 国产不卡一卡二| 亚洲欧美日韩高清专用| 日韩国内少妇激情av| 久久久久久久久久黄片| 麻豆av噜噜一区二区三区| 免费av不卡在线播放| 国国产精品蜜臀av免费| 99久久成人亚洲精品观看| 国产爱豆传媒在线观看| 精品久久久久久久末码| 成人永久免费在线观看视频| 长腿黑丝高跟| 国产精品永久免费网站| 国产精品无大码| 一级毛片我不卡| 人人妻人人看人人澡| 久久婷婷人人爽人人干人人爱| 麻豆国产av国片精品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲熟妇熟女久久| 级片在线观看| 五月伊人婷婷丁香| 国产欧美日韩一区二区精品| 久久久久久久亚洲中文字幕| 色哟哟哟哟哟哟| 天堂√8在线中文| 美女高潮的动态| 久久精品91蜜桃| 超碰av人人做人人爽久久| 99久久成人亚洲精品观看| 久久久午夜欧美精品| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区 | 久久婷婷人人爽人人干人人爱| 欧美xxxx性猛交bbbb| 黄色日韩在线| 少妇裸体淫交视频免费看高清| 乱码一卡2卡4卡精品| 日本与韩国留学比较| 插阴视频在线观看视频| 久久久久国产精品人妻aⅴ院| 哪里可以看免费的av片| 国产91av在线免费观看| 神马国产精品三级电影在线观看| 高清日韩中文字幕在线| 极品教师在线视频| 国产爱豆传媒在线观看| 免费观看的影片在线观看| 一个人看视频在线观看www免费| 久久精品国产亚洲av香蕉五月| 最近在线观看免费完整版| 久久久欧美国产精品| 色在线成人网| 久久久久国内视频| 免费人成在线观看视频色| 国产精品福利在线免费观看| 美女内射精品一级片tv| 一级毛片aaaaaa免费看小| 日韩欧美精品v在线| 亚洲高清免费不卡视频| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 日本爱情动作片www.在线观看 | 午夜a级毛片| 久久天躁狠狠躁夜夜2o2o| 一本精品99久久精品77| 麻豆久久精品国产亚洲av| 丝袜美腿在线中文| 人人妻人人看人人澡| 久久中文看片网| 又爽又黄无遮挡网站| 国产高潮美女av| 久久午夜福利片| 91狼人影院| 长腿黑丝高跟| 99热这里只有是精品50| 久久精品国产清高在天天线| 国产久久久一区二区三区| 神马国产精品三级电影在线观看| 欧美zozozo另类| 日本在线视频免费播放| 色噜噜av男人的天堂激情| 亚洲五月天丁香| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美日韩无卡精品| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 亚洲av熟女| 免费av观看视频| 免费不卡的大黄色大毛片视频在线观看 | 看十八女毛片水多多多| 一区二区三区四区激情视频 | 亚洲精品日韩在线中文字幕 | 午夜精品国产一区二区电影 | aaaaa片日本免费| 国产探花极品一区二区| 九九久久精品国产亚洲av麻豆| 中文字幕精品亚洲无线码一区| 国产精品久久久久久久电影| 久久久久国内视频| 欧美最新免费一区二区三区| 嫩草影院新地址| 精品久久久久久久人妻蜜臀av| 免费不卡的大黄色大毛片视频在线观看 | 91久久精品电影网| 久久九九热精品免费| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 欧美最黄视频在线播放免费| 亚洲综合色惰| 精品久久久久久成人av| 亚洲精品成人久久久久久| 51国产日韩欧美| 日本-黄色视频高清免费观看| 国产成人a∨麻豆精品| 特级一级黄色大片| 我要搜黄色片| 国产精品亚洲美女久久久| 麻豆国产97在线/欧美| 观看免费一级毛片| 99热网站在线观看| 日韩欧美国产在线观看| 国产成人91sexporn| 成人亚洲精品av一区二区| 最好的美女福利视频网| 国产精品一二三区在线看| 精品人妻偷拍中文字幕| 国产淫片久久久久久久久| 在线观看免费视频日本深夜| 美女内射精品一级片tv| 黄色日韩在线| 久久天躁狠狠躁夜夜2o2o| 看免费成人av毛片| 欧美zozozo另类| 国产精品99久久久久久久久| 我要搜黄色片| 内射极品少妇av片p| 我要看日韩黄色一级片| 97超碰精品成人国产| 精品久久国产蜜桃| 国产精品野战在线观看| 国产一区二区激情短视频| 国产高清三级在线| 婷婷六月久久综合丁香| 国产av一区在线观看免费| 久久精品久久久久久噜噜老黄 | 可以在线观看的亚洲视频| 国产成人精品久久久久久| 午夜老司机福利剧场| 成年版毛片免费区| av在线播放精品| 国产精品亚洲美女久久久| 噜噜噜噜噜久久久久久91| 99久久精品一区二区三区| 欧美精品国产亚洲| 99精品在免费线老司机午夜| 亚洲精品粉嫩美女一区| av专区在线播放| 亚洲18禁久久av| 丝袜喷水一区| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 亚州av有码| 亚洲天堂国产精品一区在线| 精品乱码久久久久久99久播| 午夜精品一区二区三区免费看| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久末码| 伦理电影大哥的女人| 一个人免费在线观看电影| 亚洲精华国产精华液的使用体验 | 热99re8久久精品国产| ponron亚洲| 1024手机看黄色片| 免费在线观看影片大全网站| 亚洲国产色片| 精品人妻偷拍中文字幕| 久久人人爽人人片av| 久久欧美精品欧美久久欧美| 亚洲成a人片在线一区二区| 波多野结衣高清无吗| 国产黄色视频一区二区在线观看 | 在线观看免费视频日本深夜| 午夜福利视频1000在线观看| 日本黄大片高清| 男人和女人高潮做爰伦理| 亚洲中文字幕一区二区三区有码在线看| 午夜免费激情av| 高清午夜精品一区二区三区 | 日本一本二区三区精品| 亚洲自偷自拍三级| 一级毛片aaaaaa免费看小| 国产成人福利小说| 欧美高清成人免费视频www| 国产精品爽爽va在线观看网站| 久久久欧美国产精品| 中文字幕熟女人妻在线| 久久久久久久久久成人| 日日干狠狠操夜夜爽| 又黄又爽又免费观看的视频| 亚洲婷婷狠狠爱综合网| 99视频精品全部免费 在线| 一边摸一边抽搐一进一小说| 国产一级毛片七仙女欲春2| 日韩制服骚丝袜av| 免费黄网站久久成人精品| 国产伦精品一区二区三区视频9| 直男gayav资源| 菩萨蛮人人尽说江南好唐韦庄 | 插阴视频在线观看视频| 色哟哟哟哟哟哟| 久久九九热精品免费| av在线蜜桃| 国产精品一区www在线观看| 91午夜精品亚洲一区二区三区| 日日撸夜夜添| 久久精品国产鲁丝片午夜精品| 菩萨蛮人人尽说江南好唐韦庄 | 99久久无色码亚洲精品果冻| 国产亚洲精品久久久久久毛片| 性色avwww在线观看| 精品一区二区三区视频在线观看免费| 简卡轻食公司| 97碰自拍视频| 免费看av在线观看网站| 亚洲欧美成人综合另类久久久 | 国产v大片淫在线免费观看| 国产不卡一卡二| 国内久久婷婷六月综合欲色啪| 99热网站在线观看| 大又大粗又爽又黄少妇毛片口| 女生性感内裤真人,穿戴方法视频| 久久久久久久久中文| 美女xxoo啪啪120秒动态图| 伊人久久精品亚洲午夜| videossex国产| 免费观看在线日韩| 51国产日韩欧美| 最好的美女福利视频网| 精品99又大又爽又粗少妇毛片| 精品一区二区免费观看| 啦啦啦观看免费观看视频高清| 色哟哟·www| 尾随美女入室| 少妇猛男粗大的猛烈进出视频 | 久久久久久伊人网av| 99热这里只有是精品50| 麻豆国产97在线/欧美| 在线播放无遮挡| 亚洲七黄色美女视频| 免费av不卡在线播放| 免费观看的影片在线观看| 一区二区三区高清视频在线| 99热这里只有是精品在线观看| 久久人人精品亚洲av| 中文字幕免费在线视频6| 91麻豆精品激情在线观看国产| 黄色欧美视频在线观看| a级毛片a级免费在线| 欧美人与善性xxx| 久久韩国三级中文字幕| 亚洲中文字幕一区二区三区有码在线看| 国产精品一区www在线观看| 国产男靠女视频免费网站| 极品教师在线视频| 国产精品免费一区二区三区在线| 日韩一区二区视频免费看| 我要看日韩黄色一级片| 亚洲av五月六月丁香网| 99久国产av精品国产电影| 又粗又爽又猛毛片免费看| 日日摸夜夜添夜夜爱| 欧美人与善性xxx| 欧美成人a在线观看| 午夜福利在线观看免费完整高清在 | 欧美丝袜亚洲另类| 欧美bdsm另类| 国产色爽女视频免费观看| 久久久久久久午夜电影| 免费看光身美女| 一边摸一边抽搐一进一小说| 久久热精品热| 亚洲av不卡在线观看| 国产精品一及| a级一级毛片免费在线观看| 国产精品爽爽va在线观看网站| 久久久久久久久中文| 91在线观看av| 国产精品av视频在线免费观看| 99久国产av精品| 午夜福利18| 亚洲成a人片在线一区二区| 国产爱豆传媒在线观看| 亚洲国产精品成人久久小说 | 日韩av不卡免费在线播放| 麻豆成人午夜福利视频| 高清午夜精品一区二区三区 | 97热精品久久久久久| 日韩国内少妇激情av| 午夜亚洲福利在线播放| 伦精品一区二区三区| 亚洲高清免费不卡视频| 22中文网久久字幕| 国产精品久久久久久久久免| 99热只有精品国产| 欧美日本视频| 男女视频在线观看网站免费| av在线蜜桃| 欧美3d第一页| 丰满人妻一区二区三区视频av| 久久久久久久久中文| 亚洲aⅴ乱码一区二区在线播放| 成人特级黄色片久久久久久久| 午夜激情福利司机影院| 国产精品av视频在线免费观看| 精品国内亚洲2022精品成人| 亚洲av第一区精品v没综合| 亚洲人成网站在线播放欧美日韩| 国产麻豆成人av免费视频| 美女免费视频网站| 精品久久久久久久久久免费视频| 我要看日韩黄色一级片| 在线a可以看的网站| 国产麻豆成人av免费视频| 男人舔女人下体高潮全视频| 成人一区二区视频在线观看| a级毛片a级免费在线| 日韩欧美在线乱码| 欧美性猛交╳xxx乱大交人| 欧美+日韩+精品| 91久久精品国产一区二区成人| 色哟哟哟哟哟哟| 性欧美人与动物交配| 久久久久久久久大av| 久久久欧美国产精品| 国产精品久久久久久av不卡| 在线观看av片永久免费下载| 国产精品久久电影中文字幕| 国产一区二区亚洲精品在线观看| 老熟妇乱子伦视频在线观看| 熟女人妻精品中文字幕| 日韩精品有码人妻一区| 国产精品野战在线观看| 一个人观看的视频www高清免费观看| 国内精品美女久久久久久| 啦啦啦啦在线视频资源| 亚洲精品色激情综合| av在线亚洲专区| 最近手机中文字幕大全| 日韩欧美精品v在线| 亚洲av成人精品一区久久| 综合色丁香网| 午夜福利在线观看免费完整高清在 | 精品日产1卡2卡| 久久人人爽人人爽人人片va| 久久精品国产亚洲av涩爱 | 天堂网av新在线| 天美传媒精品一区二区| 三级国产精品欧美在线观看| 欧美成人免费av一区二区三区| 99在线人妻在线中文字幕| 久久久久国产精品人妻aⅴ院| 麻豆成人午夜福利视频| 午夜a级毛片| 成人精品一区二区免费| 一个人观看的视频www高清免费观看| 欧美一区二区精品小视频在线| 国产91av在线免费观看| 亚洲无线在线观看| 欧美区成人在线视频| 桃色一区二区三区在线观看| 日韩三级伦理在线观看| 一个人看视频在线观看www免费| 精品欧美国产一区二区三| 久久国产乱子免费精品| 成人一区二区视频在线观看| 卡戴珊不雅视频在线播放| 日韩人妻高清精品专区| 99久久成人亚洲精品观看| 国产精品精品国产色婷婷| 99视频精品全部免费 在线| 最新在线观看一区二区三区| 日韩欧美三级三区| 天天一区二区日本电影三级| 成人性生交大片免费视频hd| 男女做爰动态图高潮gif福利片| 亚洲人成网站在线观看播放| 日韩高清综合在线| 亚洲美女黄片视频| 中文字幕久久专区| 天天躁日日操中文字幕| 日韩精品青青久久久久久| 亚洲第一电影网av| 听说在线观看完整版免费高清| 成年女人看的毛片在线观看| 免费看日本二区| 麻豆国产97在线/欧美| 欧美最新免费一区二区三区| 成年免费大片在线观看| 日韩三级伦理在线观看| 大香蕉久久网| 一级黄片播放器| 黑人高潮一二区| 久久鲁丝午夜福利片| 最近2019中文字幕mv第一页| 欧美性猛交黑人性爽| 插逼视频在线观看| 99久国产av精品| 欧美一区二区国产精品久久精品| 九九在线视频观看精品| 91精品国产九色| 色综合站精品国产| 国产视频一区二区在线看| 久久草成人影院| 色综合站精品国产| 欧美三级亚洲精品| 女的被弄到高潮叫床怎么办| a级毛片免费高清观看在线播放| 你懂的网址亚洲精品在线观看 | 别揉我奶头~嗯~啊~动态视频| 国内揄拍国产精品人妻在线| 97超碰精品成人国产| 国产精品嫩草影院av在线观看| 少妇被粗大猛烈的视频| 人人妻人人看人人澡| 亚洲最大成人手机在线| 成人国产麻豆网| 欧美日韩国产亚洲二区| 久久久国产成人免费| 免费av毛片视频|