• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantifying nonclassicality of multimode bosonic fields via skew information

    2021-04-28 02:26:44YueZhangandShunlongLuo
    Communications in Theoretical Physics 2021年4期

    Yue Zhangand Shunlong Luo

    1 Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    2 State Key Laboratory of Mesoscopic Physics,School of Physics,Frontiers Science Center for Nanooptoelectronics,Peking University,Beijing 100871,China

    3 Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    4 School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    Abstract We quantify the nonclassicality of multimode bosonic field states by adopting an informationtheoretic approach involving the Wigner-Yanase skew information.The fundamental properties of the quantifier such as convexity,superadditivity,monotonicity,and conservation relations are revealed.The quantifier is illustrated by a variety of typical examples,and applications to the quantification of nonclassical correlations are discussed.Various extensions are indicated.

    Keywords:Bosonic fields,nonclassicality,Wigner-Yanase skew information,multimode states,correlations

    1.Introduction

    While in the early days of its inception,quantum mechanics was also called wave mechanics,and quantum states were called wavefunctions [1],which highlighted the radical departure from the classical orbital reality of material motion,the situation is reversed in modern quantum optics,where classicality is more often related to wave nature,and nonclassicality (quantumness) is related to the particle nature of photons [2–7].The pursuit of nonclassicality leads to the emergence of quantum optics,with many theoretical predictions of the nonclassical properties of light (bosonic fields)such as squeezing,anti-bunching,sub-Poissonian statistics,Schr?dinger cat states,etc.,all of which have been experimentally realized and have even found numerous applications in quantum information processing [2–10].

    It is now widely recognized that the nonclassicality of bosonic field states is a fundamental part of quantum mechanics and a crucial resource in quantum practices,with extensive applications.Significant efforts have been made to detect and quantify the nonclassicality of states,and a variety of measures or quantifiers have been introduced.The first widely used quantity for characterizing the nonclassicality of light seems to be Mandel’s Q parameter [11],which used the deviation of the photon number from a Poissonian distribution to indicate nonclassicality.Various distance-based measures were introduced and studied in [12–19].Phase space distributions were exploited to characterize nonclassicality from many perspectives,such as nonclassical depth [20–23],measurable quadrature distributions [24,25],the negativity of phase space distributions [26–28],demarginalization [29].The negativity of normally ordered observables was investigated in [30].The moment method was invoked to characterize nonclassicality in [31,32].The conversion between nonclassicality and entanglement via beamsplitters led to the entanglement potential [33–35].Variance-based quantifiers were introduced in [36–38],and quantifiers based on the Wigner-Yanase skew information were elucidated in [39].All these quantifiers shed light on nonclassicality from different perspectives.

    In this work,we will continue to pursue the information-theoretical approach to nonclassicality via the Wigner-Yanase skew information,as initiated in [39],in which only single-mode bosonic field states were treated and thus,within which,correlations could not be addressed.In multimode bosonic fields,the nonclassical effects become even richer due to the correlations among different modes.For example,if we have entangled multimode field states,we may expect stronger nonclassical effects.Here,we will extend the single-mode case to the multimode scenario,and further apply the quantifier of nonclassicality to study correlations.

    Recall that in [39],an intuitive and simple quantifier for the nonclassicality of the single-mode bosonic field state ρ was introduced as

    where a is the annihilation operator of the bosonic field satisfying the canonical commutation relation[a,a?]=1.The motivation for this comes from the remarkable Wigner-Yanase skew information [40,41]

    which quantifies the information content of the state ρ skew to the observable X.This concept gains more significance after it is recognized that the skew information realizes a kind of quantum Fisher information [42],and can be interpreted as the quantum uncertainty of X in the state ρ [43],as the asymmetry of ρ (relative to X) [44–47],and as the quantum coherence of ρ (relative to X) [48].

    Now,if we rewrite the Wigner-Yanase skew information as

    and replace the observable (Hermitian operator) X by the non-Hermitian annihilation operator a,we readily arrive at the quantityN(ρ,a) .Accordingly,the quantifier of nonclassicality may be interpreted as an extension of the celebrated Wigner-Yanase skew information to non-Hermitian operators.It turns out thatN(ρ,a)has a variety of remarkable properties which render it a useful quantity in studying nonclassicality,as elucidated in [39].

    We emphasize that here,although the notion of nonclassicality is intimately related to the well-established optical nonclassicality in the Glauber-Sudarshan scheme,it actually goes beyond the latter framework,and should be understood in the general sense of quantum mechanics with its roots in the noncommutativity between operators.

    The purpose of this paper is to extend the above quantifier of nonclassicality to the multimode scenario,and study its consequences and usage in assessing correlations.This paper is organized as follows.In section 2,for simplicity,we first treat the two-mode bosonic fields,introduce an information-theoretic quantifier of nonclassicality for bipartite states,and exhibit its fundamental properties.In particular,we establish a conservation relation for nonclassicality in beamsplitters.We work out a variety of examples to illustrate the concept in section 3.We employ the quantifier of nonclassicality to characterize correlations in section 4.Finally,we discuss multimode and other extensions in section 5.

    2.Two-mode nonclassicality

    Consider a two-mode bosonic field,shared by two modes(parties) 1 and 2,mathematically described by the field operator vectora=(a1,a2)of respective annihilation operators a1and a2of the two modes satisfying the canonical communication relations

    The coherent states of the two individual modes are the respective eigenstates of the corresponding annihilation operators:

    and the joint coherent states∣α〉 ?∣β〉 are regarded as the most classical (least quantum)two-mode pure states[49–52].Any two-mode bosonic field state described by a density matrix ρ can be completely characterized by its Glauber-Sudarshan P representation as [49–51]

    In general,the P functions may exhibit negativity or high singularity and thus fail to be probability distributions for certain states.In the customary treatment of quantum optics,those states with well-defined probability distributionsP(α,β)are defined as classical states (with respect to the coherent states),and all other states are termed nonclassical.Alternatively,the classical states are precisely probabilistic mixtures of coherent states.

    For a two-mode state ρ,directly inspired by the singlemode information-theoretic quantifier of nonclassicality [39],we define

    as a quantifier of nonclassicality for the bipartite state ρ,wherea=(a1,a2).More explicitly,we have

    In particular,ifρ=∣Ψ〉〈Ψ∣is a two-mode pure state,then the above expression can be simplified as

    where 〈X〉= 〈Ψ∣X∣Ψ〉.

    For any two-mode coherent stateρ=∣α〉〈α∣?∣β〉〈β∣,we haveN(ρ,a)=1,which is the minimal value of nonclassicality for two-mode pure states.Any other two-mode pure stateρ=∣Ψ〉〈Ψ∣satisfiesN(ρ)>1.Thus,the coherent states have the smallest nonclassicality among all the pure states,in agreement with the fact that the coherent states are the most classical (least quantum) pure states.In contrast,for the two-mode Fock stateρmn=∣m〉〈m∣?∣n〉〈n∣,we haveN(ρmn,a)= 1+m+n,which shows that as the photon number increases,the nonclassicality increases,as expected.The Fock states are the most nonclassical states,in the sense that in the family of states ρ satisfyingthe Fock states∣n1〉 ?∣n?n1〉 ,n1=0,1,… ,n,achieve the maximal nonclassicality value 1+n.

    we haveN(∣Ψ±〉〈Ψ±∣,a)=N(∣Φ±〉〈Φ±∣,a)=2,while for the mixtures of Bell states

    For the mixtureρ1=p∣Φ?〉 〈Φ?∣+(1 ?p)∣0 〉 〈 0∣?∣0 〉 〈0∣of a Bell state and the two-mode vacuum state,we haveN(ρ1,a)= 1 +which is larger than 1 whenindicating nonclassicality in this case.For comparison,consider the superposition∣Φ〉=we haveN(∣Φ〉which is always larger than 1 whenp> 0.

    The quantifier of nonclassicalityN(ρ,a) has a variety of equivalent expressions,which indicate its basic significance and potential applications.

    First,it can be directly checked that

    Second,let

    be the single-mode quadrature operators with[qk,pl]=iδkl,k,l=1,2,and

    then

    whereI(ρ,q1)=I(ρ,q1?1),etc.

    The quantifier of nonclassicalityN(ρ,a)has the following desirable properties.

    (1) Convexity.For an ensemble of states{(pi,ρi)},it holds that

    Consequently,if a state ρ satisfiesN(ρ,a)>1,then it is nonclassical in the Glauber-Sudarshan scheme.This supplies a sufficient(though not necessary)criterion for detecting twomode optical nonclassicality.

    (2) Superadditivity.It holds that

    wheretr2ρis the reduced state of mode 1.The above inequality implies that global nonclassicality is larger than the sum of the local nonclassicalities,which is consistent with our intuition.

    (3) Additivity for product state.For any product stateρ=ρ1?ρ2,it holds that

    Moreover,by convexity,for any separable stateit holds that

    which may be exploited to derive some criteria for detecting entanglement.

    (4) Displacement invariance.For the two-mode phase space displacement operators

    it holds that

    (5) Rotation invariance.For the two-mode phase space rotation operators

    it holds that

    (6) Nonclassicality conservation via beamsplitters.For the beamsplitter transformationand any two-mode product stateρ=ρ1?ρ2,it holds that

    (7)Nonclassicality enhancement via squeezing.For twomode squeezing

    and any two-mode product stateρ1?ρ2,it holds that

    The proof of the above properties is straightforward.Item(1) follows from the convexity of the skew informationI(ρ,X)[40].Item (2) follows from

    which in turn are implied by the monotonic inequalityI(ρ,K? 1) ≥I(t r2ρ,K)[41].Items (3)–(7) can be readily verified by direct manipulation of the definitionN(ρ,a)=I(ρ,a1? 1)+I(ρ,1?a2).

    3.Illustration

    In order to gain a more intuitive understanding of the quantifier of nonclassicality and to illustrate its characteristic features,we now work out some typical examples.

    Example 1.For the separatively squeezed coherent state

    we have

    withζ=reiθ,r>0,we have

    Example 2.For the two-mode thermal states

    which are the product states of two single-mode thermal states with parametersλ1,λ2∈ (0 ,1) ,respectively,we have

    which decreases inλ1orλ2and shows that the two-mode thermal states are classical.In sharp contrast,for

    we have

    which is an increasing function ofλ.

    Example 3.For two-mode Gaussian states of the form

    which shows that the nonclassicality is an increasing function of the squeezing strength∣ζ∣,while for the product states of the two single-mode Gaussian states

    we have

    Let

    In sharp contrast,for states of the form

    we have

    Example 4.Forwe have

    which can equally be expressed as

    In contrast,for the Fock-diagonal state

    In particular,for the stateswe have

    Example 5.Consider a spin-j system,embedded as a(2j+1) -dimensional subspace of the two-mode bosonic field via the Schwinger realization

    of the SU(2) Lie algebra

    Let

    The Dicke states

    as the common eigenstates of the commuting operatorsJ2and JzsatisfyingJz∣j,m〉=m∣j,m〉,J2∣j,m〉=j(j+1)∣j,m〉,correspond to the two-mode Fock states

    Moreover,

    It follows that

    The spin coherent states

    can be expressed in the Dicke basis as

    and we have

    Actually,for any superposition of the Dicke states (thus any pure state of the spin-j system)

    we have

    For any mixture of the Dicke states

    This is independent of m,and implies that for any pure spin-j state∣Ψ 〉=it holds thatN∣Ψ 〉= 2j∣Ψ〉.Consequently,the total photon number is conserved in the spin-j system.The spin-j system Hilbert space Hjis the eigenspace of the total number operator N with eigenvalue2j,and the two-mode bosonic system Hilbert space H is orthogonally decomposed as

    withH0= C.This explains why all spin-j system pure states have the same nonclassicality 1 +2j: they are states with a total photon number of2j.This example shows that the quantifier of nonclassicalityN(ρ,a) cannot distinguish states in the same spin-j system,and captures the idea that nonclassicality is related to the precise number of photons.

    4.Correlations

    We wonder whether the difference between two-mode nonclassicality and local nonclassicalities can be used to capture correlations between the two modes.For this purpose,let us introduce

    It is obvious that for any product statesρ1?ρ2,we have

    Just like the quantum mutual information,which is used as a standard measure for correlations,the quantityC(ρ,a)is neither convex nor concave inρ.To see this,noting that for any separable statewe haveC(ρ,a)>0 whilewhich shows thatC(ρ)is not convex.On the other hand,let S (ρ1,ρ2)={ρ: tr2ρ=ρ1,tr1ρ=ρ2} be the set of two-mode states whose reduced states are fixed asρ1andρ2,then clearly this set is convex,andC(ρ,a)is convex on this set,indicating thatC(ρ,a)cannot be concave.Consequently,C(ρ,a)is indeed neither convex nor concave inρ.

    Let us further consider some typical examples.

    (1) For the mixture states

    with reduced states

    we have

    which is an increasing function ofλ.

    (2) For the Bell states∣Ψ±〉 ,∣Φ±〉,we have

    (3) For the two-mode squeezed vacuum statewe have

    It is interesting to compare this quantity of correlations with entanglement,as quantified by the marginal von Neumann entropy

    of the reduced states ρ1= tr2∣Φ〉〈Φ∣,ρ2= tr1∣Φ〉〈Φ∣.Both are monotonic and increasing functions ofr.

    (4) We now consider the correlations generated by beamsplitters in terms of nonclassicality.Recall that a typical beamsplitter transformation sending the input two-mode field a=(a1,a2)to the output two-mode field b=(b1,b2)is implemented byvia [53]

    Since

    Considering the situation of a balanced beamsplitterif the single-mode input states are squeezing vacuum statesthen we have

    If the input two-mode state isρ=∣n〉 ?∣0〉 for the balanced beamsplitter,then

    and we have

    which shows that nonclassical correlations are generated via the beamsplitter since

    5.Discussion

    Inspired by an information-theoretical quantifier of the nonclassicality of single-mode bosonic field states,we have introduced a quantifier of nonclassicality for two-mode bosonic field states,which can be naturally generalized to multimode bosonic fields as

    with the mode-annihilation operators of the d-mode bosonic field aj,j= 1,… ,d ,and a=(a1,… ,ad).We have further revealed its basic properties,elucidated its various features,and explicitly worked out several examples to illustrate its significance and intuitive meaning.We have also applied the nonclassicality to the quantification of correlations.It may be interesting to seek further applications of the results in concrete physical systems.

    Though the present two-mode quantifier of nonclassicality,which does not involve any optimization,is easy to calculate,it only captures some special features of nonclassicality.To gain a more complete picture,we may consider more quantities.

    (1) To distinguish the nonclassicality of states with a conserved total photon number,we may introduce

    (2) To distinguish the nonclassicality of states generated by{∣n 〉 ?∣n 〉 ,n=0,1,… },we may introduce

    (3) Moveover,we may generalize N (ρ ,a)by considering the quantity

    which yields a family of quantifiers of two-mode nonclassicality

    parameterized by r=(r1,r2),rj=1,2,…

    Together,these quantifiers can capture more aspects of nonclassicality,and further characterize correlations by the means given in section 4.

    Nonclassicality in multimode bosonic fields exhibits many new effects due to the interaction between different modes,and it is desirable to further explore the interplay between nonclassicality and correlations in order to obtain a deeper understanding of the fields.

    Acknowledgments

    This work was supported by the National Key R&D Program of China,Grant No.2020YFA0712700,and the National Natural Science Foundation of China,Grant Nos.11 875 317 and 61 833 010.

    ORCID iDs

    免费黄网站久久成人精品 | 成年版毛片免费区| 日韩中文字幕欧美一区二区| 精品人妻1区二区| 国产私拍福利视频在线观看| 99国产精品一区二区蜜桃av| 午夜激情欧美在线| 成人欧美大片| 动漫黄色视频在线观看| 丰满的人妻完整版| 成人午夜高清在线视频| 性欧美人与动物交配| 校园春色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美区成人在线视频| 国产男靠女视频免费网站| 亚洲,欧美精品.| 日本免费a在线| 99精品久久久久人妻精品| 免费黄网站久久成人精品 | 青草久久国产| 久久热精品热| 亚洲国产精品合色在线| 中文在线观看免费www的网站| 久99久视频精品免费| 久久6这里有精品| 亚洲国产精品sss在线观看| 亚洲天堂国产精品一区在线| 欧美日韩乱码在线| 精品人妻偷拍中文字幕| 又爽又黄无遮挡网站| 有码 亚洲区| 亚洲精品日韩av片在线观看| 网址你懂的国产日韩在线| 国产伦在线观看视频一区| 成人特级黄色片久久久久久久| 一级a爱片免费观看的视频| 国产一区二区三区在线臀色熟女| 三级毛片av免费| 免费人成在线观看视频色| 亚洲电影在线观看av| 男女做爰动态图高潮gif福利片| 一夜夜www| 日本黄色片子视频| 国产探花极品一区二区| 精品人妻视频免费看| a级毛片a级免费在线| 最近在线观看免费完整版| 尤物成人国产欧美一区二区三区| 国产精品久久久久久久电影| 国产精品,欧美在线| 日韩欧美精品免费久久 | 香蕉av资源在线| 欧美成人a在线观看| 精品99又大又爽又粗少妇毛片 | 成人三级黄色视频| 成人特级av手机在线观看| 青草久久国产| 国产伦精品一区二区三区四那| 精品一区二区三区人妻视频| 国产亚洲欧美在线一区二区| 久久99热6这里只有精品| 国产欧美日韩精品一区二区| 欧美又色又爽又黄视频| 色哟哟·www| 精品欧美国产一区二区三| 又黄又爽又刺激的免费视频.| 欧美区成人在线视频| 九九久久精品国产亚洲av麻豆| 亚洲av熟女| 老司机午夜福利在线观看视频| 免费看光身美女| 亚洲成人精品中文字幕电影| 日韩av在线大香蕉| 久久国产精品人妻蜜桃| 国产一区二区三区视频了| 美女黄网站色视频| 免费观看的影片在线观看| 久久人妻av系列| 精品不卡国产一区二区三区| 亚洲,欧美精品.| 日韩欧美精品免费久久 | 少妇的逼好多水| 亚洲最大成人手机在线| 成人一区二区视频在线观看| 亚洲av成人不卡在线观看播放网| 国产精品女同一区二区软件 | 国产探花在线观看一区二区| 国产午夜精品论理片| 亚洲最大成人中文| 小说图片视频综合网站| 精品福利观看| 亚洲人成伊人成综合网2020| 成人av在线播放网站| 简卡轻食公司| 校园春色视频在线观看| 真实男女啪啪啪动态图| 免费av观看视频| 成年版毛片免费区| 国内少妇人妻偷人精品xxx网站| 亚洲美女黄片视频| 亚洲激情在线av| 亚洲国产欧美人成| 国产黄色小视频在线观看| 午夜免费激情av| 老司机午夜十八禁免费视频| 亚洲午夜理论影院| 亚洲乱码一区二区免费版| 18禁在线播放成人免费| 亚洲第一电影网av| 日韩中文字幕欧美一区二区| 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频| 国产av麻豆久久久久久久| 亚洲 国产 在线| 九九热线精品视视频播放| 老司机午夜十八禁免费视频| 亚洲最大成人中文| 高清日韩中文字幕在线| 久9热在线精品视频| 尤物成人国产欧美一区二区三区| 亚洲中文日韩欧美视频| 亚洲色图av天堂| 亚洲成人久久性| 又粗又爽又猛毛片免费看| 3wmmmm亚洲av在线观看| АⅤ资源中文在线天堂| a级毛片免费高清观看在线播放| 18禁在线播放成人免费| 久久午夜福利片| 亚洲成人久久爱视频| 亚洲欧美精品综合久久99| 久久人妻av系列| 精品人妻1区二区| 国产免费av片在线观看野外av| 黄色女人牲交| 亚洲熟妇熟女久久| 91在线精品国自产拍蜜月| 亚洲精华国产精华精| 可以在线观看的亚洲视频| 国产伦精品一区二区三区四那| 97碰自拍视频| 69av精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 少妇的逼好多水| 午夜激情福利司机影院| 中文资源天堂在线| 久久精品国产清高在天天线| bbb黄色大片| 欧美高清成人免费视频www| 午夜福利18| 最近中文字幕高清免费大全6 | 桃红色精品国产亚洲av| 中文字幕av在线有码专区| 自拍偷自拍亚洲精品老妇| 两个人视频免费观看高清| 国产av一区在线观看免费| 国产一区二区三区视频了| 90打野战视频偷拍视频| 高清在线国产一区| 在线天堂最新版资源| avwww免费| 床上黄色一级片| 精品一区二区三区视频在线观看免费| 免费av毛片视频| 一区二区三区免费毛片| 蜜桃亚洲精品一区二区三区| 啦啦啦韩国在线观看视频| 一区二区三区高清视频在线| 色综合亚洲欧美另类图片| 久久久久九九精品影院| 日韩欧美国产在线观看| 亚洲成人免费电影在线观看| 在线免费观看的www视频| 一本一本综合久久| 极品教师在线视频| 搞女人的毛片| 人人妻,人人澡人人爽秒播| 露出奶头的视频| 日韩 亚洲 欧美在线| 久久久久久久久中文| 国产三级在线视频| 成年女人永久免费观看视频| 少妇裸体淫交视频免费看高清| 少妇人妻精品综合一区二区 | a在线观看视频网站| 内地一区二区视频在线| 老司机深夜福利视频在线观看| 男人舔奶头视频| 国产精品三级大全| 最近在线观看免费完整版| 丰满人妻熟妇乱又伦精品不卡| netflix在线观看网站| 亚洲精品在线美女| 99热只有精品国产| 亚洲精品影视一区二区三区av| 国产单亲对白刺激| 在线观看舔阴道视频| 老司机深夜福利视频在线观看| 深夜a级毛片| 日本免费a在线| 一级黄片播放器| 高潮久久久久久久久久久不卡| 午夜两性在线视频| 久久国产乱子伦精品免费另类| 国产蜜桃级精品一区二区三区| 舔av片在线| 亚洲成av人片免费观看| 午夜福利成人在线免费观看| 99热精品在线国产| 亚洲电影在线观看av| 亚洲av.av天堂| 高清毛片免费观看视频网站| 免费看日本二区| 国产伦一二天堂av在线观看| 午夜福利在线在线| 一夜夜www| 亚洲第一欧美日韩一区二区三区| 在线观看舔阴道视频| 国产真实伦视频高清在线观看 | 亚洲av日韩精品久久久久久密| 国产真实乱freesex| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品人妻视频免费看| 99国产精品一区二区蜜桃av| 欧美高清性xxxxhd video| 变态另类成人亚洲欧美熟女| 国产精品av视频在线免费观看| 18美女黄网站色大片免费观看| 久久人妻av系列| 一级黄色大片毛片| 国产高清激情床上av| 精品久久久久久久末码| 99热6这里只有精品| 国产精品电影一区二区三区| 日韩人妻高清精品专区| 欧美性猛交黑人性爽| 色视频www国产| 看黄色毛片网站| 亚洲 国产 在线| 久久人人爽人人爽人人片va | 亚洲欧美精品综合久久99| 国产伦在线观看视频一区| 日韩欧美 国产精品| 少妇丰满av| 欧美日韩中文字幕国产精品一区二区三区| 午夜老司机福利剧场| 免费在线观看成人毛片| 熟妇人妻久久中文字幕3abv| av天堂中文字幕网| 少妇被粗大猛烈的视频| 18禁在线播放成人免费| 欧美日韩亚洲国产一区二区在线观看| 国产乱人伦免费视频| 亚洲激情在线av| 一本一本综合久久| 午夜视频国产福利| 2021天堂中文幕一二区在线观| 亚洲av电影在线进入| 免费在线观看亚洲国产| 日韩欧美在线乱码| 变态另类成人亚洲欧美熟女| 中文字幕人成人乱码亚洲影| 深爱激情五月婷婷| 亚洲av免费高清在线观看| 窝窝影院91人妻| 欧美日本亚洲视频在线播放| av视频在线观看入口| 久久久久精品国产欧美久久久| av在线蜜桃| 18禁在线播放成人免费| 国产久久久一区二区三区| 久久精品91蜜桃| 中文字幕熟女人妻在线| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2| 国产精品免费一区二区三区在线| 少妇裸体淫交视频免费看高清| 很黄的视频免费| 真实男女啪啪啪动态图| 久久性视频一级片| 色综合欧美亚洲国产小说| 淫妇啪啪啪对白视频| 少妇高潮的动态图| 1000部很黄的大片| 成人三级黄色视频| 美女xxoo啪啪120秒动态图 | 亚洲人成网站高清观看| 国产免费男女视频| 久久香蕉精品热| 精品国产三级普通话版| 亚洲精品粉嫩美女一区| 日韩欧美免费精品| 久久99热6这里只有精品| 中文在线观看免费www的网站| 国内精品一区二区在线观看| 日韩欧美国产一区二区入口| 88av欧美| 亚洲aⅴ乱码一区二区在线播放| 国产精品美女特级片免费视频播放器| 别揉我奶头 嗯啊视频| netflix在线观看网站| 国产高清视频在线播放一区| 香蕉av资源在线| 1024手机看黄色片| 亚洲天堂国产精品一区在线| 熟妇人妻久久中文字幕3abv| 久久精品久久久久久噜噜老黄 | 国产av麻豆久久久久久久| 99国产精品一区二区三区| 国产男靠女视频免费网站| 亚洲黑人精品在线| x7x7x7水蜜桃| 国产精品99久久久久久久久| 免费无遮挡裸体视频| 中文字幕av成人在线电影| 国产亚洲欧美在线一区二区| 久久久久国内视频| 尤物成人国产欧美一区二区三区| 精品一区二区三区视频在线观看免费| 91久久精品电影网| 午夜福利欧美成人| 久久久久九九精品影院| 日韩欧美国产在线观看| 婷婷亚洲欧美| 国产一区二区在线观看日韩| 午夜福利在线观看吧| 久久精品国产99精品国产亚洲性色| 天堂av国产一区二区熟女人妻| 嫩草影视91久久| 51午夜福利影视在线观看| xxxwww97欧美| 国产激情偷乱视频一区二区| 亚洲无线观看免费| 悠悠久久av| 国产精品,欧美在线| 日本 欧美在线| 久久精品国产99精品国产亚洲性色| 首页视频小说图片口味搜索| 国产精品乱码一区二三区的特点| 国产私拍福利视频在线观看| 最后的刺客免费高清国语| 一进一出抽搐动态| 精品久久久久久久久久免费视频| 精品一区二区三区视频在线观看免费| 亚洲自拍偷在线| 搡老妇女老女人老熟妇| 观看免费一级毛片| 网址你懂的国产日韩在线| 91午夜精品亚洲一区二区三区 | 亚洲美女搞黄在线观看 | 久久久久久国产a免费观看| 男人和女人高潮做爰伦理| 一本一本综合久久| 亚洲欧美激情综合另类| 日韩欧美在线二视频| 永久网站在线| 琪琪午夜伦伦电影理论片6080| 在现免费观看毛片| 九九热线精品视视频播放| 久久6这里有精品| 久久精品国产亚洲av天美| 人妻制服诱惑在线中文字幕| 久久热精品热| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 看片在线看免费视频| 一区二区三区高清视频在线| www.999成人在线观看| 青草久久国产| 国产欧美日韩精品一区二区| 丁香欧美五月| 90打野战视频偷拍视频| 精品一区二区三区视频在线| 久久久精品大字幕| 999久久久精品免费观看国产| 免费电影在线观看免费观看| 老鸭窝网址在线观看| 国产成人欧美在线观看| 精品久久久久久久人妻蜜臀av| 国产精品1区2区在线观看.| 亚洲精品日韩av片在线观看| 国产精品一区二区三区四区久久| 久久久久久久精品吃奶| 老鸭窝网址在线观看| 国产真实乱freesex| 日韩欧美在线二视频| 757午夜福利合集在线观看| 国产三级中文精品| 亚洲精品在线观看二区| 热99在线观看视频| 男女床上黄色一级片免费看| 最近视频中文字幕2019在线8| 给我免费播放毛片高清在线观看| 国产久久久一区二区三区| 欧美高清成人免费视频www| 欧美区成人在线视频| 国产男靠女视频免费网站| 精品午夜福利在线看| 成人特级av手机在线观看| 露出奶头的视频| 亚洲av熟女| 在线免费观看不下载黄p国产 | 男人的好看免费观看在线视频| 国产在视频线在精品| 免费无遮挡裸体视频| 男人舔女人下体高潮全视频| 久久久精品欧美日韩精品| 亚洲最大成人手机在线| 久久久国产成人精品二区| 99热精品在线国产| 一级黄色大片毛片| 亚洲自拍偷在线| 国产精品三级大全| 国产亚洲精品久久久com| 日本在线视频免费播放| 久久久久久久亚洲中文字幕 | 日本免费一区二区三区高清不卡| 精品国产三级普通话版| 久久精品综合一区二区三区| av在线天堂中文字幕| 欧美zozozo另类| 日韩欧美精品免费久久 | 免费在线观看亚洲国产| 啦啦啦观看免费观看视频高清| 国产视频一区二区在线看| 18禁黄网站禁片免费观看直播| www.色视频.com| 波多野结衣高清作品| 精品久久久久久久末码| 特大巨黑吊av在线直播| 亚洲一区二区三区不卡视频| 欧美区成人在线视频| 午夜a级毛片| 日本撒尿小便嘘嘘汇集6| 又黄又爽又免费观看的视频| 黄色女人牲交| 别揉我奶头~嗯~啊~动态视频| 国产黄片美女视频| 亚洲综合色惰| 18禁在线播放成人免费| 欧美成狂野欧美在线观看| 久久久久久久久久成人| 日日摸夜夜添夜夜添av毛片 | 99精品久久久久人妻精品| 少妇高潮的动态图| 欧美黑人欧美精品刺激| 嫩草影院新地址| 国产精品野战在线观看| 欧美日本亚洲视频在线播放| 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久亚洲 | 亚洲成人久久性| 99久久精品热视频| 精品欧美国产一区二区三| 人妻久久中文字幕网| 国产在线男女| 亚洲精品亚洲一区二区| 黄色视频,在线免费观看| aaaaa片日本免费| 亚洲人成网站在线播放欧美日韩| 午夜a级毛片| 在线观看美女被高潮喷水网站 | 高清日韩中文字幕在线| 国产成人啪精品午夜网站| 国产野战对白在线观看| 99久久无色码亚洲精品果冻| 婷婷亚洲欧美| 国产一区二区激情短视频| 精品久久久久久久久久久久久| 1000部很黄的大片| 69人妻影院| 国产激情偷乱视频一区二区| 久久精品国产自在天天线| 成人性生交大片免费视频hd| 欧美最黄视频在线播放免费| 无遮挡黄片免费观看| 午夜激情福利司机影院| 91狼人影院| 国产主播在线观看一区二区| 亚洲欧美清纯卡通| 成人欧美大片| 午夜免费成人在线视频| 午夜福利在线观看吧| 欧美+日韩+精品| 一进一出好大好爽视频| 精品熟女少妇八av免费久了| 熟妇人妻久久中文字幕3abv| 亚洲激情在线av| 欧美成人一区二区免费高清观看| 免费看光身美女| 又粗又爽又猛毛片免费看| 亚洲最大成人手机在线| 小蜜桃在线观看免费完整版高清| 亚洲av第一区精品v没综合| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 亚洲人成伊人成综合网2020| 久久精品国产自在天天线| 国产精品亚洲av一区麻豆| 国产精品影院久久| 国产精品久久电影中文字幕| 亚洲国产精品999在线| 首页视频小说图片口味搜索| 91麻豆精品激情在线观看国产| 欧洲精品卡2卡3卡4卡5卡区| 搡老岳熟女国产| 久久国产精品人妻蜜桃| 丰满人妻一区二区三区视频av| 精品午夜福利视频在线观看一区| 88av欧美| 国产综合懂色| 国内揄拍国产精品人妻在线| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费| or卡值多少钱| 看黄色毛片网站| 十八禁网站免费在线| 久久精品国产亚洲av天美| 九色成人免费人妻av| 真实男女啪啪啪动态图| 色吧在线观看| 久久久久久久久中文| 欧美黄色片欧美黄色片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品久久久久久久久亚洲 | 亚洲熟妇中文字幕五十中出| 欧美乱色亚洲激情| a在线观看视频网站| 亚洲国产高清在线一区二区三| 国内精品久久久久久久电影| 两个人的视频大全免费| 亚洲avbb在线观看| 3wmmmm亚洲av在线观看| 国产精品野战在线观看| 天堂√8在线中文| 窝窝影院91人妻| 国产精品久久久久久人妻精品电影| 亚洲va日本ⅴa欧美va伊人久久| 男人和女人高潮做爰伦理| 午夜两性在线视频| 性欧美人与动物交配| 午夜影院日韩av| 男女那种视频在线观看| 一个人免费在线观看电影| 欧美+日韩+精品| 一本一本综合久久| 午夜福利欧美成人| 国产av一区在线观看免费| 中文字幕熟女人妻在线| 亚洲国产高清在线一区二区三| 日本一二三区视频观看| 国产真实伦视频高清在线观看 | 真实男女啪啪啪动态图| 美女xxoo啪啪120秒动态图 | 99国产综合亚洲精品| 免费av观看视频| 日韩欧美精品免费久久 | 丝袜美腿在线中文| 欧美最新免费一区二区三区 | 亚洲自拍偷在线| 一本久久中文字幕| 久久香蕉精品热| 性色av乱码一区二区三区2| 日韩国内少妇激情av| 久久久久久久午夜电影| 小蜜桃在线观看免费完整版高清| 热99在线观看视频| 一级黄片播放器| 欧美日韩黄片免| 免费人成视频x8x8入口观看| 赤兔流量卡办理| 久久99热这里只有精品18| 国产成人aa在线观看| 成年版毛片免费区| 综合色av麻豆| 一本精品99久久精品77| 亚洲美女黄片视频| 国产精品嫩草影院av在线观看 | 舔av片在线| 国产成人a区在线观看| 天美传媒精品一区二区| 在线十欧美十亚洲十日本专区| 久久精品影院6| 欧美不卡视频在线免费观看| 国产成人影院久久av| 丁香欧美五月| 亚洲av电影不卡..在线观看| 色哟哟哟哟哟哟| 国产成人aa在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 精品免费久久久久久久清纯| .国产精品久久| 久久99热6这里只有精品| 久久人人精品亚洲av| 日日夜夜操网爽| 国产一区二区三区在线臀色熟女| 日本熟妇午夜| 久99久视频精品免费| 婷婷精品国产亚洲av在线| 久久人妻av系列| 九色成人免费人妻av| 看黄色毛片网站| 高清毛片免费观看视频网站| ponron亚洲| 久久久久精品国产欧美久久久| 十八禁网站免费在线| 国产黄片美女视频| 午夜老司机福利剧场| 久久精品人妻少妇| 亚洲av电影不卡..在线观看| 成年女人永久免费观看视频| 国产亚洲精品av在线|