• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nodal superconducting gap in LiFeP revealed by NMR:Contrast with LiFeAs*

    2021-05-06 08:54:24Fang房愛芳Zhou周睿TukadaYang楊杰Deng鄧正Wang望賢成Jin靳常青andGuoQingZheng鄭國慶
    Chinese Physics B 2021年4期
    關(guān)鍵詞:楊杰常青

    A F Fang(房愛芳), R Zhou(周睿), H Tukada, J Yang(楊杰), Z Deng(鄧正),X C Wang(望賢成), C Q Jin(靳常青), and Guo-Qing Zheng(鄭國慶),

    1Department of Physics,Beijing Normal University,Beijing 100875,China

    2Institute of Physics,Chinese Academy of Sciences,and Beijing National Laboratory for Condensed Matter Physics,Beijing 100190,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4Department of Physics,Okayama University,Okayama 700-8530,Japan

    Keywords: iron-based superconductor,nuclear magnetic resonance,superconducting pairing symmetry,spin fluctuations

    1. Introduction

    As the second class of high-temperature superconductors, iron-based superconductors were discovered more than one decade ago.[1]But its superconducting pairing mechanism is still unclear. The phase diagram of iron-pnictides is very similar to that of the cuprates high-temperature superconductor family.[2]Antiferromagnetism and nematic orders exist around the superconducting dome and both compete with superconductivity in these two families.[3]Therefore both spin and nematic fluctuations are suggested to be candidates for the glue of the superconducting pairing.[4]Although,the symmetry of the superconducting gap in cuprates is believed to be d-wave,[5,6]the situation is more complicated for iron-pnictides. Firstly, there are multiple superconducting gaps as first evidenced by the spin-lattice relaxation rate and the Knight shift,[7]instead of a single superconducting energy gap in cuprates. Secondly,the gap symmetry is different in different iron-based families. In FeAs-based superconductors,the superconducting gap is found to be isotropic and fully-opened.[8–11]But for P-doped BaFe2As2which is equivalently doped,previous studies suggest the existence of nodes in the superconducting gaps.[12,13]If As is completely substituted by P,the pnictogen height above the iron plane will become smaller,which is suggested to be an important factor in the theory based on spin fluctuations.[14]Therefore,clarifying the uniqueness of FeP-based superconductor can shed lights on the mechanism of superconduting pairing in iron-pnictides.

    LiFeP is a superconducting material with transition temperature Tc~4.2 K.[15]Its crystal structure is identical to that of LiFeAs(Tc~18 K),[16]but the height of the P site is much lower than that of As. Previous tunnel diode oscillator(TDO)measurements found that the London penetration depth shows a flat temperature dependence in LiFeAs but a linear temperature dependence in LiFeP,suggesting nodeless and nodal superconducting gaps,respectively.[17]However,TDO measurement is only sensitive to the change of penetration depth on the surface of the sample which can be affected by disorder or lattice distortion from the surface. Until now,no bulk measurement on λLhas been done. NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state, from which λLof the bulk sample can be directly deduced.[18,19]Besides the properties of the superconducting state, the electron correlations in the normal state of LiFeP are also of interest. In most iron-based superconductors, strong spin fluctuations have been observed,[11,20–22]and quantum critical point related to the magnetic order is suggested inside the superconducting dome.[19,23]Unlike these compounds, a previous NMR study at B0=4.65 T has suggested that low-energy spin fluctuations are very weak in LiFeP.[24]However, for spinlattice relaxation rate 1/T1measurement,the NMR frequency,which is related to the energy of spin fluctuations, can play an important role. Therefore,1/T1measurements at different fields are needed in order to investigate intrinsic spin fluctuations.

    In this work,we investigate the superconducting gap symmetry of LiFeP and LiFeAs by detailed NMR studies of London penetration depth λL. Nodal superconductivity is revealed in LiFeP while LiFeAs is found to be a nodeless superconductor. For LiFeP,strong spin fluctuations with diffusive characteristics are found by spin-lattice relaxation measurements,which is similar to some cuprate superconductors.

    2. Experiment

    The LiFeAs single crystal and LiFeP polycrystal samples were grown by the solid-state reaction and the self-flux methods,respectively.[15,16]The75As spectra were obtained by integrating the spin echo as a function of frequency at 7.5 T.The31P-NMR spectra were obtained by fast Fourier transform of the spin echo. The pulse width is only 5 μs in order to cover the full spectrum. The T1was measured by using the saturation-recovery method,and obtained by a good fitting of the nuclear magnetization to 1 ?M(t)=M0e1?t/T1,where M(t)is the nuclear magnetization at time t after the single saturation pulse and M0is the nuclear magnetization at thermal equilibrium.

    3. Results and discussion

    3.1. London penetration depth in LiFeP: contrast with LiFeAs

    Figure 1(a) shows the75As-NMR central line at various temperatures, which can be well fitted by a single Lorentz function. By cooling down into the superconducting state,the NMR line shifts to lower frequency and broadens almost symmetrically. In the vortex state, the magnetic field B0penetrates into a sample in the unit of quantized flux φ0=2.07×10?15T·m2, thus the field becomes inhomogeneous,leading to the observed broadening in Fig.1(a). The shift of the spectrum is due to the singlet pairing and diamagnetism from the vortex-lattice formation. For Bc1?B0?Bc2,where Bc1and Bc2are the lower and upper critical fields,respectively,the field distribution ?B can be written as[25]which can be detected by the NMR spectrum broadening?f = γn?B , where γnis the gyromagnetic ratio. In both normal state and superconducting state, the spectra can be well fitted by a single Lorentz function. Theoretically, the NMR lineshape in the superconducting state should be asymmetric due to inhomogeneous distribution of the magnetic field. However, the shape we observed is rather symmetric, which is in agreement with the previous NMR study on NaFe1?xCoxAs.[18,19]This might be because the vortex-cores have small random displacements from triangular lattice in a 2D layered system when the correlation between different layers is small. Such displacements will broaden the effective core radius and truncate the high-field tail in the field distribution. Then the line will become more symmetric,like the case in Bi2Sr2CaCu2O8+δ.[26]This can explain why the broadening in LiFeAs is rather symmetric,since iron-based superconductors are also quite 2D.

    Fig.1. (a) 75As-NMR spectra of LiFeAs at various temperatures with magnetic field B0 =7.5 T applied along c-axis. The spectra are fitted by a single Lorentz function. (b) Temperature dependence of the line broadening ?f and London penetration depth λ?2L of LiFeAs. The black dashed curve represents the variation with temperature expected for a conventional s-wave superconductor.[27] The red solid curve represents the simulation by the two-gaps model described in the text.

    The full width at half maximum (FWHM) of a convolution of two Lorentzian functions is the sum of individual FWHMs, so the broadening can be obtained by simply subtracting the T-independent width above Tc, ?f =FWHM(T)?FWHM(T >Tc). In Fig.1(b), we summarize the temperature dependence of ?f and λ?2Lwhich start to saturate below T ~0.2Tc.By using Eq.(1),λL(T →0)=185 nm is calculated,which is consistent with the result,λL=210 nm,obtained by small-angle neutron scattering(SANS).[28]In the London theory, λL?2is proportional to the superconducting carrier density nsas[29]

    where m*is the effective mass of the carriers. When the superconducting correlation length is much smaller than λL,the superconducting carrier density nscan be expressed as[29]

    where ?is the zero temperature value of the superconducting energy gap, and kBis the Boltzmann constant. One can immediately see that λ?2Lshould be nearly temperature independent at low temperatures(T<0.4Tc)for a conventional s-wave superconductor,[27]as shown by the dashed line in Fig.1(b)which is distinct from our results. We therefore simulate our results by assuming two s-wave gaps,?1and ?2. If the contribution to the superfluid density for ?1is α,then it will be 1?α for ?2. The total superfluid density ntotis αns1+(1 ?α)ns2.From Eq.(3), the superfluid density can be further expressed as[29]

    By this way, we simulate the temperature dependence of ?f as shown in Fig.1(b). The parameters ?1=1.2kBTc, ?2=2.8kBTc, and α =0.85 are obtained. The two-gaps feature in the superconducting state was also demonstrated by previous spin-lattice relaxation measurements,[30]in which a‘knee’behavior was observed in temperature-dependent 1/T1.From the fitting by two s-wave gaps,?1=1.3kBTcand ?2=3.0kBTc[30]are obtained,which are in good agreement with the present results. We also note that ?1=1.6kBTcof hole-like Fermi surfaces and ?2=2.3kBTcof electron-like Fermi surfaces were observed by a previous ARPES study in LiFeAs,[31]which are also consistent with our results. Furthermore, the holelike Fermi surfaces were found to be larger than the electronlike Fermi surfaces,[31]which is in agreement with our simulation that α is larger than 0.5. This means that the main contribution to the quasi-particles in the superconducting state is from the smaller superconducting energy gap ?1that is of hole-like Fermi surfaces. Namely, the superconducting energy gap on hole-like Fermi surfaces is smaller than the gap on electron-like surfaces. This is in contrast to the situation in the BaFe2As2family where the superconduting energy gap on hole-like Fermi surfaces is larger.[9]It implies that the pairing mechanism in LiFeAs is indeed unique.[32]More theoretical studies in this regard are needed in the future.

    Figure 2(a) shows the temperature dependence of the resonance frequency of the NMR coil at various magnetic fields. The superconducting transition temperature Tcof the sample is found to be around 4.2 K at zero field, which is similar to an earlier report determined by DC susceptibility measurements.[15]Figure 2(b)shows the NMR spectrum measured at T =4.2 K by sweeping the magnetic field. We note that only one peak is observed for both31P and7Li nuclei.The total Hamiltonian for the nuclei with spin I can be expressed as[33]

    where K is the Knight shift, eq is the electric field gradient(EFG)along the principle axis z,Q is the nuclear quadrupole moment,and θ is the angle between the magnetic field and the principle axis of the EFG.For31P with I=1/2,only one peak is expected. For7Li with I =3/2, the NMR spectra should contain three lines. The fact that only one peak can be observed in our measurement is probably because the nuclear quadrupole moment Q of7Li is very small[34,35]and the central and satellite lines overlap.

    Fig.2. (a)Temperature dependence of AC susceptibility of LiFeP at various fields. (b)NMR spectrum of LiFeP obtained by sweeping the magnetic fields at 4.2 K.The solid curve is fitted by two Lorentz functions.

    Fig.3. (a) 31P-NMR spectra of LiFeP at various temperatures with B0=0.15 T.The spectra above T =1.2 K are fitted by a single Gaussian function,while the spectra below T =1.2 K are fitted by two Gaussian functions. The left peak (shaded area) is from 7Li nuclei (see text for detail).

    Fig.4. Temperature-dependent line broadening ?f and the London penetration depth λ?2L of LiFeP. The red solid curve is the theoretical calculation based on a d-wave model.[36]

    3.2. Spin fluctuations in LiFeP

    In most iron-pnictides, spin fluctuations have been observed in the normal state and considered as a possible glue for cooper pairs.[11,20–22]However,in both LiFeP and LiFeAs,previous spin-lattice relaxation rate 1/T1measurements show that spin correlations are rather weak.[24,30]For LiFeAs,1/T1was measured at both zero and high fields,[30,37]indicating that the spin correlations are indeed very weak at low energies. This is consistent with the ARPES study which shows that the electron and hole pockets are mismatched, leading to the bad nesting of the Fermi surfaces and then weak spin fluctutions.[37]However, for LiFeP, 1/T1was measured only at 4.65 T.[24]In order to obtain the complete information about spin dynamics, we measure 1/T1at various fields as shown in Fig.5. At 7 T, the spin-lattice relaxation rate divided by temperature,1/T1T,is indeed nearly temperature independent. With decreasing field,1/T1T starts to increase below T ~10 K. At 0.15 T, a strong enhancement of 1/T1T is clearly observed even in the superconducting state,indicating that spin correlations become much stronger at very low energies. In La2?xSrxCuO4, 1/T1T also shows an enhancement with cooling in the superconducting state, which is related to the spin glass transition.[38]In such case, spin correlations should be further enhanced at higher magnetic fields due to the suppression of superconductivity. It means that 1/T1T should have a stronger temperature dependence at higher fields, in contrast to the observation in LiFeP.

    Fig.5. Temperature evolution of 1/T1T of LiFeP at various fields. The arrows mark the onsets of superconducting transition Tc under respective fields. The error bar for 1/T1T is the s.d. in fitting the nuclear magnetization recovery curve and is smaller than the symbol size.

    Fig.6. (a)1/T1T as a function of. The solid curves are the linear fittings of 1/T1T to. (b) 1/T1T as a function of the NMR frequency f0. The solid curves indicate 1/T1T ∝?ln(f). The error bar is smaller than the symbol size.

    In Fig.6(a), we plot the value of 1/T1T measured at 1.5 K and 4.2 K as a function of f0?1/2. The 1/T1T appears to be proportional to f0?1/2, which is a typical behavior of the electronic spin diffusion in one-dimensional (1D)systems.[39]The possibility of two-dimensional(2D)spin diffusion where 1/T1T ∝?ln(f) can not be fully excluded as shown in Fig.6(b), although the fitting for 2D is not as good as the 1D situation. In a cuprate compound Tl2Ba2CuOy,1/T1T ∝?ln(f), which is related to 2D spin diffusion, was found above Tc.[40]In any cases, our results clearly indicate that spin correlations in LiFeP have a diffusion characteristic,meaning that the spin correlation function has an anomalously large contribution at long time. Similar behavior has also been observed in La0.87Ca0.13FePO, but only inside the superconducting state and was suggested to be originated from a spintriplet symmetry of superconducting state.[41,42]In our study,however,we find that the diffusive fluctuations exist far above Tcin the normal state of LiFeP, indicating that they are irrelevant to superconductivity. To the best of our knowledge,the nature of spin diffusion behavior in cuprate superconductors is still unclear,although this behavior has been discovered more than two decades. Thus we hope that our work will draw more theoretical attention for this issue.

    4. Conclusion

    In summary,we investigate the superconducting gap symmetry of LiFeP and LiFeAs by London penetration depth λLmeasurements. In LiFeAs, λLis found to saturate below T ~0.2Tc,meaning that the superconducting gap is fully opened. The temperature dependence of λLis analyzed by a two-gaps model and the two superconducting gaps of LiFeAs are acquired as ?1=1.2kBTcand ?2=2.8kBTc. In contrast,we find that λLdoes not show any saturation with decreasing temperature down to T ~0.03Tcin LiFeP. This indicates the existence of nodes in the superconducting energy gap function of LiFeP.Finally,we perform spin-lattice relaxation measurements at various fields in LiFeP.1/T1T is nearly temperature independent at 7 T,but is strongly enhanced at low fields below T =10 K, suggesting that the spin correlation is enhanced at very low energies. We further find that 1/T1T is proportional to f?1/2, indicating that spin fluctuations have a 1D diffusive characteristic. Such behavior was also observed in some cuprate high-Tcsuperconductors,while its origin still needs more studies.

    Acknowledgment

    We thank S. Kawasaki and K. Matano for assistance in some of the measurements and helpful discussions.

    猜你喜歡
    楊杰常青
    Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
    退!退!退!“退堂鼓專家”喜提高考作文題
    如此取暖!
    裝病的老爸
    三月三(2015年2期)2015-02-05 16:35:49
    神奇的菜
    三月三(2014年3期)2014-03-13 11:29:08
    又是酒駕釀的禍!
    這種“親熱”要不得!
    欲速則不達(dá)
    山東農(nóng)機(jī)化(2013年1期)2013-09-05 02:19:26
    奇殺
    小小說月刊(2013年3期)2013-05-14 14:55:17
    亚洲av不卡在线观看| 男女午夜视频在线观看| 亚洲激情在线av| 听说在线观看完整版免费高清| 亚洲成av人片免费观看| 国产精品 欧美亚洲| 国产亚洲精品av在线| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻丝袜一区二区| 青草久久国产| xxx96com| 亚洲电影在线观看av| 男女下面进入的视频免费午夜| АⅤ资源中文在线天堂| 久久午夜亚洲精品久久| 国产成人a区在线观看| h日本视频在线播放| 久久久久亚洲av毛片大全| 亚洲熟妇中文字幕五十中出| 一本一本综合久久| 国产aⅴ精品一区二区三区波| 国产探花极品一区二区| 国产男靠女视频免费网站| 国产精品一及| 一区二区三区免费毛片| 国产 一区 欧美 日韩| 婷婷亚洲欧美| 午夜a级毛片| 亚洲av一区综合| 非洲黑人性xxxx精品又粗又长| 国产精品电影一区二区三区| 国产爱豆传媒在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲av免费高清在线观看| 久久伊人香网站| 搞女人的毛片| www日本黄色视频网| 久久久精品欧美日韩精品| av女优亚洲男人天堂| 久久久久久久亚洲中文字幕 | avwww免费| 我要搜黄色片| 内地一区二区视频在线| 黄色成人免费大全| 亚洲激情在线av| 国产高清有码在线观看视频| 国产成人影院久久av| 欧美xxxx黑人xx丫x性爽| 禁无遮挡网站| 日韩亚洲欧美综合| 亚洲人与动物交配视频| 国产真实乱freesex| 欧美色欧美亚洲另类二区| 婷婷丁香在线五月| 欧美一区二区亚洲| 欧美性猛交黑人性爽| 国产精品爽爽va在线观看网站| 欧美黑人欧美精品刺激| 五月伊人婷婷丁香| 搡女人真爽免费视频火全软件 | 看片在线看免费视频| 亚洲男人的天堂狠狠| 日本一本二区三区精品| 在线国产一区二区在线| 婷婷亚洲欧美| 麻豆久久精品国产亚洲av| 国产精品电影一区二区三区| 人妻丰满熟妇av一区二区三区| 午夜视频国产福利| 天天一区二区日本电影三级| 国产视频一区二区在线看| 老汉色∧v一级毛片| 日韩精品青青久久久久久| 啦啦啦免费观看视频1| 亚洲午夜理论影院| 757午夜福利合集在线观看| 国产亚洲精品久久久久久毛片| 国产爱豆传媒在线观看| 一区福利在线观看| 香蕉av资源在线| 一个人观看的视频www高清免费观看| 色视频www国产| 在线观看舔阴道视频| 欧美又色又爽又黄视频| 搡女人真爽免费视频火全软件 | 国产乱人视频| av国产免费在线观看| 国产高清视频在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 天美传媒精品一区二区| 十八禁人妻一区二区| 欧美日韩福利视频一区二区| 免费看日本二区| 国产aⅴ精品一区二区三区波| 99久久99久久久精品蜜桃| 白带黄色成豆腐渣| 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器| 好看av亚洲va欧美ⅴa在| 日本与韩国留学比较| 少妇裸体淫交视频免费看高清| 亚洲成a人片在线一区二区| 午夜日韩欧美国产| 国产一区二区在线观看日韩 | 日韩欧美在线乱码| 欧美在线黄色| 久久久久九九精品影院| 人人妻人人看人人澡| 国产精品影院久久| 超碰av人人做人人爽久久 | 91字幕亚洲| 成人特级av手机在线观看| 美女 人体艺术 gogo| 成人精品一区二区免费| 美女免费视频网站| 日本 欧美在线| 亚洲天堂国产精品一区在线| 精品人妻偷拍中文字幕| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 国产亚洲精品久久久久久毛片| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 婷婷亚洲欧美| 国产蜜桃级精品一区二区三区| 亚洲精品久久国产高清桃花| 真实男女啪啪啪动态图| 亚洲不卡免费看| 免费在线观看亚洲国产| 给我免费播放毛片高清在线观看| 可以在线观看的亚洲视频| 亚洲精品456在线播放app | 少妇裸体淫交视频免费看高清| 亚洲精品久久国产高清桃花| 免费在线观看亚洲国产| 国产在视频线在精品| 国产亚洲精品综合一区在线观看| 免费无遮挡裸体视频| 日韩精品青青久久久久久| 色综合亚洲欧美另类图片| 免费大片18禁| 男人和女人高潮做爰伦理| 国产成人a区在线观看| 精品国产亚洲在线| 深爱激情五月婷婷| 久久伊人香网站| 亚洲中文字幕日韩| 午夜福利免费观看在线| 免费看日本二区| 国产乱人伦免费视频| 亚洲激情在线av| 好男人在线观看高清免费视频| 99久久精品一区二区三区| 午夜福利在线在线| 嫩草影院入口| 国产激情偷乱视频一区二区| 亚洲成人中文字幕在线播放| 午夜免费激情av| 国产成人av激情在线播放| 国产精品综合久久久久久久免费| www.色视频.com| 日韩欧美免费精品| 久久久国产精品麻豆| 欧美性感艳星| 一夜夜www| 真人一进一出gif抽搐免费| 精品久久久久久成人av| 一区二区三区国产精品乱码| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品在线观看二区| 亚洲精品色激情综合| 欧美黑人巨大hd| 午夜精品久久久久久毛片777| 三级毛片av免费| 在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 国产精品av视频在线免费观看| 国产精品女同一区二区软件 | 在线国产一区二区在线| 久久精品影院6| 欧美激情在线99| 亚洲人与动物交配视频| 亚洲人成网站高清观看| 99久久九九国产精品国产免费| 亚洲真实伦在线观看| 99在线人妻在线中文字幕| 日本 欧美在线| 久久精品国产99精品国产亚洲性色| 免费观看精品视频网站| 小说图片视频综合网站| 18禁国产床啪视频网站| 日本撒尿小便嘘嘘汇集6| 757午夜福利合集在线观看| 国产精品,欧美在线| 久99久视频精品免费| 内射极品少妇av片p| 国产高清激情床上av| 午夜福利在线观看吧| 99精品在免费线老司机午夜| 搡女人真爽免费视频火全软件 | 日韩国内少妇激情av| 九九久久精品国产亚洲av麻豆| 国产亚洲av嫩草精品影院| 国产探花在线观看一区二区| 成人三级黄色视频| 日本a在线网址| 可以在线观看的亚洲视频| 国产aⅴ精品一区二区三区波| 757午夜福利合集在线观看| 波多野结衣高清无吗| 深夜精品福利| 欧美乱妇无乱码| av黄色大香蕉| 亚洲专区国产一区二区| 国产主播在线观看一区二区| 色播亚洲综合网| 老司机午夜十八禁免费视频| 国产亚洲精品综合一区在线观看| 欧美日本亚洲视频在线播放| 香蕉丝袜av| 三级毛片av免费| 免费在线观看日本一区| 亚洲 国产 在线| 少妇的逼好多水| 嫁个100分男人电影在线观看| 校园春色视频在线观看| 小说图片视频综合网站| 中文字幕人妻丝袜一区二区| 久久久国产成人免费| 国产成+人综合+亚洲专区| 深夜精品福利| 丰满人妻熟妇乱又伦精品不卡| 男人舔奶头视频| 国产精品久久视频播放| 亚洲va日本ⅴa欧美va伊人久久| 十八禁网站免费在线| 首页视频小说图片口味搜索| 日本免费一区二区三区高清不卡| 午夜福利视频1000在线观看| 岛国在线观看网站| 18禁在线播放成人免费| 精品国内亚洲2022精品成人| 国产欧美日韩一区二区三| 在线观看免费午夜福利视频| 熟女电影av网| 69av精品久久久久久| 亚洲av中文字字幕乱码综合| 国产精品免费一区二区三区在线| 国产69精品久久久久777片| 久久精品91蜜桃| 亚洲av第一区精品v没综合| 国产探花在线观看一区二区| 宅男免费午夜| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 很黄的视频免费| 又紧又爽又黄一区二区| 欧美激情在线99| 波多野结衣巨乳人妻| 精品国产美女av久久久久小说| 99久久精品国产亚洲精品| 全区人妻精品视频| 男女视频在线观看网站免费| 又黄又粗又硬又大视频| 精品久久久久久久毛片微露脸| 99久久成人亚洲精品观看| 99国产极品粉嫩在线观看| 男人的好看免费观看在线视频| 亚洲一区二区三区不卡视频| 国产一区二区激情短视频| 国产高清videossex| 在线视频色国产色| 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 长腿黑丝高跟| 国产精品永久免费网站| 亚洲成人精品中文字幕电影| 免费在线观看成人毛片| 日韩欧美 国产精品| 免费搜索国产男女视频| 成人高潮视频无遮挡免费网站| 国产成人福利小说| 夜夜躁狠狠躁天天躁| 精品国产三级普通话版| 免费看日本二区| 91字幕亚洲| 午夜福利视频1000在线观看| 在线观看免费视频日本深夜| 亚洲国产精品成人综合色| 人人妻人人看人人澡| 日本精品一区二区三区蜜桃| 国产av一区在线观看免费| 日本与韩国留学比较| av女优亚洲男人天堂| 欧美日韩综合久久久久久 | 精品久久久久久,| 亚洲成人久久爱视频| 亚洲中文字幕日韩| 最后的刺客免费高清国语| 成人高潮视频无遮挡免费网站| 国产精品爽爽va在线观看网站| 天堂网av新在线| 男人舔女人下体高潮全视频| 欧美成人免费av一区二区三区| 国产精品久久久久久亚洲av鲁大| 可以在线观看的亚洲视频| 欧美绝顶高潮抽搐喷水| 国产蜜桃级精品一区二区三区| 最近最新免费中文字幕在线| 尤物成人国产欧美一区二区三区| 国产精品1区2区在线观看.| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 国产精品电影一区二区三区| 人人妻人人澡欧美一区二区| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 一区二区三区激情视频| 国产一区二区在线av高清观看| 最新在线观看一区二区三区| 成年版毛片免费区| 国产欧美日韩一区二区三| av女优亚洲男人天堂| 又黄又粗又硬又大视频| 免费av毛片视频| 99精品久久久久人妻精品| 亚洲成av人片在线播放无| 一二三四社区在线视频社区8| 国产真实乱freesex| 国产老妇女一区| 一个人观看的视频www高清免费观看| 搡老熟女国产l中国老女人| 国产一区二区在线av高清观看| 国产综合懂色| 午夜免费观看网址| 制服人妻中文乱码| 香蕉av资源在线| 日本三级黄在线观看| 亚洲精品成人久久久久久| 美女高潮的动态| 亚洲精品亚洲一区二区| 精品无人区乱码1区二区| 国产爱豆传媒在线观看| 日韩有码中文字幕| 国产免费一级a男人的天堂| 成人无遮挡网站| 欧美日韩精品网址| 老鸭窝网址在线观看| 伊人久久精品亚洲午夜| av视频在线观看入口| 国产熟女xx| 久久久久久大精品| 小蜜桃在线观看免费完整版高清| 亚洲av电影在线进入| 成人精品一区二区免费| a级毛片a级免费在线| a级一级毛片免费在线观看| 99精品欧美一区二区三区四区| 亚洲第一电影网av| 国产91精品成人一区二区三区| 国产久久久一区二区三区| avwww免费| 欧美另类亚洲清纯唯美| av国产免费在线观看| 老司机午夜福利在线观看视频| 久久国产乱子伦精品免费另类| 精品无人区乱码1区二区| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 村上凉子中文字幕在线| 首页视频小说图片口味搜索| www日本黄色视频网| 99久久综合精品五月天人人| 一区福利在线观看| 国产av一区在线观看免费| 黄色女人牲交| 日韩欧美在线二视频| 中文字幕av成人在线电影| 最近最新免费中文字幕在线| 九九在线视频观看精品| 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 久久精品影院6| 啦啦啦韩国在线观看视频| 中文字幕人妻丝袜一区二区| 国产欧美日韩精品一区二区| 欧美一区二区国产精品久久精品| 9191精品国产免费久久| 天美传媒精品一区二区| 白带黄色成豆腐渣| 性色avwww在线观看| 国产精品久久久久久久电影 | 又粗又爽又猛毛片免费看| 黄色片一级片一级黄色片| 欧美一区二区精品小视频在线| 熟女人妻精品中文字幕| 女人高潮潮喷娇喘18禁视频| 91麻豆av在线| 日韩欧美一区二区三区在线观看| 国产综合懂色| 哪里可以看免费的av片| 国产激情偷乱视频一区二区| 极品教师在线免费播放| 久久久久国产精品人妻aⅴ院| 狠狠狠狠99中文字幕| 国产探花极品一区二区| 男女视频在线观看网站免费| 熟女电影av网| 99精品久久久久人妻精品| 大型黄色视频在线免费观看| 国产69精品久久久久777片| 亚洲精品日韩av片在线观看 | 亚洲真实伦在线观看| 亚洲一区高清亚洲精品| av欧美777| 国产成人啪精品午夜网站| 男女下面进入的视频免费午夜| 日韩欧美在线二视频| 国产欧美日韩一区二区三| 国产高清三级在线| 少妇的逼好多水| 小蜜桃在线观看免费完整版高清| 制服丝袜大香蕉在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲aⅴ乱码一区二区在线播放| 国产黄片美女视频| 日本一二三区视频观看| 每晚都被弄得嗷嗷叫到高潮| aaaaa片日本免费| 亚洲乱码一区二区免费版| 99久久综合精品五月天人人| av在线天堂中文字幕| 亚洲无线观看免费| 岛国在线免费视频观看| 九九在线视频观看精品| 亚洲人成电影免费在线| 国产午夜精品久久久久久一区二区三区 | 国产综合懂色| 女生性感内裤真人,穿戴方法视频| 亚洲中文日韩欧美视频| 亚洲七黄色美女视频| 一个人看的www免费观看视频| 俺也久久电影网| 老汉色∧v一级毛片| 51国产日韩欧美| 人人妻人人澡欧美一区二区| 蜜桃久久精品国产亚洲av| 精品国产三级普通话版| 亚洲在线观看片| 欧美性猛交黑人性爽| 欧美+日韩+精品| 母亲3免费完整高清在线观看| 小说图片视频综合网站| 日韩有码中文字幕| 欧美av亚洲av综合av国产av| 日本三级黄在线观看| 国产高清激情床上av| 九色国产91popny在线| 有码 亚洲区| 欧美日韩国产亚洲二区| 日韩av在线大香蕉| 一区二区三区激情视频| 非洲黑人性xxxx精品又粗又长| 美女大奶头视频| 色尼玛亚洲综合影院| 欧美黑人欧美精品刺激| 在线播放无遮挡| 亚洲av熟女| 全区人妻精品视频| 精品无人区乱码1区二区| 精华霜和精华液先用哪个| 国产高清videossex| 99在线人妻在线中文字幕| 国产熟女xx| 夜夜爽天天搞| 欧美日韩黄片免| 免费在线观看亚洲国产| 搡女人真爽免费视频火全软件 | 亚洲片人在线观看| 久久久久久久亚洲中文字幕 | 很黄的视频免费| 国产不卡一卡二| 真实男女啪啪啪动态图| 中文字幕熟女人妻在线| 国语自产精品视频在线第100页| 久久午夜亚洲精品久久| 国产野战对白在线观看| 久久久久精品国产欧美久久久| 国内揄拍国产精品人妻在线| 亚洲avbb在线观看| 亚洲欧美日韩无卡精品| 在线免费观看不下载黄p国产 | 观看免费一级毛片| 亚洲精品国产精品久久久不卡| 亚洲国产日韩欧美精品在线观看 | 色哟哟哟哟哟哟| 中文字幕精品亚洲无线码一区| 亚洲国产精品sss在线观看| 天堂影院成人在线观看| 淫秽高清视频在线观看| 亚洲av二区三区四区| 午夜精品久久久久久毛片777| 午夜福利18| 中文字幕人妻熟人妻熟丝袜美 | 国产精品国产高清国产av| 亚洲成av人片免费观看| 国产午夜精品久久久久久一区二区三区 | 搞女人的毛片| 亚洲五月婷婷丁香| 日韩欧美国产一区二区入口| 国产久久久一区二区三区| 九色成人免费人妻av| 天天一区二区日本电影三级| 久久午夜亚洲精品久久| 欧美av亚洲av综合av国产av| xxx96com| 少妇人妻一区二区三区视频| 黑人欧美特级aaaaaa片| 国内毛片毛片毛片毛片毛片| 欧美日韩精品网址| 国产美女午夜福利| 久久亚洲精品不卡| 国产激情偷乱视频一区二区| 91久久精品国产一区二区成人 | 日韩欧美精品免费久久 | 一个人免费在线观看的高清视频| 老司机深夜福利视频在线观看| 午夜福利视频1000在线观看| 国产野战对白在线观看| 真实男女啪啪啪动态图| 我要搜黄色片| 精品国产超薄肉色丝袜足j| 色视频www国产| 美女黄网站色视频| 好看av亚洲va欧美ⅴa在| a在线观看视频网站| 亚洲精品亚洲一区二区| 国产av一区在线观看免费| 综合色av麻豆| 欧美日韩综合久久久久久 | 嫩草影院精品99| 日本成人三级电影网站| 在线看三级毛片| 国产私拍福利视频在线观看| 国产亚洲精品一区二区www| 黄片大片在线免费观看| 婷婷精品国产亚洲av在线| www.熟女人妻精品国产| or卡值多少钱| 熟女电影av网| 欧美中文日本在线观看视频| 欧美黑人欧美精品刺激| 少妇熟女aⅴ在线视频| 精品欧美国产一区二区三| 18禁黄网站禁片免费观看直播| 人妻丰满熟妇av一区二区三区| 日日干狠狠操夜夜爽| 国产精品综合久久久久久久免费| 欧美中文综合在线视频| 一个人免费在线观看的高清视频| 九九在线视频观看精品| 首页视频小说图片口味搜索| 国产精品一区二区三区四区久久| 在线十欧美十亚洲十日本专区| 国产淫片久久久久久久久 | 亚洲熟妇中文字幕五十中出| 欧美激情久久久久久爽电影| 国产淫片久久久久久久久 | 长腿黑丝高跟| 激情在线观看视频在线高清| 在线观看免费午夜福利视频| 黄色女人牲交| 香蕉久久夜色| 亚洲av免费高清在线观看| 3wmmmm亚洲av在线观看| 成人欧美大片| 老鸭窝网址在线观看| 久久欧美精品欧美久久欧美| 国产综合懂色| а√天堂www在线а√下载| 欧美三级亚洲精品| 久久草成人影院| 亚洲av成人av| 色老头精品视频在线观看| 亚洲人与动物交配视频| 高清日韩中文字幕在线| 国产探花极品一区二区| 日韩有码中文字幕| 欧美午夜高清在线| 国产精品99久久久久久久久| 男人和女人高潮做爰伦理| avwww免费| 欧美日本视频| 1024手机看黄色片| 亚洲美女视频黄频| 亚洲国产欧美网| 99riav亚洲国产免费| 美女大奶头视频| 亚洲av中文字字幕乱码综合| 性色avwww在线观看| 91av网一区二区| 午夜视频国产福利| 午夜免费激情av| 国产一区二区在线观看日韩 | 中文字幕人妻丝袜一区二区| 99久久九九国产精品国产免费| 国内精品久久久久久久电影| 国产91精品成人一区二区三区| 伊人久久精品亚洲午夜| 亚洲人与动物交配视频| 99热只有精品国产| 免费无遮挡裸体视频|