• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A path integral approach to electronic friction of a nanometer-sized tip scanning a metal surface

    2021-04-28 02:27:10YangWangandYuJia
    Communications in Theoretical Physics 2021年4期

    Yang Wangand Yu Jia

    1 School of Physics,Zhengzhou University,Zhengzhou 450001,China

    2 International Laboratory for Quantum Functional Materials of Henan,and School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450001,China

    3Key Laboratory for Special Functional Materials of Ministry of Education,and School of Materials and Engineering,Henan University,Kaifeng,475001,China

    Abstract In this work,we study the dissipation mechanism and frictional force of a nanometer-sized tip scanning a metal surface via a path integral approach.The metal,with internal degrees of freedom(c,c?)and a tip with an internal degree of freedom (d,d?) couple with one another by means of an exchanged potential,V.Having integrated out all internal degrees of freedom,we obtain the in-out amplitude.Moreover,we calculate the imaginary part of the in-out amplitude and the frictional force.We find the imaginary part of the in-out amplitude to be positive,and correlated to the sliding velocity in most cases.The frictional force is proportional to the sliding velocity for the case where v <0.01.However,for cases where v >0.01,the frictional force demonstrates nonlinear dependence on sliding velocity.

    Keywords: path integral,electronic friction,quantum field

    1.Introduction

    Electron friction has been the subject of intensive study in recent years.Due to surface force apparatus techniques[1]such as scanning probe microscopy [2],frictional drag experiments involving 2D electron systems have been performed successfully.Electronic friction is the naive damping force that nuclei experience when they move near to or within a manifold of metallic electrons[3].Generally speaking,the mass of a nucleus is much bigger than that of an electron; this results in nuclear motion being slow in comparison to electronic dynamics.As such,the Born–Oppenheimer approximation can be introduced.For instance,nuclear dynamics can be considered in terms of classical(or semi-classical)motion,whereas electron dynamics is a quantum feature.As a result,a nuclear equation of motion(EOM) can be expressed via the Langevin equation [4]:

    where t denotes time,f is the frictional force acting on the nucleus,F is the mean force,and h denotes the random force.There are various of approaches to obtaining this EOM.The main idea is to focus on the time evolution of the density operator for the electrons,and to trace over the electrons’degrees of freedom[5].The electronic friction can be derived from the EOM.The more precise approach is via the path integral and influence functional.In this approach,the random force presented as a background field and can be considered as a mean field when focusing on the classical dynamics.Via this method,the electronic friction is calculated based on the short time dynamics of the nucleus [6].Taking into account the total Hamiltonian of the system,it always contains the following terms:

    The first term refers to the kinetic energy of nucleus,the second term to the kinetic energy of electrons,the third term to the interacting energy between the nucleus and the electrons,and the fourth term to the interacting energy between electrons.The in-out amplitude of the system can be written as

    T denotes a sufficiently large time interval.Treis the partial trace over the electrons’ degrees of freedom.Thus the effective Hamiltonian reads

    Via a Hamiltonian canonical equation,we find the EOM,which is similar to equation (1).In [4],the frictional force is proportional to the relative velocityhowever,in the general case,the fluctuation effect makes all interactions mixed.As such,the frictional force may be not proportional to v[7].For constant velocity,the left hand side(LHS)of(1)is zero;this implies that the value of frictional force equals the value of other forces.In this case we can calculate the frictional force via the dissipation process.Considering that the dissipated energy excites the electrons’ degrees of freedom,the dissipated energy can then be written in the following form [8]:

    where ω denotes single particle energy.From this viewpoint we can calculate the dissipated energy involved in all possible quantum processes (i.e.,a one-loop diagram).As a result of energy balance,the frictional force is expressed as

    A remarkable example of electron friction is the frictional force induced by tunneling electrons between a particle in the tip and a metal surface.Yoichi Shigeno studied a similar model,whereby a nano-scale molecule,having a single energy level,links with an external electrode,and vibration occurs at the linkage bond [9].This model clarified the rapidity of molecule vibration damping due to the presence of electronic current at nano-contact interfaces,from a microscopic viewpoint.Feng Chen provided a more general argument for current-induced friction using near-equilibrium statistical theory [10].Federico derived general expressions for current-induced forces,using a friction coefficient via real-time diagrammatic approach [11].Niels Bode employed the scattering-matrix approach to quantum transport in order to develop a unified theory of nanoelectromechanical systems out of equilibrium,finding that in out-ofequilibrium situations,current-induced forces can destabilize mechanical vibrations,resulting in limit cycle dynamics[12].All of the above works are related to dissipation effects,and their corresponding theories can be regarded as forms of linear response theory.These works focus on the frictional coefficient,owing to the linear dependence of velocity.In this paper,we consider a model consisting of a 2D metal substrate and a scanning tunneling microscope(STM)tip.The tip slides relative to the 2D metal at a constant velocity.We employ the functional approach to derive the expression of the imaginary part of the inout amplitude for the model,which is related to the dissipation effect.In addition,we obtain the expression of the frictional force and the function graph between frictional force and relative velocity.

    2.Model Hamiltonian

    The model considered in this paper consists of a 2D metal and a scanning tunneling microscope(STM)tip.The tip moves parallel to the metal surface at a constant velocity,v,with no contact between the two.We select the rest frame of the substrate to be

    where x0is time coordinate,and x1and x2are the two-dimensional Cartesian coordinates of the metal surface

    The schematic diagram of the system is shown in figure 1.We label the corresponding Fourier momentum coordinates via

    At any time x0,the coordinate of the tip reads

    The Hamiltonian of the system reads

    Here,the first and second terms are the energies of electrons in the tip;ε is a tip-site energy,while J denotes the repulsion energy between electrons.The third term is the tight-binding Hamiltonian of conducting electrons in metal,and the angle bracket indicates that the summation runs over the nearest neighbor lattices;Tijis the hopping energy in-between.The fourth term is the so-called Anderson s-d model,representing the contribution from the interaction between the metal electrons and the tip electrons[13],and the delta function indicates that the s-d interaction only exists at the tip location.Here,the energy U,corresponding to the so-called surface potential experienced by the metal electrons,is taken into account.This energy causes the on-site energy of the metal electrons to change,via Fourier transformation:

    where the Hamiltonian of the system reads

    Figure 1.The model: a nanometer-sized tip scanning a metal surface.

    Without loss of generality we choose the relative velocity v along the x1axis to be

    and introduce the Galilean boost matrix along the x1axis,

    where its corresponding matrix is

    This leads to the coordinate transformation

    such that the spatial coordinates of the tip become

    Therefore,the inner products of the space vector on the exponential in the Hamiltonian are

    The Hamiltonian becomes

    3.The effective action

    By introducing a Legendre transformation,the action of the system can be written as

    There is a quartic term in this action,via the following transformation [14]:

    The quartic term can be written as

    Therefore the action reads

    We introduce the mean field approximation by means of a Hubbard–Stratonovich transformation [15]:

    The in-out amplitude can be written as a functional integral.Here,we use the natural unit

    and the new action reads

    The mean field approximation suggests that the two auxiliary fields are equal to their mean values; thus the following selfconsistent equations hold [15]:

    Here,the electron single occupancy condition is taken into account,such that

    Using (26)–(29)we obtain

    We then obtain the effective action under the mean field approximation as

    4.The in-out amplitude

    In the case where v=0,the model exhibits the corresponding socalled in ground state [16],so that there is no excitation of internal degrees of freedom.If we add an external force on the tip to make it slide,the internal degrees of freedom in the tip and the metal around the slip line are temporally excited; thus the total energy rises.Subsequently,the system transfers to the so-called out ground state[16]and the total energy therefore decreases.As the result of these two competing effects,the system exhibits a non-equilibrium steady state,dependent on the sliding velocity,v.Here,we refer to the transition amplitude between in ground state and out ground state as the in-out amplitude.The in-out amplitude equation (3) can be written as a functional integral

    Here,Γ is the amplitude contributed by the one-particle irreducible Feynman diagram[17].If the system has no dissipation,Z must can be normalized.Thus Γ must have a real value.If the system is a dissipative system,Z must not be normalized,and therefore Γ must contain an imaginary component [17].Having integrated out the degrees of freedom c and d,the connected inout amplitude is

    where the functions are

    Dropping a factor which does not depend on relative velocity v,we obtain

    If we assume that the coupling constants U and V are small enough,the last term can be perturbatively expanded,and up to the second order of UV2,the in-out amplitude then becomes

    Figure 2.Galilean boost of the in-out amplitude.

    Via Fourier transformation,the in-out amplitude can be written in frequency space.By means of straightforward calculation,the leading order terms are as follows:

    and the second order terms are

    These terms are known as the symmetric terms.In addition,

    We call this term the cross term.T is the total time.Here,we note that the Galilean boost transforms the in-out amplitude;the corresponding Feynman diagram is shown in figure 2.

    5.Imaginary part of the in-out amplitude

    The imaginary part of the in-out amplitude represents the excitation of the internal degree of freedom on the metal and the tip,and this excitation leads to dissipation.In this section,we obtain the expression of the imaginary part of the in-out amplitude,and study the relationship between the imaginary part of the in-out amplitude and the sliding velocity.In order to perform the integral over k0,we choose a closed contour formed by the real axes,and a half circle with very large radius on the bottom half complex plane.For the first order terms,using Cauchy’s theorem,we find that these terms vanish.For the second order terms,Cauchy’s theorem indicates that the symmetric terms also vanish.As such,the only nontrivial contribution to the in-out amplitude is the cross term.We rewrite this as

    where the integrand

    has four poles on the bottom half plane:

    We perform the Cauchy integral along the closed contour.Since perturbative expansion can also lead to an imaginary part which independent of the tip’s velocity,we focus only on the tip velocity-dependent imaginary part.Therefore we only select poles 2,3,and 4.The corresponding residues are

    Taking into account the continuous limitation,the summation over momentum k can be replaced by the integral.Thus the inout amplitude becomes

    where Ω is the total area of the substrate.We can set Rl=0 without loss of generality.The in-out amplitude reads

    Taking into account all of the above,and using the identity

    the imaginary part of the in-out amplitude can be calculated as follows:

    The numerical results are shown in figures 3 and 4.It can be seen that the imaginary part of the in-out amplitude and the sliding velocity are positively correlated for different J in figure 3.J=0.3 is a special case,as shown in equation (57).When J=0.3,the second and the last terms of equation(57)give two very large contributions ofwhere N is a very large constant.Moreover,when v →0,this result is divergent.This implies that there must be extra dissipation caused by some new degrees of freedom.Here,J=0.3 means J=ε.Actually,this implies the formation of a local magnetic moment relating to the electrons on the tip.The new degree of freedom is therefore the local spin on the tip.Generally speaking,this large term with respect to the imaginary part of the in-out amplitude does not contribute to frictional force.We will expand on this point in the next section.

    Figure 3.The imaginary part of the in-out amplitude as a function of the relative velocity,v,for the typical caseε=0.3,J=0.1,0.2,0.4,0.5,=0.3,in units of 4πUV2ΩT.

    6.Dissipation and frictional force

    The transition probability is

    Therefore,the in-out probability contributed only by the connected diagrams is

    On the other hand,dissipation arises when the in ground state of the system becomes unstable against the production of onshell c-electrons and on-shell d-electrons [18].As such,the transition probability can be written as

    f(k0)is the probability amplitude of creating an electron with energy and momentum k per unit time and area.The dissipation energy during time T is

    The dissipative power per unit area is

    The dumped power is provided by an external source,which keeps the tip moving at a constant velocity,against the frictional force.Thus the energy balance is

    and the expression of frictional force is

    The numerical result is shown in figure 5.The frictional force is proportional to the sliding velocity when v <0.01 for different J.In contrast,for the case where v >0.01,the frictional force exhibited nonlinear dependence on sliding velocity.This phenomenon may be justified as follows: let us consider the momentum and energy balance in a time interval ΔT,assuming that in the first period of time both the frictional force and the dissipated energy are driven by the excitation of c-electrons.The change in the c-electrons’momentum reads as

    the change of the on-shell c-electrons energy reads

    the condition of c-electrons being excited reads

    and therefore

    when v <0.01,ΔP1<0.033;as such,only c-electrons with a momentum of less than 0.033 are excited.When v >0.01,celectrons with a momentum greater than 0.033 are excited.This leads to vΔP1>ε.Therefore,d-electrons on the tip are excited,and are interacting with c-electrons.This leads to a sharp increase in dissipated power.The dependence of frictional force on velocity will change.Moreover,J=0.3 is still a special case.In equation(63),J=0.3 means that the second and the last terms will vanish.This implies that the large term,of the imaginary part of the in-out amplitude does not contribute to frictional force,unless we consider the new degrees of freedom caused by the formation of a local magnetic moment on the tip.

    7.Conclusions and outlooks

    In this paper,we have studied the dissipation mechanism and frictional force of a nanometer-sized tip scanning a metal surface,via a path integral approach.The interaction between the 2+1d spinor field in the 2D metal and the 0+1 spinor field in the tip has been taken into account via the coupling constant V.We have seen that the relative motion may generate an imaginary component in the in-out amplitude.Dissipation arises here due to the in ground state of the system being unstable due to the production of on-shell c-electrons and onshell d-electrons.These internal degrees of freedom in the tip and the metal around the slip line are temporally excited,and thus the total energy rises.Subsequently,the system transfer to the out ground state,and thus the total energy decreases.As a result of these two competing effects,the system exhibits a non-equilibrium steady state,which depends on the sliding velocity,v.We also compute the frictional force.

    The numerical results of the in-out amplitude show that the imaginary part of the in-out amplitude and the sliding velocity are related in quadratic function.In addition,the frictional force is proportional to the sliding velocity for the case v <0.01.In contrast,for the case where v >0.01,the frictional force demonstrates nonlinear dependence with respect to sliding velocity; we have provided a classical explanation for this phenomenon.

    Figure 5.Frictional force as a function of relative velocity,v,for the typical case ε= 0.3,J= 0.1,0.2,0.3,0.4,0.5=0.3,in units of 4πUV2.

    In [18],the dissipation mechanism was attributed to the production of on-shell fermion pairs induced by some timedependent external source.Via relative motion,the vacuum state of the electromagnetic field plays the role of a time-dependent external source.In our paper,however,there is no vacuum electromagnetic field; instead,there are two coupling constants,U and V.Equation (23) shows that the relative motion causes U and V to acquire a time-dependent phase factor,eik1vx0,for every momentum k.In this instance,the relative motion causes U and V to become two timedependent external sources.Therefore the system becomes an open system,and the internal degrees of freedom are excited by the time-dependent external source.This leads to energy and momentum flowing into or out of the interacting vertices,as shown in figure 2.

    In one of our ongoing works relating to sliding friction between a magnetic tip and a ferromagnetic surface,we are employing a similar approach to that employed in this work.We started from an anisotropic Heisenberg Hamiltonian

    where the first term is the magnetic exchange energy between spins in the ferromagnetic surface,and the second term is the magnetic exchange energy between the tip spin and the surface spin located on the i-th site.The surface potential induced by the magnetic tip always has the formBy means of a boost transformation between the tip and the substrate,a Holstein–Primakoff transformation,and a Fourier transformation,we obtain a Hamiltonian similar to that in equation (23):

    equations (23) and (69) will then be similar to one another.We therefore conclude that the sliding friction in this system may have the same v-dependence as the sliding friction in the electronic system.In[7],Fusco and Wolf simulated this kind of magnetic friction,and their results were similar to ours.Although the sliding friction in electronic systems and the sliding friction in magnetic systems originate from different physics,the interaction terms in their Hamiltonians have a similar form to the Anderson s-d model.This kind of interaction always results in sliding friction with a linear dependence on v,if |v| is small.

    Acknowledgments

    We would like to thank Qiang Sun,Kai Li,and Fei Wang for valuable insights and discussions.

    ORCID iDs

    日本一本二区三区精品| 亚洲五月天丁香| 午夜亚洲福利在线播放| 特大巨黑吊av在线直播| 国产精品99久久99久久久不卡| 国产一级毛片七仙女欲春2| 又粗又爽又猛毛片免费看| 最近最新免费中文字幕在线| 欧美日韩黄片免| 麻豆一二三区av精品| 日韩三级视频一区二区三区| 亚洲欧美精品综合一区二区三区| 免费看a级黄色片| 天天一区二区日本电影三级| 亚洲成a人片在线一区二区| 亚洲真实伦在线观看| 校园春色视频在线观看| a在线观看视频网站| 亚洲精品一区av在线观看| 亚洲国产精品久久男人天堂| 丝袜美腿诱惑在线| 一进一出好大好爽视频| 黑人欧美特级aaaaaa片| 日本a在线网址| 久久精品国产清高在天天线| 午夜两性在线视频| 国产视频内射| 99精品久久久久人妻精品| netflix在线观看网站| www.www免费av| 欧美一区二区精品小视频在线| 国产单亲对白刺激| 亚洲人成电影免费在线| 久久亚洲精品不卡| 成人18禁在线播放| 免费人成视频x8x8入口观看| 亚洲中文av在线| 成人永久免费在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 极品教师在线免费播放| 午夜福利在线在线| 午夜成年电影在线免费观看| 日日干狠狠操夜夜爽| 天天添夜夜摸| 妹子高潮喷水视频| 日本三级黄在线观看| 1024手机看黄色片| 国模一区二区三区四区视频 | 淫秽高清视频在线观看| 999精品在线视频| 欧美日韩精品网址| 99国产精品一区二区蜜桃av| 999精品在线视频| 亚洲在线自拍视频| 黄色片一级片一级黄色片| 97人妻精品一区二区三区麻豆| 成人特级黄色片久久久久久久| 国产精品野战在线观看| a在线观看视频网站| 久久久久亚洲av毛片大全| 夜夜看夜夜爽夜夜摸| 可以免费在线观看a视频的电影网站| 中文字幕人妻丝袜一区二区| 久久久久久人人人人人| 欧美日韩精品网址| 亚洲精品国产一区二区精华液| 狠狠狠狠99中文字幕| 老汉色av国产亚洲站长工具| 色老头精品视频在线观看| 亚洲色图 男人天堂 中文字幕| 99riav亚洲国产免费| 日韩欧美精品v在线| 日韩大尺度精品在线看网址| 人妻久久中文字幕网| 99久久无色码亚洲精品果冻| 丁香欧美五月| 99久久久亚洲精品蜜臀av| 国产精品国产高清国产av| 欧美高清成人免费视频www| 级片在线观看| 国产男靠女视频免费网站| 欧美一区二区精品小视频在线| 日本黄大片高清| 国产午夜福利久久久久久| 好男人电影高清在线观看| 国产精品影院久久| 麻豆久久精品国产亚洲av| 亚洲 欧美 日韩 在线 免费| 白带黄色成豆腐渣| 久热爱精品视频在线9| 日本黄大片高清| 亚洲国产精品sss在线观看| 啦啦啦免费观看视频1| 成人永久免费在线观看视频| 国产aⅴ精品一区二区三区波| 极品教师在线免费播放| 欧美黑人精品巨大| 看黄色毛片网站| 一进一出抽搐动态| 日韩欧美免费精品| www.自偷自拍.com| 一级黄色大片毛片| 国产1区2区3区精品| 免费在线观看黄色视频的| 香蕉国产在线看| 午夜福利免费观看在线| 男女午夜视频在线观看| 午夜影院日韩av| 国产精品1区2区在线观看.| 中文字幕精品亚洲无线码一区| 亚洲国产欧美人成| 久热爱精品视频在线9| 日韩欧美在线二视频| 给我免费播放毛片高清在线观看| 免费电影在线观看免费观看| 曰老女人黄片| 色综合欧美亚洲国产小说| 99在线视频只有这里精品首页| 久久久国产精品麻豆| 亚洲性夜色夜夜综合| 亚洲成人精品中文字幕电影| 亚洲成av人片在线播放无| 国产伦一二天堂av在线观看| 国产视频内射| 老鸭窝网址在线观看| 成人午夜高清在线视频| 嫩草影视91久久| 国产免费男女视频| 757午夜福利合集在线观看| 午夜成年电影在线免费观看| 国产精品av视频在线免费观看| 免费无遮挡裸体视频| 高潮久久久久久久久久久不卡| 国产精品 国内视频| 美女高潮喷水抽搐中文字幕| 男人舔奶头视频| netflix在线观看网站| 精品久久久久久成人av| 午夜免费激情av| 九色成人免费人妻av| 亚洲激情在线av| 国产成人精品久久二区二区免费| 精品熟女少妇八av免费久了| 母亲3免费完整高清在线观看| 久久这里只有精品中国| 日本熟妇午夜| 精品欧美一区二区三区在线| 久久九九热精品免费| 麻豆久久精品国产亚洲av| 亚洲第一电影网av| 亚洲国产中文字幕在线视频| 最近最新中文字幕大全免费视频| 久久香蕉精品热| 成人国产一区最新在线观看| 国产伦在线观看视频一区| 亚洲欧美精品综合一区二区三区| 亚洲精品av麻豆狂野| 精品无人区乱码1区二区| 色播亚洲综合网| 国产蜜桃级精品一区二区三区| 国产精品,欧美在线| 欧美不卡视频在线免费观看 | 悠悠久久av| 色老头精品视频在线观看| 一区二区三区国产精品乱码| 欧美又色又爽又黄视频| 亚洲精品色激情综合| 又黄又粗又硬又大视频| 97碰自拍视频| 国产一区二区三区在线臀色熟女| bbb黄色大片| 久久精品国产亚洲av高清一级| 中文在线观看免费www的网站 | 在线永久观看黄色视频| 国产精品免费视频内射| 精品第一国产精品| 国产在线精品亚洲第一网站| 99热这里只有是精品50| 色尼玛亚洲综合影院| 亚洲国产精品合色在线| 亚洲专区国产一区二区| 日日爽夜夜爽网站| www.自偷自拍.com| 99精品欧美一区二区三区四区| xxx96com| 99精品久久久久人妻精品| 青草久久国产| 久久人妻福利社区极品人妻图片| 精品乱码久久久久久99久播| 亚洲精品在线观看二区| 亚洲午夜精品一区,二区,三区| 黄色 视频免费看| 天天一区二区日本电影三级| 18禁观看日本| 女同久久另类99精品国产91| 国产三级在线视频| 亚洲人成网站在线播放欧美日韩| 久久欧美精品欧美久久欧美| 国产精品1区2区在线观看.| 变态另类成人亚洲欧美熟女| 国产在线精品亚洲第一网站| 免费无遮挡裸体视频| 欧美乱码精品一区二区三区| 亚洲在线自拍视频| 婷婷丁香在线五月| 欧美日韩一级在线毛片| 女警被强在线播放| 国产三级黄色录像| 亚洲五月婷婷丁香| 久久亚洲真实| 国产麻豆成人av免费视频| 国产精品自产拍在线观看55亚洲| 免费电影在线观看免费观看| 伊人久久大香线蕉亚洲五| 日本熟妇午夜| 午夜福利在线在线| 三级国产精品欧美在线观看 | aaaaa片日本免费| 国产精品久久久久久人妻精品电影| 99在线视频只有这里精品首页| 久久精品国产亚洲av高清一级| bbb黄色大片| 黄片大片在线免费观看| 毛片女人毛片| 亚洲熟妇中文字幕五十中出| 在线观看www视频免费| 久久精品91蜜桃| 国产99久久九九免费精品| 色老头精品视频在线观看| 美女扒开内裤让男人捅视频| 久久人妻av系列| 国内久久婷婷六月综合欲色啪| 久久久精品大字幕| 中文字幕最新亚洲高清| 精品久久久久久久末码| 两人在一起打扑克的视频| 成人av在线播放网站| 中文字幕最新亚洲高清| 亚洲免费av在线视频| 中出人妻视频一区二区| 又爽又黄无遮挡网站| 桃色一区二区三区在线观看| 久久草成人影院| 国产区一区二久久| 一本精品99久久精品77| 99久久国产精品久久久| 亚洲七黄色美女视频| 亚洲aⅴ乱码一区二区在线播放 | 精品高清国产在线一区| 可以在线观看毛片的网站| 亚洲午夜理论影院| 久久 成人 亚洲| 国产av一区在线观看免费| 亚洲精品av麻豆狂野| 国产成人av激情在线播放| 国产精品电影一区二区三区| 成人欧美大片| 在线观看舔阴道视频| 又黄又爽又免费观看的视频| 曰老女人黄片| 久久久久久九九精品二区国产 | 色精品久久人妻99蜜桃| 琪琪午夜伦伦电影理论片6080| 搡老妇女老女人老熟妇| 十八禁网站免费在线| 在线观看午夜福利视频| 99riav亚洲国产免费| 18禁黄网站禁片午夜丰满| 精品熟女少妇八av免费久了| svipshipincom国产片| 色尼玛亚洲综合影院| 国产精品乱码一区二三区的特点| 免费在线观看视频国产中文字幕亚洲| 亚洲av成人不卡在线观看播放网| 久久精品人妻少妇| 精品乱码久久久久久99久播| 国产精品98久久久久久宅男小说| 日日摸夜夜添夜夜添小说| 午夜日韩欧美国产| 国产亚洲精品av在线| 好男人电影高清在线观看| 男女午夜视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲av第一区精品v没综合| 午夜福利在线观看吧| 男人的好看免费观看在线视频 | 日日摸夜夜添夜夜添小说| 一本综合久久免费| 国产精品98久久久久久宅男小说| 国内少妇人妻偷人精品xxx网站 | 久久国产乱子伦精品免费另类| 一级a爱片免费观看的视频| 亚洲人成77777在线视频| av在线天堂中文字幕| 国产日本99.免费观看| 又爽又黄无遮挡网站| 日韩大尺度精品在线看网址| 又黄又粗又硬又大视频| av福利片在线观看| 亚洲专区中文字幕在线| 成人三级黄色视频| 亚洲国产欧美人成| 日本免费a在线| 国产v大片淫在线免费观看| 亚洲第一欧美日韩一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产片内射在线| 日日摸夜夜添夜夜添小说| 熟妇人妻久久中文字幕3abv| 在线观看免费视频日本深夜| 国内少妇人妻偷人精品xxx网站 | 国产av一区二区精品久久| 午夜福利欧美成人| 亚洲七黄色美女视频| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 天堂av国产一区二区熟女人妻 | 久久精品91蜜桃| 午夜免费观看网址| 亚洲熟妇中文字幕五十中出| 18禁裸乳无遮挡免费网站照片| 日日干狠狠操夜夜爽| 香蕉国产在线看| 99久久国产精品久久久| 精品国产乱子伦一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲av成人精品一区久久| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久免费视频了| 男女那种视频在线观看| 精品少妇一区二区三区视频日本电影| 999精品在线视频| 黄色视频不卡| 日本免费a在线| 欧美一级毛片孕妇| 免费看日本二区| 久久久久久久久中文| 日日摸夜夜添夜夜添小说| 日本熟妇午夜| 国产精品久久久久久久电影 | 97超级碰碰碰精品色视频在线观看| 中文字幕精品亚洲无线码一区| 成人精品一区二区免费| av福利片在线观看| 免费看a级黄色片| 亚洲av美国av| 国产亚洲精品久久久久5区| 女警被强在线播放| 亚洲男人的天堂狠狠| 精品国产亚洲在线| 亚洲自拍偷在线| 欧美一区二区国产精品久久精品 | 久久精品国产99精品国产亚洲性色| 中文字幕高清在线视频| 欧美日韩国产亚洲二区| 麻豆一二三区av精品| 国产av麻豆久久久久久久| 国产亚洲精品av在线| 一二三四在线观看免费中文在| 久久欧美精品欧美久久欧美| 五月玫瑰六月丁香| 亚洲精品美女久久av网站| 免费在线观看成人毛片| 天堂影院成人在线观看| 日本黄色视频三级网站网址| av福利片在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 我要搜黄色片| 久久午夜亚洲精品久久| 人妻久久中文字幕网| 夜夜躁狠狠躁天天躁| 国产精品一区二区三区四区免费观看 | 少妇被粗大的猛进出69影院| 欧美黑人精品巨大| 99热只有精品国产| 亚洲一码二码三码区别大吗| 亚洲最大成人中文| 久久久精品大字幕| 国产成人av激情在线播放| av免费在线观看网站| 91在线观看av| 国产精品久久久久久亚洲av鲁大| 午夜福利欧美成人| 国产成人精品久久二区二区91| tocl精华| 精品久久久久久久久久久久久| 国产午夜精品论理片| 在线观看66精品国产| 国产真人三级小视频在线观看| 黄片小视频在线播放| 18美女黄网站色大片免费观看| 免费在线观看黄色视频的| 看免费av毛片| 亚洲色图av天堂| 精华霜和精华液先用哪个| 婷婷六月久久综合丁香| 69av精品久久久久久| 亚洲欧美精品综合久久99| 麻豆一二三区av精品| 亚洲一区中文字幕在线| 一区二区三区高清视频在线| 欧美午夜高清在线| 禁无遮挡网站| 人人妻人人看人人澡| 亚洲成人久久性| 中文字幕高清在线视频| 欧美精品啪啪一区二区三区| 国产av一区二区精品久久| 久久久精品欧美日韩精品| 成年免费大片在线观看| 黄色成人免费大全| www日本在线高清视频| 欧美黄色淫秽网站| 成人国语在线视频| 久久热在线av| av中文乱码字幕在线| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器 | 国产精品免费视频内射| 神马国产精品三级电影在线观看 | 一进一出抽搐动态| 黄色a级毛片大全视频| 好男人电影高清在线观看| 女生性感内裤真人,穿戴方法视频| 久久久久国产一级毛片高清牌| 真人做人爱边吃奶动态| 国产精品野战在线观看| 此物有八面人人有两片| 一级a爱片免费观看的视频| 亚洲国产精品成人综合色| 色综合欧美亚洲国产小说| 久久久久国产精品人妻aⅴ院| 久久精品aⅴ一区二区三区四区| 精品第一国产精品| 亚洲熟女毛片儿| 老鸭窝网址在线观看| 国产精品乱码一区二三区的特点| 国产精品一及| 国产v大片淫在线免费观看| 美女大奶头视频| 久久久久久亚洲精品国产蜜桃av| 成人国产一区最新在线观看| 国产成人aa在线观看| 激情在线观看视频在线高清| 日本免费a在线| 一本大道久久a久久精品| or卡值多少钱| 级片在线观看| 欧美黑人精品巨大| 欧洲精品卡2卡3卡4卡5卡区| 国产不卡一卡二| 又爽又黄无遮挡网站| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| 男人舔奶头视频| 免费人成视频x8x8入口观看| 啦啦啦观看免费观看视频高清| 久久久久久久久久黄片| 国产v大片淫在线免费观看| 99国产极品粉嫩在线观看| 欧美色欧美亚洲另类二区| 亚洲乱码一区二区免费版| 国产av又大| 手机成人av网站| 亚洲av第一区精品v没综合| 99久久99久久久精品蜜桃| 国产一区二区激情短视频| 久久草成人影院| 午夜福利在线在线| 亚洲人成伊人成综合网2020| 999精品在线视频| 欧美zozozo另类| 婷婷亚洲欧美| 男女视频在线观看网站免费 | 国产成人系列免费观看| 亚洲一区高清亚洲精品| 免费看a级黄色片| 久99久视频精品免费| 精品少妇一区二区三区视频日本电影| 亚洲狠狠婷婷综合久久图片| 两人在一起打扑克的视频| 一本精品99久久精品77| 国产精品香港三级国产av潘金莲| 久久久国产成人免费| 欧美日韩乱码在线| 韩国av一区二区三区四区| 免费av毛片视频| 夜夜夜夜夜久久久久| 99久久久亚洲精品蜜臀av| 十八禁人妻一区二区| 熟妇人妻久久中文字幕3abv| 亚洲性夜色夜夜综合| 亚洲 欧美一区二区三区| 亚洲,欧美精品.| 老司机福利观看| 精华霜和精华液先用哪个| 国产激情久久老熟女| 久久人人精品亚洲av| 美女 人体艺术 gogo| 在线观看www视频免费| 1024视频免费在线观看| 亚洲熟女毛片儿| 欧美日韩福利视频一区二区| 国产一级毛片七仙女欲春2| 亚洲一码二码三码区别大吗| 国产伦一二天堂av在线观看| 久久香蕉国产精品| 50天的宝宝边吃奶边哭怎么回事| 久久这里只有精品中国| 97碰自拍视频| 最近最新中文字幕大全免费视频| 久久久精品大字幕| 久久久久久大精品| 好看av亚洲va欧美ⅴa在| av在线天堂中文字幕| netflix在线观看网站| 国产精品av久久久久免费| 精品一区二区三区av网在线观看| av欧美777| 午夜老司机福利片| 一边摸一边做爽爽视频免费| 麻豆久久精品国产亚洲av| 99久久久亚洲精品蜜臀av| 欧美日韩一级在线毛片| 亚洲成人久久性| 亚洲精品色激情综合| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 免费在线观看成人毛片| 亚洲av成人不卡在线观看播放网| a级毛片在线看网站| 日日摸夜夜添夜夜添小说| 亚洲av成人av| 久久草成人影院| 亚洲国产高清在线一区二区三| 亚洲一码二码三码区别大吗| 成人欧美大片| 日韩欧美一区二区三区在线观看| 精品一区二区三区四区五区乱码| 日韩欧美国产一区二区入口| 最近最新免费中文字幕在线| 9191精品国产免费久久| 黄色视频,在线免费观看| 午夜精品一区二区三区免费看| 国产男靠女视频免费网站| 99久久国产精品久久久| 国产99白浆流出| av视频在线观看入口| 欧美高清成人免费视频www| 老汉色av国产亚洲站长工具| 99热这里只有精品一区 | 青草久久国产| 99久久久亚洲精品蜜臀av| 午夜精品在线福利| 久久久久国产精品人妻aⅴ院| 亚洲精品粉嫩美女一区| 日本一本二区三区精品| 久久久久久免费高清国产稀缺| 久久精品综合一区二区三区| 99国产精品99久久久久| 亚洲成人精品中文字幕电影| 两个人视频免费观看高清| 天天一区二区日本电影三级| 日本免费a在线| 真人做人爱边吃奶动态| 欧美黄色片欧美黄色片| 50天的宝宝边吃奶边哭怎么回事| av欧美777| 可以免费在线观看a视频的电影网站| 无遮挡黄片免费观看| 热99re8久久精品国产| 亚洲电影在线观看av| 亚洲五月天丁香| 麻豆成人av在线观看| 欧美zozozo另类| 无限看片的www在线观看| 欧美成人性av电影在线观看| 色综合婷婷激情| 19禁男女啪啪无遮挡网站| 日韩大尺度精品在线看网址| 亚洲性夜色夜夜综合| 99国产精品99久久久久| 天堂动漫精品| 久久久久久久久免费视频了| 久久香蕉国产精品| 高潮久久久久久久久久久不卡| 国产真人三级小视频在线观看| 国产激情久久老熟女| 中文字幕人成人乱码亚洲影| 国产视频内射| 午夜福利在线在线| 成人亚洲精品av一区二区| 国产av在哪里看| 国产麻豆成人av免费视频| 天天躁夜夜躁狠狠躁躁| 麻豆成人午夜福利视频| 亚洲精品中文字幕在线视频| 午夜免费激情av| 老熟妇仑乱视频hdxx| 久9热在线精品视频| 亚洲 欧美 日韩 在线 免费| 日本一二三区视频观看| 亚洲精品一卡2卡三卡4卡5卡| 黄频高清免费视频| 国产午夜精品论理片| 亚洲av第一区精品v没综合| 搞女人的毛片| 日本免费a在线| 欧美精品亚洲一区二区| 在线观看美女被高潮喷水网站 | 成人av在线播放网站| 999久久久精品免费观看国产| 久久久久国内视频|