• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum simulations with nuclear magnetic resonance system*

    2021-05-06 08:55:16ChudanQiu邱楚丹XinfangNie聶新芳andDaweiLu魯大為
    Chinese Physics B 2021年4期

    Chudan Qiu(邱楚丹), Xinfang Nie(聶新芳),?, and Dawei Lu(魯大為),2,?

    1Shenzhen Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China

    2Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: nuclear magnetic resonance,quantum simulation,quantum phase transition,quantum gravity

    1. Introduction

    In order to predict the evolution of a quantum system,numerical analysis is a traditional but demanding approach.Especially due to the exponential size of Hilbert space as a function of quantum subsystems, the limited number of subsystems for numerical analysis is a major obstacle to addressing quantum problems with desirable accuracy on a classical computer. Conversely,in many cases,the quantum simulation may offer a faster solution with a probably more illustrative perspective. More importantly,the qubits in quantum simulators are intrinsically able to store exponentially large amounts of information compared to classical bits. Furthermore,in recent years, quantum effects play an increasingly substantial role in modern technology, which leads to the new needs for quantum simulation. Meanwhile, the physical platforms, as well as the technologies required,have matured enough to enable the practical implementations,including superconducting circuits,[1,2]trapped ions,[3,4]neutral atoms,[5–7]photons,[8,9]spin-based systems such as impurity spins in solids[10,11]and nuclear magnetic resonance(NMR).

    Among various candidates,nuclear spins manipulated using NMR are usually considered to be competent in smallscale quantum simulations.[12]Twenty years ago, many leading experiments blazed a trail in implementing complex multiqubit gate operations using NMR.[13–15]In the following decades,more sophisticated techniques have been well developed in terms of endeavouring to simulate the dynamics of quantum systems.[16,17]More recently,the state-of-the-art 12-qubit coherent control has been demonstrated.[18,19]

    These experimental advances in controlling spins promise the applications in disparate areas, including many-body physics and quantum gravity. Some problems in the former are formidably hard to tackle with classical computers due to the complexity arisen from the interactions between many quantum individuals. And the quantum gravity which aims at unifying quantum mechanics and Einstein gravity is a fundamental area but with many ideas remaining unveiled experimentally.

    In this review,we present some representative experimental demonstrations in many-body systems and quantum gravity realized with NMR.First,we start with an introduction of NMR fundamentals in Section 2. Next,centered around a key quantity called out-of-time correlator (OTOC), the following Section 3 expounds on three topics where the OTOC serves as an excellent probe: (1) OTOC can differentiate the integrable and non-integrable systems and quantify the butterfly velocity in quantum chaos (Subsection 3.1); (2) OTOC can observe different signatures of many-body localization(MBL)and Anderson localization (AL), as an alternative metric instead of the entanglement entropy(Subsection 3.2);(3)OTOC can detect the dynamical quantum phase transition (DQPT)and mark the critical point in equilibrium dynamical phase transition (EQPT) between the paramagnetic and ferromagnetic phases,surpassing the autocorrelation and the two-body correlation function as regards to the precision and robustness(Subsection 3.3). These results shed light on the underlying connections among quantum chaos,thermalization,and quantum gravity. Accordingly,based on Ryu–Takayanagi(RT)entropy, the profound relation between OTOC and anti-de Sitter/conformal field theory(Ads/CFT)duality directs us to Subsection 4.1. The experiment that RT entropy has been verified on perfect tensor state is elaborated. While the perfect tensors are viewed as the building blocks of the tensor network,this verification makes the first step toward studying quantum gravity experimentally. In the other Subsection 4.2, the successful simulations of geometry properties and local dynamics of quantum spacetime, with respect to quantum tetrahedrons and spinfoam vertex amplitude, respectively, open up an avenue studying loop quantum gravity(LQG).Finally,the challenges and prospects of quantum simulation with NMR are discussed in Section 5.

    2. Basics of NMR

    In the remainder of this article,we will restrict ourselves to the more comprehensible liquid-state NMR. In the liquid solution, where the rapid tumbling averages out the dipole–dipole interactions, the Hamiltonian with spin–spin interactions under the weak coupling approximation reads as(ˉh=1)

    where ωi=γiB0, with gyromagnetic ratio γiof the i-th nuclear spin and static magnetic field B0aligned along z-axis,is the Larmor angular frequency, and Jijis the scalar coupling strength between the i-th and j-th spins.

    Fig.1. CHCl3 as an example of a two-qubit sample with relevant parameters. The 13C and 1H nuclear spins serve as two qubits. The chemical shift(Hz) and J-coupling strength are given by the diagonal and off-diagonal terms in the right table, respectively. Two important parameters characterizing the longitudinal and transverse coherence properties represented by T1 and T2 (see more details in the Subsection 2.4) respectively are also provided.

    2.1. Initialization

    To emulate a quantum system of interest, the first step should be the preparation of an initial state of the simulated system. According to the Boltzmann distribution, the system is in the thermal equilibrium state under the room temperature,which is unpolarized(see Fig.2(a)). However,it is impossible to cool down to extremely low temperature so as to obtain a state polarized into ground state in the liquid-state NMR. Instead,a pseudo-pure state(PPS)[20,21]is widely adopted

    Fig.2. Pseudo-pure state in initialization and the schematic diagram of experimental setup. For a two-qubit system in the thermal equilibrium, there is no available polarized state to employ, as shown in(a). While a PPS,as illustrated in(b),with an identity part and a tiny amount of extra population in the ground state is valid to be treated as an initialized state. (c)Gate control and the measurement are implemented by the RF coil with the following electrical circuit connected to the computer. On the other hand,the external field B0 is generated by the static field coil. This subfigure is adapted from Ref.[26].

    2.2. Universal gates

    In the case of NMR, the unitary gates of each qubit are carried out by the external radio-frequency (RF) pulses (see Fig.2(c)),which can be written as

    2.3. Measurement

    Finally, with the aid of an RF coil, the transverse magnetization of the ensemble can be obtained. This detection coil is weakly coupled to the nuclear spins so that it barely contributes to the decoherence. However, there remain interactions with the heat bath and inhomogeneity of the static field,which still leads to the decoherence of the nuclear spins.Consequently, the measurement of the nuclear spins is based on the free induction decay (FID). What FID experiments yield are the expectation values of readout operators in the x–y plane, and finally, the time-domain FID signals are converted to frequency-domain NMR spectra via Fourier transform. Though such weak measurement is unable to provide as much information of a single spin as the projective measurement,the ensemble-averaged information can be distilled.For the complete description of the state, i.e., all elements of the density matrix,one should resort to the full quantum state tomography.[13,28]

    2.4. Decoherence

    The decoherence originates from the unwanted interactions with the environment,which leads to the loss of information carried by qubits. As a result, the coherence is a crucial facet of examining whether a quantum system would be entitled to be the physical implementation of a quantum simulator.For the decoherence stemming from the couplings between the spins and the lattice, it is conventionally characterized by the energy relaxation(or longitudinal relaxation)time T1,which is about tens of seconds in a liquid sample. Whereas phase randomization time(or transverse relaxation)T2characterizes the decoherence resulting from the spin–spin couplings. In NMR systems,a more important parameter is denoted by T*2,which is extracted from FID experiments and in turn is termed inhomogeneous dephasing time. The T*2is supposed to be long enough during which the sequences of gates can be implemented. For the complex tasks,the more advanced techniques should be applied to extend T*2so that preserve the information, such as RF selection which improves the T*2at the cost of signal loss.[29,30]

    3. Many-body physics

    3.1. Quantum chaos

    In the classical systems,the integrable and non-integrable systems are related to the regular and chaotic motions,respectively,where the latter display the butterfly effect that the initial diminutive deviations may give rise to considerable differences in a later time. Correspondingly, in the quantum scenario,a small perturbation that spreads over a many-body system may result in large commutators with the operators which are commutative with the perturbation initially.[31]Formally,the quantum version of butterfly effect is relevant to a core concept termed quantum information scrambling, that is, the information stored in local degrees of freedom smears over global degrees of freedom. Scrambling lies at the heart of the dynamics of quantum information.[32]From the experimental perspective, it can be understood by a key observable named out-of-time correlator(OTOC),which first appeared in the context of superconductivity[33]and was defined as

    3.1.1. Integrable and non-integrable systems

    The distinct behaviors of integrable and non-integrable systems can be observed via OTOC.[36]Take the paradigmatic one-dimensional transverse-field Ising chain(TFIC)model as an example,whose Hamiltonian reads as

    Fig.3. Distinct behaviors of (a) integrable (g =1, h =0) and (b) nonintegrable (g=1.05, h=0.5 for left column and g=1, h=1 for right column) cases of Ising spin chain model are distinguished by OTOC F(t).(c)Measurement of butterfly velocity. The OTOCs for three different operators ?Wj are shown with different colors. The inset shows the characteristic time td versus the distance d between two operators, where the butterfly velocity vB can be obtained according to td =d/vB+c with c being the intercept. The figures are adapted from Ref.[36].

    3.1.2. Butterfly velocity

    3.2. Quantum phase transition

    3.2.1. Many-body localization and Anderson localization phases

    Another aspect in connection with the scrambling of information is the thermalization and entanglement entropy. To be more concrete, consider an initial state which is the direct product of two pure subsystems,say A and B,and undergoes an evolution governed by a chaotic Hamiltonian. After a time longer than the thermalization time,the output state turns out to be highly entangled, which suggests that each subsystem is near maximally mixed and thus, corresponds to a thermal ensemble regarding all local measurement observables.[45]Moreover, the degree of entanglement between subsystems can be quantified by the growth of local von Neumann entropy

    MBL is a regime where the entanglement entropy scales logarithmically.[47]This localization results from the strong disorder that struggles against the thermalization and accordingly suppresses the growth of entanglement entropy.Whereas the non-interacting correspondence AL has a saturation as the primary signature (see the dashed lines with non-zero (zero)interaction strength,the right axis in Fig.4).

    Nevertheless, measuring entanglement entropy is challenging, the pioneering work was achieved only on the small number of particles.[48]Recently, the average correlation length Lcas an alternative has been demonstrated on the NMR platform as effective as entanglement entropy[49](see experimental results (dotted lines) and simulation (solid lines), left axis in Fig.4). The Lcis referred to the contributions of all possible spin correlations with Hamming weight.[50]Armed with the coherent averaging techniques[51]to tune both the interaction strength and the degree of disorder,the average correlation length can be extracted from the intensity of multiple quantum coherence(MQC)based on the measurement of OTOCs.

    Fig.4. Simulations of entanglement entropy and correlation length for many-body localization and Anderson localization. As the increment of interaction strength, the MBL emerges, featured by a slow growth in time of Lc (solid lines,left axis),which is consistent with the approximated Lc obtained by measuring OTOC(dotted lines,left axis),the logarithmic growth of entanglement entropy(dashed lines,right axis). By pronounced contrast,in the AL phase where the interaction is absent(the black lines corresponding to zero interaction strength),Lc is saturated. The figure is adapted from Ref.[49].

    3.2.2. Paramagnetic and ferromagnetic phases

    As an indicator,OTOC also outperforms some other kind of correlators with respect to detecting equilibrium quantum phase transition (EQPT) and dynamical quantum phase transition (DQPT),[52]because OTOC captures the scrambling of quantum information, and both EQPT and DQPT attend rapid spread of quantum information on account of appreciable quantum fluctuations.

    In a recent work,[56]the advantages of OTOC have been demonstrated compared with autocorrelation and two-body correlation function with respect to detecting DQPT and locating the critical point in EQPT.

    Well in accord with the theoretical simulation,the dynamics of OTOC exhibits sharp distinctions between ferromagnetic (ggc).As illustrated in the top panel of Fig.5(a),OTOC stays at certain positive value with comparatively small fluctuations in the g

    Fig.5. Experimental results of DQPT and EQPT for integrable and nonintegrable systems. The comparisons of the OTOC F(t) (top panels), autocorrelation χ(t)(bottom panels), and two-body correlation function C(t)(bottom panels)to detect DQPT in the integrable system and non-integrable system represented by(a)TFIC model and(b)ANNNI model,respectively.Critical points of(c)TFIC model and(d)ANNNI model are marked as the turning points of the long-time averaged OTOC(top panels)and two-body correlation(bottom panels)as functions of the transverse field strength g.The figures are adapted from Ref.[56].

    4. Quantum gravity

    4.1. Ads/CFT correspondence

    4.1.1. Ryu–Takayanagi entropy

    As discussed above, the OTOC has underlying connections with Ads/CFT duality. On this account,Ads/CFT correspondence links the quantum gravity theory and quantum information theory[58]meanwhile inspiring the incorporation of holographic entanglement entropy into the study of quantum gravity. Specifically, the entanglement entropy of the boundary system can be related to the bulk geometry in terms of Ryu–Takayanagi formula,[59,60]which reads as

    4.1.2. Tensor network

    Fig.6. Diagrammatic representation of a tensor network. The coefficients of an N-body system amount to an N-order tensor. A tensor network represents the structure and the amount of entanglement of a quantum manybody state. The tensors are linked by the lines, which correspond to the indices i1,i2,...,iN. Then, the contracted (summed) common indices are represented by the lines connecting to shapes. Then,a tensor network with m unpaired legs can be treated as an m-order tensor. In this sense, the tensor network representation reduces the complexity of quantum many-body problem.

    Moreover,when k ≤3,the reduced density matrix equals an identity and on the other side S(k)=min{k,6 ?k}, which has also been verified,[61]with the proper refinements by taking account of the decoherence, as shown in Fig.7(c). It is noteworthy that the compensations of decoherence errors were accomplished by performing 6-qubit full tomography, which is the largest full state characterization in an NMR system to date.

    Fig.7. Illustration of tensor network and perfect tensor,and the theoretical and experimental results of RT entropy. (a) The disk is a two-dimensional ads with the hexagonal tiling. The solid arc marks the minimal surfacewhich is anchored to the two ends of the boundary region illustrated by the dashed line. The tensor network on the right side is the discrete version of the left ads space. The tensor network is composed of rank-6 tensors represented by a hexagonal node with the links ?, each of which corresponds to a maximally-entangled state. The total tensor network state is obtained by taking inner products in ?, corresponding to connecting legs of nodes to links. (b)A rank-6 perfect tensor with three minimal cuts by virtual surface illustrated by the red solid line. Half of six qubits are bulk qubits and the other half are at boundary. (c) The theoretical results of entanglement entropy S(k) equalling to min{k,6 ?k} are shown by orange dashed line.The refined experimental results with the compensation of decoherence represented by blue squares are consistent with the theory much better than initial results shown by red circles. The maximal entropy of a k-qubit subsystem by assuming a 6-qubit identity is plotted in green dotted line as an upper-bound reference. The figures are adapted from Ref.[61].

    4.2. Loop quantum gravity

    In another aspect of quantum gravity, the nuclei spin states in NMR can also be employed to simulate quantum geometries of spacetime.

    4.2.1. Spin network

    In loop quantum gravity, the quantum states endowed with discrete geometries of quantum spacetime at the Planck scale are represented by spin networks.[63]The time evolution of spin network[64]builds up a (3+1)-dimensional quantum spacetime,then the boundary of which is the spin network.

    4.2.2. Dynamics of quantum geometry

    Vertex amplitudes determine the spinfoam amplitudes,which are the transition amplitudes between the initial and the final spin networks.[68]In principle,if the two-qubit maximally entanglement states can be established between arbitrary two tetrahedra,as illustrated in Fig.8,the vertex amplitudes can be obtained by evaluating the inner product between five quantum tetrahedra states. However, it is beyond the present manageable level for a 20-qubit quantum computer.Instead,the full tomography is also helpful,through which the information about quantum tetrahedra is acquired.[66]

    Fig.8. Spin network and quantum tetrahedra. (a)In a(3+1)-dimensional dynamical quantum spacetime, a 3-sphere S3 encloses a portion of quantum spacetime surrounding a vertex(in black)where the world sheets meet.(b)A spin network(blue)is represented by the intersection between world sheets and S3. Each node of spin network corresponds to a quantum tetrahedron associated with an invariant tensor state|in?. Five tetrahedra are glued through the faces dual to the links to form a closed S3, represented by the connections of links l, each of which carries a half-integer jl. The figures are adapted from Ref.[66].

    5. Outlook

    Apart from the achievements discussed above, NMR simulations also provide new insights into various subjects(see Fig.9) such as quantum state tomography,[69–73]quantum algorithm,[74–76]non-Abelian topological orders,[77,78]Sachdev–Ye–Kitaev model,[79]prethermalization,[80]disordered systems,[81]probabilistic quantum cloning,[82]eigenproblem solving,[83]anti-PT-symmetry,[84]and even photosynthetic light harvesting.[85]However,on the theoretical side,the theories of decoherence and control are required;on the experimental side, the controllability and scalability of the system remain scope to improve.In particular,the spectral crowding that occurs as the number of energy levels increases exponentially with the increasing number of spins hinders liquid NMR from scalability. Though in solid-state NMR,the scalability drawback may be overcome to some extent,the manipulation and measurement of single qubit would be difficult. A promising alternative is the nitrogen-vacancy(NV)centers in diamond,into which the well-developed techniques in controlling spins in NMR have been incorporated.[86]

    Fig.9. Fields on which the NMR simulations shed light.

    The progress on quantum simulation tempts us to envisage that the practical simulators will be built in the near future as the prototype of full-fledged quantum computers. Especially when the point beyond which the classical computer would be inferior to quantum simulations is marked, at least in some cases, it would be a milestone for both physics and computer science.

    亚洲天堂国产精品一区在线| 国产三级中文精品| 美女黄网站色视频| 久久韩国三级中文字幕| 中文字幕亚洲精品专区| 精品酒店卫生间| 国产真实伦视频高清在线观看| 高清av免费在线| 午夜免费激情av| a级毛色黄片| 久久久久久久亚洲中文字幕| 一级黄色大片毛片| 亚洲怡红院男人天堂| 日本爱情动作片www.在线观看| 午夜激情福利司机影院| 18+在线观看网站| 纵有疾风起免费观看全集完整版 | 亚洲精品,欧美精品| 国产黄a三级三级三级人| 亚洲欧美清纯卡通| 中文字幕人妻熟人妻熟丝袜美| 岛国毛片在线播放| 搡女人真爽免费视频火全软件| 我要搜黄色片| 欧美成人精品欧美一级黄| 伦精品一区二区三区| 久久欧美精品欧美久久欧美| 日韩强制内射视频| 午夜激情福利司机影院| 高清视频免费观看一区二区 | 成人特级av手机在线观看| 亚洲va在线va天堂va国产| 特大巨黑吊av在线直播| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄 | 色5月婷婷丁香| 久久精品人妻少妇| av在线天堂中文字幕| 非洲黑人性xxxx精品又粗又长| 免费人成在线观看视频色| 高清午夜精品一区二区三区| 久久久久久久久久黄片| 麻豆成人午夜福利视频| 国产成人午夜福利电影在线观看| 汤姆久久久久久久影院中文字幕 | 欧美zozozo另类| 超碰97精品在线观看| 日韩成人伦理影院| 日本午夜av视频| 日本爱情动作片www.在线观看| 国产精品伦人一区二区| 免费无遮挡裸体视频| 欧美bdsm另类| 一边摸一边抽搐一进一小说| 又黄又爽又刺激的免费视频.| 精品不卡国产一区二区三区| 国产成人精品婷婷| 午夜精品在线福利| 亚洲人成网站在线观看播放| 亚洲自拍偷在线| 一级二级三级毛片免费看| 国产精品国产三级国产专区5o | 天天躁日日操中文字幕| 丝袜喷水一区| 成人毛片a级毛片在线播放| 国产成人精品婷婷| 国产淫片久久久久久久久| 啦啦啦观看免费观看视频高清| 日本黄大片高清| 亚洲精品色激情综合| 禁无遮挡网站| 人人妻人人看人人澡| 男女啪啪激烈高潮av片| 久久99热这里只频精品6学生 | 亚洲精品日韩在线中文字幕| 中文字幕熟女人妻在线| 久久久国产成人精品二区| 麻豆成人av视频| 欧美日韩在线观看h| 日韩成人av中文字幕在线观看| 免费看日本二区| 日韩国内少妇激情av| 少妇丰满av| 69av精品久久久久久| 成人亚洲精品av一区二区| 99久久九九国产精品国产免费| 成人国产麻豆网| 欧美成人a在线观看| 色尼玛亚洲综合影院| 欧美最新免费一区二区三区| 国产男人的电影天堂91| 简卡轻食公司| 熟妇人妻久久中文字幕3abv| 日韩精品有码人妻一区| 国模一区二区三区四区视频| 青春草视频在线免费观看| 欧美精品一区二区大全| or卡值多少钱| 男人狂女人下面高潮的视频| 国产老妇女一区| 美女黄网站色视频| 国产精品国产三级国产专区5o | 春色校园在线视频观看| 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 国产日韩欧美在线精品| 午夜福利高清视频| 国产黄色小视频在线观看| 欧美极品一区二区三区四区| 我的老师免费观看完整版| 国产一区二区在线av高清观看| 午夜激情福利司机影院| 波野结衣二区三区在线| 精品午夜福利在线看| 成人av在线播放网站| 赤兔流量卡办理| 中文欧美无线码| 91在线精品国自产拍蜜月| 欧美另类亚洲清纯唯美| 欧美精品一区二区大全| 日日摸夜夜添夜夜爱| 久久久久久久久久久丰满| 熟女电影av网| 舔av片在线| 婷婷色av中文字幕| 全区人妻精品视频| 精品久久久久久久久av| 国产精品国产三级国产专区5o | 亚洲欧美日韩高清专用| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| 成人无遮挡网站| 天堂网av新在线| 日韩av在线免费看完整版不卡| 免费大片18禁| 高清毛片免费看| 午夜福利在线观看免费完整高清在| 国产黄a三级三级三级人| 韩国高清视频一区二区三区| 亚洲成色77777| 国产一区亚洲一区在线观看| 中文字幕精品亚洲无线码一区| 亚洲,欧美,日韩| 少妇丰满av| 最近手机中文字幕大全| 国产又色又爽无遮挡免| 菩萨蛮人人尽说江南好唐韦庄 | 精品国产露脸久久av麻豆 | 国产黄色小视频在线观看| 久久精品国产亚洲av天美| 国产一级毛片七仙女欲春2| 久久久久久国产a免费观看| 美女高潮的动态| 岛国毛片在线播放| 亚洲精品乱久久久久久| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区免费观看| 日韩制服骚丝袜av| 人妻系列 视频| 网址你懂的国产日韩在线| 色吧在线观看| 99热6这里只有精品| 乱人视频在线观看| 18禁动态无遮挡网站| 国产精品一区二区在线观看99 | 91久久精品国产一区二区三区| 国产亚洲一区二区精品| 欧美日韩综合久久久久久| 男女边吃奶边做爰视频| 久久久久久久久久久丰满| 午夜福利网站1000一区二区三区| 国产精品精品国产色婷婷| 国产精品久久电影中文字幕| 天堂中文最新版在线下载 | 蜜臀久久99精品久久宅男| 99国产精品一区二区蜜桃av| 免费一级毛片在线播放高清视频| 亚洲精品日韩av片在线观看| 美女cb高潮喷水在线观看| 欧美日本视频| 亚洲av福利一区| 日本黄色片子视频| 人体艺术视频欧美日本| 91在线精品国自产拍蜜月| 久久久久久久亚洲中文字幕| 日本午夜av视频| 亚洲四区av| 国产精品人妻久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 大香蕉97超碰在线| 亚洲在久久综合| 亚洲av免费在线观看| 久久精品国产亚洲网站| 欧美三级亚洲精品| 欧美zozozo另类| 国产精品电影一区二区三区| 91aial.com中文字幕在线观看| 丰满少妇做爰视频| 久久久久免费精品人妻一区二区| 五月玫瑰六月丁香| 欧美另类亚洲清纯唯美| 自拍偷自拍亚洲精品老妇| 一级毛片我不卡| 午夜视频国产福利| 在线免费观看的www视频| 国产亚洲一区二区精品| ponron亚洲| 69av精品久久久久久| 青春草视频在线免费观看| 五月伊人婷婷丁香| 非洲黑人性xxxx精品又粗又长| av天堂中文字幕网| 免费观看人在逋| 日本一本二区三区精品| 色噜噜av男人的天堂激情| 久久久久网色| 精品不卡国产一区二区三区| 女人十人毛片免费观看3o分钟| 精品久久久噜噜| 美女大奶头视频| 中文乱码字字幕精品一区二区三区 | kizo精华| 又粗又硬又长又爽又黄的视频| 欧美成人精品欧美一级黄| 亚洲精品aⅴ在线观看| 国产黄片视频在线免费观看| 亚洲成av人片在线播放无| 七月丁香在线播放| 99热这里只有精品一区| 精品人妻视频免费看| 国产亚洲精品久久久com| 高清视频免费观看一区二区 | 国产人妻一区二区三区在| 欧美激情久久久久久爽电影| 99九九线精品视频在线观看视频| 久久精品熟女亚洲av麻豆精品 | 亚洲一级一片aⅴ在线观看| 桃色一区二区三区在线观看| 夜夜看夜夜爽夜夜摸| 嫩草影院新地址| 成人欧美大片| 久久久成人免费电影| 久久久久性生活片| 边亲边吃奶的免费视频| 亚洲最大成人手机在线| 在线a可以看的网站| 我要看日韩黄色一级片| 大又大粗又爽又黄少妇毛片口| 午夜a级毛片| 亚洲人与动物交配视频| 国产熟女欧美一区二区| 午夜亚洲福利在线播放| 人人妻人人看人人澡| 亚州av有码| 欧美另类亚洲清纯唯美| av在线观看视频网站免费| 男人和女人高潮做爰伦理| 99久久九九国产精品国产免费| 国产亚洲最大av| 乱码一卡2卡4卡精品| 亚洲欧美精品专区久久| 国产精品国产三级国产专区5o | 欧美丝袜亚洲另类| 亚洲精品aⅴ在线观看| 欧美xxxx黑人xx丫x性爽| 欧美日韩国产亚洲二区| 中文字幕熟女人妻在线| 赤兔流量卡办理| 亚洲av免费在线观看| 中文字幕免费在线视频6| 亚洲av中文av极速乱| 亚洲四区av| 一个人看的www免费观看视频| 噜噜噜噜噜久久久久久91| 亚洲在线观看片| 热99在线观看视频| 蜜桃亚洲精品一区二区三区| av播播在线观看一区| 老司机影院成人| 国产黄片美女视频| 国产男人的电影天堂91| 九九热线精品视视频播放| 乱码一卡2卡4卡精品| 熟妇人妻久久中文字幕3abv| 2021天堂中文幕一二区在线观| 国产黄片视频在线免费观看| 91精品国产九色| 精品久久久久久久人妻蜜臀av| 纵有疾风起免费观看全集完整版 | 插逼视频在线观看| www日本黄色视频网| 久久午夜福利片| 国产精品久久电影中文字幕| 成人午夜精彩视频在线观看| 两个人的视频大全免费| 变态另类丝袜制服| 日韩 亚洲 欧美在线| 免费看光身美女| 亚洲最大成人av| 欧美潮喷喷水| 国产精品人妻久久久影院| 九九爱精品视频在线观看| 亚洲乱码一区二区免费版| 国产精品久久视频播放| 国产探花在线观看一区二区| 免费播放大片免费观看视频在线观看 | 日日干狠狠操夜夜爽| 精品久久久久久久人妻蜜臀av| 国产精品一及| 欧美一区二区国产精品久久精品| 亚洲天堂国产精品一区在线| 91aial.com中文字幕在线观看| 天天躁日日操中文字幕| 国产69精品久久久久777片| 天堂网av新在线| 国内少妇人妻偷人精品xxx网站| 五月玫瑰六月丁香| 禁无遮挡网站| 亚洲av二区三区四区| 综合色丁香网| 亚洲性久久影院| 成年女人永久免费观看视频| 啦啦啦观看免费观看视频高清| 热99在线观看视频| 精品99又大又爽又粗少妇毛片| 日本五十路高清| 国产老妇伦熟女老妇高清| 国产老妇女一区| 免费观看性生交大片5| 成人综合一区亚洲| 精品一区二区免费观看| 99久久人妻综合| 欧美日本亚洲视频在线播放| 日韩一区二区三区影片| 日韩人妻高清精品专区| 乱系列少妇在线播放| 天堂中文最新版在线下载 | 边亲边吃奶的免费视频| 亚洲av免费高清在线观看| 色网站视频免费| 欧美激情在线99| 久久亚洲国产成人精品v| 床上黄色一级片| av黄色大香蕉| 亚洲av.av天堂| 亚洲人成网站在线播| 自拍偷自拍亚洲精品老妇| 狂野欧美白嫩少妇大欣赏| 成人毛片60女人毛片免费| 午夜免费激情av| 三级经典国产精品| 两个人视频免费观看高清| 日韩成人伦理影院| 久久久久久国产a免费观看| 99热这里只有是精品50| 亚洲av福利一区| 久久人妻av系列| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| 亚洲精品,欧美精品| 在线免费观看不下载黄p国产| 国产午夜福利久久久久久| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| av视频在线观看入口| 欧美激情国产日韩精品一区| 少妇裸体淫交视频免费看高清| 亚洲精华国产精华液的使用体验| 一级二级三级毛片免费看| 欧美高清成人免费视频www| 99在线人妻在线中文字幕| 国产成人精品一,二区| 精品国产三级普通话版| 成人性生交大片免费视频hd| 日韩,欧美,国产一区二区三区 | 亚洲久久久久久中文字幕| 国产免费福利视频在线观看| 免费看美女性在线毛片视频| 亚洲国产精品国产精品| 免费无遮挡裸体视频| 亚洲内射少妇av| 中文字幕亚洲精品专区| 久久久久久九九精品二区国产| 国产成人a∨麻豆精品| 国产淫语在线视频| 成人三级黄色视频| 精品一区二区三区视频在线| 精品酒店卫生间| 男女边吃奶边做爰视频| 美女高潮的动态| 精品不卡国产一区二区三区| 久久综合国产亚洲精品| 国产一区有黄有色的免费视频 | 精品少妇黑人巨大在线播放 | 啦啦啦观看免费观看视频高清| 少妇被粗大猛烈的视频| 国产中年淑女户外野战色| 永久网站在线| 亚洲国产精品成人综合色| 国产又色又爽无遮挡免| 亚洲自偷自拍三级| 国产在线一区二区三区精 | 插阴视频在线观看视频| 久久久久国产网址| 99九九线精品视频在线观看视频| 一级毛片aaaaaa免费看小| 精品国产三级普通话版| 99热6这里只有精品| 午夜福利在线观看免费完整高清在| 嫩草影院入口| 97超碰精品成人国产| 亚洲精品乱久久久久久| 99热6这里只有精品| 黄色配什么色好看| 亚洲国产欧美在线一区| 非洲黑人性xxxx精品又粗又长| 九九在线视频观看精品| 亚洲精品国产成人久久av| 国产69精品久久久久777片| 老司机影院毛片| 69人妻影院| 亚洲丝袜综合中文字幕| 99久久精品热视频| 国产淫片久久久久久久久| 色5月婷婷丁香| 日本午夜av视频| 欧美xxxx性猛交bbbb| 亚洲中文字幕日韩| 亚洲熟妇中文字幕五十中出| 国国产精品蜜臀av免费| 超碰97精品在线观看| 国产精品无大码| 免费看av在线观看网站| 国产精品99久久久久久久久| 国产在视频线在精品| 久久久亚洲精品成人影院| 在线观看美女被高潮喷水网站| 亚洲丝袜综合中文字幕| 国产不卡一卡二| 国产成人aa在线观看| 国产伦在线观看视频一区| 啦啦啦啦在线视频资源| 搞女人的毛片| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产最新在线播放| 大香蕉97超碰在线| 国产伦理片在线播放av一区| 亚洲综合色惰| 亚洲国产成人一精品久久久| 3wmmmm亚洲av在线观看| 欧美xxxx性猛交bbbb| 黄色配什么色好看| 天堂√8在线中文| 国产亚洲av片在线观看秒播厂 | 不卡视频在线观看欧美| 亚洲最大成人av| 久久这里有精品视频免费| 亚洲精品色激情综合| 精品人妻一区二区三区麻豆| 午夜a级毛片| 国产精品蜜桃在线观看| 亚洲va在线va天堂va国产| 99久久九九国产精品国产免费| 丰满少妇做爰视频| 中文字幕av成人在线电影| 国产精品一二三区在线看| 国产不卡一卡二| 国产高清三级在线| 中文字幕熟女人妻在线| 人人妻人人澡人人爽人人夜夜 | 国产单亲对白刺激| 99久久中文字幕三级久久日本| 亚洲丝袜综合中文字幕| 久久精品久久精品一区二区三区| 欧美区成人在线视频| 国产精品一区www在线观看| 欧美日韩在线观看h| 在线播放国产精品三级| 久久久久久伊人网av| 久久久久久久国产电影| 久久国产乱子免费精品| 国产69精品久久久久777片| 亚洲精品久久久久久婷婷小说 | 国产成人一区二区在线| 18禁在线播放成人免费| 久久久久久久久中文| 丰满乱子伦码专区| 亚洲国产日韩欧美精品在线观看| 丰满人妻一区二区三区视频av| videos熟女内射| 99久久精品热视频| av线在线观看网站| 久久久久久伊人网av| 中文字幕免费在线视频6| 成人三级黄色视频| 又爽又黄无遮挡网站| 自拍偷自拍亚洲精品老妇| 99热全是精品| 国产精品一区二区性色av| 一本久久精品| 在线a可以看的网站| 美女内射精品一级片tv| 成人高潮视频无遮挡免费网站| 少妇裸体淫交视频免费看高清| 伦精品一区二区三区| or卡值多少钱| 波多野结衣巨乳人妻| 色综合站精品国产| 赤兔流量卡办理| 嫩草影院精品99| 国产成人午夜福利电影在线观看| 九九热线精品视视频播放| 少妇的逼水好多| 成人特级av手机在线观看| 午夜免费男女啪啪视频观看| 国产精品爽爽va在线观看网站| 国产又色又爽无遮挡免| 国产精品精品国产色婷婷| 尾随美女入室| 综合色丁香网| 国产精品乱码一区二三区的特点| 91在线精品国自产拍蜜月| 夜夜看夜夜爽夜夜摸| 韩国高清视频一区二区三区| 亚洲一级一片aⅴ在线观看| 中国美白少妇内射xxxbb| 日韩高清综合在线| 人人妻人人澡欧美一区二区| 高清在线视频一区二区三区 | 99热这里只有是精品50| 观看美女的网站| 亚洲中文字幕一区二区三区有码在线看| 欧美3d第一页| 国产高清视频在线观看网站| 天天一区二区日本电影三级| 欧美色视频一区免费| av国产免费在线观看| 成人美女网站在线观看视频| 精品免费久久久久久久清纯| 永久免费av网站大全| 成人亚洲精品av一区二区| 国产成人福利小说| 国产精品国产高清国产av| 久99久视频精品免费| 亚洲av成人精品一二三区| 啦啦啦韩国在线观看视频| 狠狠狠狠99中文字幕| 国产高潮美女av| 蜜桃久久精品国产亚洲av| 丰满乱子伦码专区| 国产老妇女一区| 美女高潮的动态| 亚洲18禁久久av| 人妻制服诱惑在线中文字幕| 简卡轻食公司| 99久久精品热视频| 中文资源天堂在线| 99久国产av精品国产电影| www日本黄色视频网| 成人欧美大片| 欧美xxxx黑人xx丫x性爽| 日本五十路高清| 日本一本二区三区精品| 狠狠狠狠99中文字幕| 22中文网久久字幕| 国产久久久一区二区三区| 亚洲精品国产成人久久av| 99视频精品全部免费 在线| 啦啦啦啦在线视频资源| 久久精品影院6| 伦理电影大哥的女人| 国产中年淑女户外野战色| 日韩大片免费观看网站 | 亚洲最大成人av| av.在线天堂| 特大巨黑吊av在线直播| 97在线视频观看| 在线观看66精品国产| 国产69精品久久久久777片| 又粗又硬又长又爽又黄的视频| 欧美不卡视频在线免费观看| 韩国av在线不卡| 爱豆传媒免费全集在线观看| 日韩国内少妇激情av| 水蜜桃什么品种好| 国产成人免费观看mmmm| 国产探花极品一区二区| 国产黄色视频一区二区在线观看 | 日韩欧美在线乱码| 国产亚洲av嫩草精品影院| 黄片wwwwww| 欧美高清成人免费视频www| 插阴视频在线观看视频| av国产免费在线观看| 久久久久久久久中文| 久久国内精品自在自线图片| 久久精品久久久久久噜噜老黄 | 99国产精品一区二区蜜桃av| 久久欧美精品欧美久久欧美| 一级爰片在线观看| 亚洲av熟女| 亚洲激情五月婷婷啪啪| 男女那种视频在线观看| 一区二区三区四区激情视频| 波多野结衣高清无吗| 亚洲在线观看片| 六月丁香七月| 国产真实伦视频高清在线观看| 国产精品野战在线观看| 最近手机中文字幕大全| 少妇丰满av| 国产午夜精品论理片| 水蜜桃什么品种好| 免费不卡的大黄色大毛片视频在线观看 |