• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A path integral approach to electronic friction of a nanometer-sized tip scanning a metal surface

    2021-04-28 02:27:10YangWangandYuJia
    Communications in Theoretical Physics 2021年4期

    Yang Wangand Yu Jia

    1 School of Physics,Zhengzhou University,Zhengzhou 450001,China

    2 International Laboratory for Quantum Functional Materials of Henan,and School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450001,China

    3Key Laboratory for Special Functional Materials of Ministry of Education,and School of Materials and Engineering,Henan University,Kaifeng,475001,China

    Abstract In this work,we study the dissipation mechanism and frictional force of a nanometer-sized tip scanning a metal surface via a path integral approach.The metal,with internal degrees of freedom(c,c?)and a tip with an internal degree of freedom (d,d?) couple with one another by means of an exchanged potential,V.Having integrated out all internal degrees of freedom,we obtain the in-out amplitude.Moreover,we calculate the imaginary part of the in-out amplitude and the frictional force.We find the imaginary part of the in-out amplitude to be positive,and correlated to the sliding velocity in most cases.The frictional force is proportional to the sliding velocity for the case where v <0.01.However,for cases where v >0.01,the frictional force demonstrates nonlinear dependence on sliding velocity.

    Keywords: path integral,electronic friction,quantum field

    1.Introduction

    Electron friction has been the subject of intensive study in recent years.Due to surface force apparatus techniques[1]such as scanning probe microscopy [2],frictional drag experiments involving 2D electron systems have been performed successfully.Electronic friction is the naive damping force that nuclei experience when they move near to or within a manifold of metallic electrons[3].Generally speaking,the mass of a nucleus is much bigger than that of an electron; this results in nuclear motion being slow in comparison to electronic dynamics.As such,the Born–Oppenheimer approximation can be introduced.For instance,nuclear dynamics can be considered in terms of classical(or semi-classical)motion,whereas electron dynamics is a quantum feature.As a result,a nuclear equation of motion(EOM) can be expressed via the Langevin equation [4]:

    where t denotes time,f is the frictional force acting on the nucleus,F is the mean force,and h denotes the random force.There are various of approaches to obtaining this EOM.The main idea is to focus on the time evolution of the density operator for the electrons,and to trace over the electrons’degrees of freedom[5].The electronic friction can be derived from the EOM.The more precise approach is via the path integral and influence functional.In this approach,the random force presented as a background field and can be considered as a mean field when focusing on the classical dynamics.Via this method,the electronic friction is calculated based on the short time dynamics of the nucleus [6].Taking into account the total Hamiltonian of the system,it always contains the following terms:

    The first term refers to the kinetic energy of nucleus,the second term to the kinetic energy of electrons,the third term to the interacting energy between the nucleus and the electrons,and the fourth term to the interacting energy between electrons.The in-out amplitude of the system can be written as

    T denotes a sufficiently large time interval.Treis the partial trace over the electrons’ degrees of freedom.Thus the effective Hamiltonian reads

    Via a Hamiltonian canonical equation,we find the EOM,which is similar to equation (1).In [4],the frictional force is proportional to the relative velocityhowever,in the general case,the fluctuation effect makes all interactions mixed.As such,the frictional force may be not proportional to v[7].For constant velocity,the left hand side(LHS)of(1)is zero;this implies that the value of frictional force equals the value of other forces.In this case we can calculate the frictional force via the dissipation process.Considering that the dissipated energy excites the electrons’ degrees of freedom,the dissipated energy can then be written in the following form [8]:

    where ω denotes single particle energy.From this viewpoint we can calculate the dissipated energy involved in all possible quantum processes (i.e.,a one-loop diagram).As a result of energy balance,the frictional force is expressed as

    A remarkable example of electron friction is the frictional force induced by tunneling electrons between a particle in the tip and a metal surface.Yoichi Shigeno studied a similar model,whereby a nano-scale molecule,having a single energy level,links with an external electrode,and vibration occurs at the linkage bond [9].This model clarified the rapidity of molecule vibration damping due to the presence of electronic current at nano-contact interfaces,from a microscopic viewpoint.Feng Chen provided a more general argument for current-induced friction using near-equilibrium statistical theory [10].Federico derived general expressions for current-induced forces,using a friction coefficient via real-time diagrammatic approach [11].Niels Bode employed the scattering-matrix approach to quantum transport in order to develop a unified theory of nanoelectromechanical systems out of equilibrium,finding that in out-ofequilibrium situations,current-induced forces can destabilize mechanical vibrations,resulting in limit cycle dynamics[12].All of the above works are related to dissipation effects,and their corresponding theories can be regarded as forms of linear response theory.These works focus on the frictional coefficient,owing to the linear dependence of velocity.In this paper,we consider a model consisting of a 2D metal substrate and a scanning tunneling microscope(STM)tip.The tip slides relative to the 2D metal at a constant velocity.We employ the functional approach to derive the expression of the imaginary part of the inout amplitude for the model,which is related to the dissipation effect.In addition,we obtain the expression of the frictional force and the function graph between frictional force and relative velocity.

    2.Model Hamiltonian

    The model considered in this paper consists of a 2D metal and a scanning tunneling microscope(STM)tip.The tip moves parallel to the metal surface at a constant velocity,v,with no contact between the two.We select the rest frame of the substrate to be

    where x0is time coordinate,and x1and x2are the two-dimensional Cartesian coordinates of the metal surface

    The schematic diagram of the system is shown in figure 1.We label the corresponding Fourier momentum coordinates via

    At any time x0,the coordinate of the tip reads

    The Hamiltonian of the system reads

    Here,the first and second terms are the energies of electrons in the tip;ε is a tip-site energy,while J denotes the repulsion energy between electrons.The third term is the tight-binding Hamiltonian of conducting electrons in metal,and the angle bracket indicates that the summation runs over the nearest neighbor lattices;Tijis the hopping energy in-between.The fourth term is the so-called Anderson s-d model,representing the contribution from the interaction between the metal electrons and the tip electrons[13],and the delta function indicates that the s-d interaction only exists at the tip location.Here,the energy U,corresponding to the so-called surface potential experienced by the metal electrons,is taken into account.This energy causes the on-site energy of the metal electrons to change,via Fourier transformation:

    where the Hamiltonian of the system reads

    Figure 1.The model: a nanometer-sized tip scanning a metal surface.

    Without loss of generality we choose the relative velocity v along the x1axis to be

    and introduce the Galilean boost matrix along the x1axis,

    where its corresponding matrix is

    This leads to the coordinate transformation

    such that the spatial coordinates of the tip become

    Therefore,the inner products of the space vector on the exponential in the Hamiltonian are

    The Hamiltonian becomes

    3.The effective action

    By introducing a Legendre transformation,the action of the system can be written as

    There is a quartic term in this action,via the following transformation [14]:

    The quartic term can be written as

    Therefore the action reads

    We introduce the mean field approximation by means of a Hubbard–Stratonovich transformation [15]:

    The in-out amplitude can be written as a functional integral.Here,we use the natural unit

    and the new action reads

    The mean field approximation suggests that the two auxiliary fields are equal to their mean values; thus the following selfconsistent equations hold [15]:

    Here,the electron single occupancy condition is taken into account,such that

    Using (26)–(29)we obtain

    We then obtain the effective action under the mean field approximation as

    4.The in-out amplitude

    In the case where v=0,the model exhibits the corresponding socalled in ground state [16],so that there is no excitation of internal degrees of freedom.If we add an external force on the tip to make it slide,the internal degrees of freedom in the tip and the metal around the slip line are temporally excited; thus the total energy rises.Subsequently,the system transfers to the so-called out ground state[16]and the total energy therefore decreases.As the result of these two competing effects,the system exhibits a non-equilibrium steady state,dependent on the sliding velocity,v.Here,we refer to the transition amplitude between in ground state and out ground state as the in-out amplitude.The in-out amplitude equation (3) can be written as a functional integral

    Here,Γ is the amplitude contributed by the one-particle irreducible Feynman diagram[17].If the system has no dissipation,Z must can be normalized.Thus Γ must have a real value.If the system is a dissipative system,Z must not be normalized,and therefore Γ must contain an imaginary component [17].Having integrated out the degrees of freedom c and d,the connected inout amplitude is

    where the functions are

    Dropping a factor which does not depend on relative velocity v,we obtain

    If we assume that the coupling constants U and V are small enough,the last term can be perturbatively expanded,and up to the second order of UV2,the in-out amplitude then becomes

    Figure 2.Galilean boost of the in-out amplitude.

    Via Fourier transformation,the in-out amplitude can be written in frequency space.By means of straightforward calculation,the leading order terms are as follows:

    and the second order terms are

    These terms are known as the symmetric terms.In addition,

    We call this term the cross term.T is the total time.Here,we note that the Galilean boost transforms the in-out amplitude;the corresponding Feynman diagram is shown in figure 2.

    5.Imaginary part of the in-out amplitude

    The imaginary part of the in-out amplitude represents the excitation of the internal degree of freedom on the metal and the tip,and this excitation leads to dissipation.In this section,we obtain the expression of the imaginary part of the in-out amplitude,and study the relationship between the imaginary part of the in-out amplitude and the sliding velocity.In order to perform the integral over k0,we choose a closed contour formed by the real axes,and a half circle with very large radius on the bottom half complex plane.For the first order terms,using Cauchy’s theorem,we find that these terms vanish.For the second order terms,Cauchy’s theorem indicates that the symmetric terms also vanish.As such,the only nontrivial contribution to the in-out amplitude is the cross term.We rewrite this as

    where the integrand

    has four poles on the bottom half plane:

    We perform the Cauchy integral along the closed contour.Since perturbative expansion can also lead to an imaginary part which independent of the tip’s velocity,we focus only on the tip velocity-dependent imaginary part.Therefore we only select poles 2,3,and 4.The corresponding residues are

    Taking into account the continuous limitation,the summation over momentum k can be replaced by the integral.Thus the inout amplitude becomes

    where Ω is the total area of the substrate.We can set Rl=0 without loss of generality.The in-out amplitude reads

    Taking into account all of the above,and using the identity

    the imaginary part of the in-out amplitude can be calculated as follows:

    The numerical results are shown in figures 3 and 4.It can be seen that the imaginary part of the in-out amplitude and the sliding velocity are positively correlated for different J in figure 3.J=0.3 is a special case,as shown in equation (57).When J=0.3,the second and the last terms of equation(57)give two very large contributions ofwhere N is a very large constant.Moreover,when v →0,this result is divergent.This implies that there must be extra dissipation caused by some new degrees of freedom.Here,J=0.3 means J=ε.Actually,this implies the formation of a local magnetic moment relating to the electrons on the tip.The new degree of freedom is therefore the local spin on the tip.Generally speaking,this large term with respect to the imaginary part of the in-out amplitude does not contribute to frictional force.We will expand on this point in the next section.

    Figure 3.The imaginary part of the in-out amplitude as a function of the relative velocity,v,for the typical caseε=0.3,J=0.1,0.2,0.4,0.5,=0.3,in units of 4πUV2ΩT.

    6.Dissipation and frictional force

    The transition probability is

    Therefore,the in-out probability contributed only by the connected diagrams is

    On the other hand,dissipation arises when the in ground state of the system becomes unstable against the production of onshell c-electrons and on-shell d-electrons [18].As such,the transition probability can be written as

    f(k0)is the probability amplitude of creating an electron with energy and momentum k per unit time and area.The dissipation energy during time T is

    The dissipative power per unit area is

    The dumped power is provided by an external source,which keeps the tip moving at a constant velocity,against the frictional force.Thus the energy balance is

    and the expression of frictional force is

    The numerical result is shown in figure 5.The frictional force is proportional to the sliding velocity when v <0.01 for different J.In contrast,for the case where v >0.01,the frictional force exhibited nonlinear dependence on sliding velocity.This phenomenon may be justified as follows: let us consider the momentum and energy balance in a time interval ΔT,assuming that in the first period of time both the frictional force and the dissipated energy are driven by the excitation of c-electrons.The change in the c-electrons’momentum reads as

    the change of the on-shell c-electrons energy reads

    the condition of c-electrons being excited reads

    and therefore

    when v <0.01,ΔP1<0.033;as such,only c-electrons with a momentum of less than 0.033 are excited.When v >0.01,celectrons with a momentum greater than 0.033 are excited.This leads to vΔP1>ε.Therefore,d-electrons on the tip are excited,and are interacting with c-electrons.This leads to a sharp increase in dissipated power.The dependence of frictional force on velocity will change.Moreover,J=0.3 is still a special case.In equation(63),J=0.3 means that the second and the last terms will vanish.This implies that the large term,of the imaginary part of the in-out amplitude does not contribute to frictional force,unless we consider the new degrees of freedom caused by the formation of a local magnetic moment on the tip.

    7.Conclusions and outlooks

    In this paper,we have studied the dissipation mechanism and frictional force of a nanometer-sized tip scanning a metal surface,via a path integral approach.The interaction between the 2+1d spinor field in the 2D metal and the 0+1 spinor field in the tip has been taken into account via the coupling constant V.We have seen that the relative motion may generate an imaginary component in the in-out amplitude.Dissipation arises here due to the in ground state of the system being unstable due to the production of on-shell c-electrons and onshell d-electrons.These internal degrees of freedom in the tip and the metal around the slip line are temporally excited,and thus the total energy rises.Subsequently,the system transfer to the out ground state,and thus the total energy decreases.As a result of these two competing effects,the system exhibits a non-equilibrium steady state,which depends on the sliding velocity,v.We also compute the frictional force.

    The numerical results of the in-out amplitude show that the imaginary part of the in-out amplitude and the sliding velocity are related in quadratic function.In addition,the frictional force is proportional to the sliding velocity for the case v <0.01.In contrast,for the case where v >0.01,the frictional force demonstrates nonlinear dependence with respect to sliding velocity; we have provided a classical explanation for this phenomenon.

    Figure 5.Frictional force as a function of relative velocity,v,for the typical case ε= 0.3,J= 0.1,0.2,0.3,0.4,0.5=0.3,in units of 4πUV2.

    In [18],the dissipation mechanism was attributed to the production of on-shell fermion pairs induced by some timedependent external source.Via relative motion,the vacuum state of the electromagnetic field plays the role of a time-dependent external source.In our paper,however,there is no vacuum electromagnetic field; instead,there are two coupling constants,U and V.Equation (23) shows that the relative motion causes U and V to acquire a time-dependent phase factor,eik1vx0,for every momentum k.In this instance,the relative motion causes U and V to become two timedependent external sources.Therefore the system becomes an open system,and the internal degrees of freedom are excited by the time-dependent external source.This leads to energy and momentum flowing into or out of the interacting vertices,as shown in figure 2.

    In one of our ongoing works relating to sliding friction between a magnetic tip and a ferromagnetic surface,we are employing a similar approach to that employed in this work.We started from an anisotropic Heisenberg Hamiltonian

    where the first term is the magnetic exchange energy between spins in the ferromagnetic surface,and the second term is the magnetic exchange energy between the tip spin and the surface spin located on the i-th site.The surface potential induced by the magnetic tip always has the formBy means of a boost transformation between the tip and the substrate,a Holstein–Primakoff transformation,and a Fourier transformation,we obtain a Hamiltonian similar to that in equation (23):

    equations (23) and (69) will then be similar to one another.We therefore conclude that the sliding friction in this system may have the same v-dependence as the sliding friction in the electronic system.In[7],Fusco and Wolf simulated this kind of magnetic friction,and their results were similar to ours.Although the sliding friction in electronic systems and the sliding friction in magnetic systems originate from different physics,the interaction terms in their Hamiltonians have a similar form to the Anderson s-d model.This kind of interaction always results in sliding friction with a linear dependence on v,if |v| is small.

    Acknowledgments

    We would like to thank Qiang Sun,Kai Li,and Fei Wang for valuable insights and discussions.

    ORCID iDs

    欧美黄色片欧美黄色片| 亚洲国产精品合色在线| 性少妇av在线| 最近最新中文字幕大全免费视频| 日本黄色日本黄色录像| 在线观看66精品国产| www.精华液| 国产成人影院久久av| 亚洲av成人av| 亚洲精品在线观看二区| 激情在线观看视频在线高清 | 久久国产精品人妻蜜桃| 精品熟女少妇八av免费久了| 视频区欧美日本亚洲| 村上凉子中文字幕在线| 国产精品国产高清国产av | 免费少妇av软件| 亚洲成人免费电影在线观看| 国产成人免费无遮挡视频| 亚洲精品乱久久久久久| 母亲3免费完整高清在线观看| 国产91精品成人一区二区三区| 99国产极品粉嫩在线观看| 看免费av毛片| 99久久精品国产亚洲精品| 中文欧美无线码| 超色免费av| 大型av网站在线播放| 亚洲 国产 在线| 亚洲色图av天堂| 在线观看舔阴道视频| 91在线观看av| 国产免费男女视频| 久久香蕉精品热| 美女福利国产在线| www.精华液| 国内久久婷婷六月综合欲色啪| 欧美另类亚洲清纯唯美| av网站在线播放免费| 久久性视频一级片| 国产一卡二卡三卡精品| 亚洲精品在线美女| 在线十欧美十亚洲十日本专区| 老熟妇乱子伦视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美精品综合一区二区三区| 欧美乱色亚洲激情| 99久久精品国产亚洲精品| 久久久久国内视频| 黑丝袜美女国产一区| 久久久精品免费免费高清| 国产xxxxx性猛交| 国产精品久久久久久精品古装| 国产精品久久久久久精品古装| 国产精品综合久久久久久久免费 | 午夜福利欧美成人| 国产深夜福利视频在线观看| 午夜福利欧美成人| 高清视频免费观看一区二区| 91成人精品电影| 精品人妻1区二区| 在线观看一区二区三区激情| 无限看片的www在线观看| 9191精品国产免费久久| 麻豆成人av在线观看| 亚洲五月色婷婷综合| 天天躁夜夜躁狠狠躁躁| 久久国产精品男人的天堂亚洲| 巨乳人妻的诱惑在线观看| 国产真人三级小视频在线观看| 一区二区日韩欧美中文字幕| 欧美黄色片欧美黄色片| 91成人精品电影| 精品电影一区二区在线| 亚洲五月色婷婷综合| 精品少妇一区二区三区视频日本电影| 亚洲欧美日韩另类电影网站| 丰满饥渴人妻一区二区三| 一二三四在线观看免费中文在| 日日夜夜操网爽| 国产高清videossex| 色婷婷av一区二区三区视频| 后天国语完整版免费观看| 母亲3免费完整高清在线观看| 国产亚洲精品久久久久5区| 国产成人精品在线电影| 热99久久久久精品小说推荐| 午夜福利,免费看| 午夜免费观看网址| 18禁观看日本| 变态另类成人亚洲欧美熟女 | 午夜影院日韩av| 中文字幕制服av| 精品少妇一区二区三区视频日本电影| 99国产精品一区二区三区| 国产成人精品久久二区二区免费| 最近最新中文字幕大全电影3 | 99精国产麻豆久久婷婷| 男女之事视频高清在线观看| 亚洲aⅴ乱码一区二区在线播放 | 法律面前人人平等表现在哪些方面| 亚洲欧洲精品一区二区精品久久久| 91老司机精品| 久久精品国产综合久久久| www.精华液| 欧美黄色淫秽网站| x7x7x7水蜜桃| 欧美另类亚洲清纯唯美| xxx96com| 一本大道久久a久久精品| 看片在线看免费视频| 首页视频小说图片口味搜索| 亚洲国产欧美一区二区综合| 视频区欧美日本亚洲| 久久中文字幕一级| 中亚洲国语对白在线视频| 国产极品粉嫩免费观看在线| √禁漫天堂资源中文www| 国产成人啪精品午夜网站| 久久久国产成人免费| 午夜精品在线福利| 人成视频在线观看免费观看| 男女免费视频国产| 一边摸一边抽搐一进一小说 | 女性被躁到高潮视频| 少妇 在线观看| 动漫黄色视频在线观看| 日韩免费高清中文字幕av| 色婷婷久久久亚洲欧美| 欧美亚洲日本最大视频资源| 麻豆乱淫一区二区| 激情在线观看视频在线高清 | 69av精品久久久久久| 99香蕉大伊视频| av网站在线播放免费| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜添小说| 亚洲色图综合在线观看| 国产精品电影一区二区三区 | 亚洲av成人不卡在线观看播放网| 一边摸一边做爽爽视频免费| 国产深夜福利视频在线观看| 久久精品国产清高在天天线| 中文字幕人妻丝袜制服| 欧美精品一区二区免费开放| 超色免费av| 黄片大片在线免费观看| 久久九九热精品免费| 一级作爱视频免费观看| 欧美亚洲 丝袜 人妻 在线| 精品福利永久在线观看| 欧美在线一区亚洲| 在线看a的网站| 国产精品九九99| 精品久久久精品久久久| 亚洲欧洲精品一区二区精品久久久| 三级毛片av免费| 亚洲熟女精品中文字幕| a级毛片在线看网站| 亚洲av第一区精品v没综合| 一个人免费在线观看的高清视频| 亚洲熟妇中文字幕五十中出 | 一进一出抽搐动态| av超薄肉色丝袜交足视频| 少妇被粗大的猛进出69影院| 午夜影院日韩av| 色在线成人网| 他把我摸到了高潮在线观看| 久久香蕉国产精品| 午夜福利,免费看| 国产不卡一卡二| 亚洲少妇的诱惑av| 在线观看一区二区三区激情| 欧美老熟妇乱子伦牲交| 香蕉丝袜av| 久久九九热精品免费| 一区二区三区精品91| 欧美精品人与动牲交sv欧美| 国产欧美日韩综合在线一区二区| 欧美成人免费av一区二区三区 | 精品国产乱子伦一区二区三区| 美女福利国产在线| 欧美精品啪啪一区二区三区| 一进一出抽搐gif免费好疼 | 涩涩av久久男人的天堂| 日韩中文字幕欧美一区二区| 国产视频一区二区在线看| 午夜视频精品福利| 黄色女人牲交| 满18在线观看网站| 国产成人一区二区三区免费视频网站| 亚洲情色 制服丝袜| 免费日韩欧美在线观看| 一级黄色大片毛片| 9热在线视频观看99| 一区二区三区激情视频| 大型黄色视频在线免费观看| 成年动漫av网址| 欧美日韩中文字幕国产精品一区二区三区 | 欧美成人午夜精品| 国产亚洲av高清不卡| 国产成人欧美| 久久亚洲精品不卡| 免费女性裸体啪啪无遮挡网站| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av高清一级| 国产精品99久久99久久久不卡| 国产99白浆流出| 大型黄色视频在线免费观看| 国产亚洲一区二区精品| 一本大道久久a久久精品| 男人舔女人的私密视频| 99国产精品免费福利视频| 欧美精品人与动牲交sv欧美| 亚洲一区高清亚洲精品| 成人国语在线视频| 老司机福利观看| 欧美大码av| 久久精品国产综合久久久| 97人妻天天添夜夜摸| 国产成人欧美| 成人国产一区最新在线观看| 精品视频人人做人人爽| 久久人妻福利社区极品人妻图片| 99国产精品一区二区蜜桃av | 国产片内射在线| 丁香六月欧美| 欧美人与性动交α欧美软件| 又紧又爽又黄一区二区| 久久久久久人人人人人| 久久人人97超碰香蕉20202| 国产淫语在线视频| 51午夜福利影视在线观看| 精品无人区乱码1区二区| 久久久久视频综合| 精品一区二区三区av网在线观看| 欧美激情久久久久久爽电影 | 91成年电影在线观看| 一夜夜www| a级毛片在线看网站| 欧美成人免费av一区二区三区 | 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| 亚洲人成电影免费在线| 色综合欧美亚洲国产小说| 看免费av毛片| 变态另类成人亚洲欧美熟女 | 亚洲avbb在线观看| 黑人欧美特级aaaaaa片| 国产亚洲精品久久久久久毛片 | 90打野战视频偷拍视频| 性色av乱码一区二区三区2| 成人国语在线视频| 国产亚洲精品一区二区www | 午夜精品在线福利| 亚洲 欧美一区二区三区| 麻豆成人av在线观看| 三上悠亚av全集在线观看| 免费少妇av软件| 天堂动漫精品| 桃红色精品国产亚洲av| 国产97色在线日韩免费| 免费一级毛片在线播放高清视频 | 国产av又大| 精品国产乱子伦一区二区三区| 手机成人av网站| 老汉色∧v一级毛片| 久久精品国产亚洲av香蕉五月 | 亚洲精品av麻豆狂野| 激情在线观看视频在线高清 | 欧美色视频一区免费| 黑人欧美特级aaaaaa片| 亚洲精品国产区一区二| 天堂动漫精品| 欧美色视频一区免费| 人妻久久中文字幕网| 高清在线国产一区| av电影中文网址| 自线自在国产av| 19禁男女啪啪无遮挡网站| 免费观看a级毛片全部| 午夜免费鲁丝| 又黄又粗又硬又大视频| 国产无遮挡羞羞视频在线观看| 久久国产精品男人的天堂亚洲| 19禁男女啪啪无遮挡网站| 老鸭窝网址在线观看| 三级毛片av免费| 搡老乐熟女国产| 久久久精品区二区三区| 免费在线观看完整版高清| 久久人妻福利社区极品人妻图片| 嫁个100分男人电影在线观看| 狂野欧美激情性xxxx| 亚洲精品av麻豆狂野| 国产精品免费视频内射| av中文乱码字幕在线| 天堂动漫精品| 国产精品 国内视频| 成人国语在线视频| 国产精品电影一区二区三区 | 久久久国产精品麻豆| 一区二区三区精品91| 色综合欧美亚洲国产小说| 少妇猛男粗大的猛烈进出视频| 欧美日韩精品网址| 村上凉子中文字幕在线| 亚洲人成77777在线视频| 青草久久国产| 两个人看的免费小视频| 欧美亚洲日本最大视频资源| 午夜福利免费观看在线| 99热网站在线观看| 黑人操中国人逼视频| 好男人电影高清在线观看| 久久精品aⅴ一区二区三区四区| 丝袜美腿诱惑在线| 很黄的视频免费| 91九色精品人成在线观看| 午夜影院日韩av| 人成视频在线观看免费观看| 国产高清国产精品国产三级| 在线观看www视频免费| 欧美激情 高清一区二区三区| 成人手机av| 夜夜躁狠狠躁天天躁| 女人高潮潮喷娇喘18禁视频| 中亚洲国语对白在线视频| 精品少妇久久久久久888优播| 黄色 视频免费看| 在线免费观看的www视频| 成年人黄色毛片网站| 中文字幕高清在线视频| 女人高潮潮喷娇喘18禁视频| 天堂中文最新版在线下载| 成人影院久久| 婷婷成人精品国产| 午夜福利,免费看| 最新的欧美精品一区二区| 欧美成人免费av一区二区三区 | 欧美激情久久久久久爽电影 | 精品一区二区三区av网在线观看| 午夜精品国产一区二区电影| 亚洲九九香蕉| 中文字幕最新亚洲高清| www.自偷自拍.com| 亚洲性夜色夜夜综合| 欧美大码av| 久久热在线av| 免费在线观看日本一区| 久热这里只有精品99| 精品久久久久久电影网| av免费在线观看网站| 精品久久久久久久毛片微露脸| 99热网站在线观看| 好看av亚洲va欧美ⅴa在| 国产在线一区二区三区精| 亚洲中文av在线| 99热网站在线观看| 亚洲欧美一区二区三区久久| 日韩制服丝袜自拍偷拍| 交换朋友夫妻互换小说| 看片在线看免费视频| 在线永久观看黄色视频| 日本vs欧美在线观看视频| 国产一区二区三区视频了| 天天操日日干夜夜撸| 一区二区三区国产精品乱码| 久久天堂一区二区三区四区| 老司机午夜十八禁免费视频| 欧美 亚洲 国产 日韩一| 精品人妻在线不人妻| 日韩一卡2卡3卡4卡2021年| 成人特级黄色片久久久久久久| 精品国产一区二区三区久久久樱花| www.熟女人妻精品国产| 午夜免费成人在线视频| 视频在线观看一区二区三区| 亚洲国产欧美网| 国产高清激情床上av| 国产极品粉嫩免费观看在线| 老司机亚洲免费影院| 亚洲av成人av| 国产成人啪精品午夜网站| 极品少妇高潮喷水抽搐| 91国产中文字幕| 黄色毛片三级朝国网站| 两个人免费观看高清视频| 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 欧美黄色片欧美黄色片| 性少妇av在线| 亚洲成人免费电影在线观看| 少妇裸体淫交视频免费看高清 | 精品国产超薄肉色丝袜足j| 人人妻人人爽人人添夜夜欢视频| 99热国产这里只有精品6| 免费在线观看视频国产中文字幕亚洲| 国产精品香港三级国产av潘金莲| 欧美人与性动交α欧美精品济南到| 岛国在线观看网站| 岛国毛片在线播放| 国产高清videossex| 亚洲少妇的诱惑av| 中文欧美无线码| 欧美精品av麻豆av| 在线视频色国产色| 成人黄色视频免费在线看| 一本大道久久a久久精品| 国产91精品成人一区二区三区| 亚洲欧美激情综合另类| 久久香蕉精品热| 叶爱在线成人免费视频播放| 欧美久久黑人一区二区| 99re在线观看精品视频| 精品国产一区二区久久| 一二三四在线观看免费中文在| 国产欧美亚洲国产| 国产精品永久免费网站| 久久国产乱子伦精品免费另类| 亚洲一区二区三区欧美精品| 亚洲欧美一区二区三区久久| 国产精品国产av在线观看| 精品无人区乱码1区二区| 亚洲五月色婷婷综合| 丝袜美腿诱惑在线| 黄色a级毛片大全视频| 精品国产一区二区三区四区第35| 午夜精品久久久久久毛片777| 欧美精品亚洲一区二区| 久久中文字幕人妻熟女| 我的亚洲天堂| 午夜福利视频在线观看免费| 亚洲aⅴ乱码一区二区在线播放 | 国产成人精品在线电影| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 19禁男女啪啪无遮挡网站| 99久久精品国产亚洲精品| 麻豆乱淫一区二区| 国产亚洲精品久久久久5区| 久久午夜亚洲精品久久| 99国产精品99久久久久| 精品国产一区二区三区四区第35| tocl精华| 下体分泌物呈黄色| 成人亚洲精品一区在线观看| 91大片在线观看| 波多野结衣av一区二区av| 高清毛片免费观看视频网站 | 首页视频小说图片口味搜索| 黄色 视频免费看| 男女免费视频国产| 亚洲精品久久午夜乱码| 精品视频人人做人人爽| 久久这里只有精品19| 不卡一级毛片| 母亲3免费完整高清在线观看| 国产激情欧美一区二区| 一区二区日韩欧美中文字幕| 亚洲人成伊人成综合网2020| 999久久久精品免费观看国产| 国产精品久久久久久人妻精品电影| 在线观看免费高清a一片| 99热只有精品国产| 午夜久久久在线观看| 女人高潮潮喷娇喘18禁视频| 大香蕉久久成人网| 无限看片的www在线观看| 午夜福利,免费看| 成人国语在线视频| 成人av一区二区三区在线看| 丝袜人妻中文字幕| 欧美不卡视频在线免费观看 | av免费在线观看网站| 一个人免费在线观看的高清视频| 国产男女内射视频| 日韩欧美国产一区二区入口| 国产av又大| 亚洲中文字幕日韩| 母亲3免费完整高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人影院久久av| 国产精品国产高清国产av | 99久久99久久久精品蜜桃| 美女高潮喷水抽搐中文字幕| 午夜久久久在线观看| 亚洲欧美色中文字幕在线| 欧美人与性动交α欧美精品济南到| 国产乱人伦免费视频| 俄罗斯特黄特色一大片| 国精品久久久久久国模美| 国产91精品成人一区二区三区| 欧美一级毛片孕妇| 新久久久久国产一级毛片| 精品一区二区三区四区五区乱码| 欧美日韩黄片免| 18禁裸乳无遮挡免费网站照片 | 免费不卡黄色视频| 午夜两性在线视频| 国产精品一区二区精品视频观看| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品久久二区二区免费| 亚洲久久久国产精品| 丰满迷人的少妇在线观看| 久热这里只有精品99| 国产激情久久老熟女| 人人妻,人人澡人人爽秒播| 国产成人影院久久av| 老司机深夜福利视频在线观看| 啦啦啦 在线观看视频| 搡老乐熟女国产| 精品一品国产午夜福利视频| 精品午夜福利视频在线观看一区| 午夜影院日韩av| 国产97色在线日韩免费| 999久久久国产精品视频| 国产精品久久视频播放| 香蕉久久夜色| 在线天堂中文资源库| 国产片内射在线| 国产精品久久久av美女十八| 国产成人av教育| 在线观看www视频免费| 欧美精品人与动牲交sv欧美| 99国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 久久国产精品人妻蜜桃| 免费少妇av软件| 国产麻豆69| 悠悠久久av| 久久九九热精品免费| 水蜜桃什么品种好| 精品国产乱码久久久久久男人| 真人做人爱边吃奶动态| 欧美黄色片欧美黄色片| 国产激情久久老熟女| 精品一区二区三卡| 免费不卡黄色视频| 亚洲 国产 在线| 69精品国产乱码久久久| 女同久久另类99精品国产91| 亚洲一码二码三码区别大吗| 欧美性长视频在线观看| 久久精品国产亚洲av高清一级| 两性午夜刺激爽爽歪歪视频在线观看 | a在线观看视频网站| 一边摸一边抽搐一进一出视频| 99国产综合亚洲精品| 国产1区2区3区精品| 国产一区二区激情短视频| 黄片播放在线免费| 高清视频免费观看一区二区| 黑人欧美特级aaaaaa片| 亚洲视频免费观看视频| 最近最新中文字幕大全电影3 | 久久久精品区二区三区| 欧美日韩视频精品一区| 国产精品综合久久久久久久免费 | 国产精品乱码一区二三区的特点 | 色婷婷久久久亚洲欧美| 国产有黄有色有爽视频| 91精品国产国语对白视频| 美女高潮喷水抽搐中文字幕| 多毛熟女@视频| 国产淫语在线视频| 美女扒开内裤让男人捅视频| 日韩精品免费视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 天天影视国产精品| 在线av久久热| 国产在线一区二区三区精| 99热国产这里只有精品6| 热re99久久精品国产66热6| 久久久久国内视频| 9热在线视频观看99| 免费看十八禁软件| 久久香蕉精品热| 后天国语完整版免费观看| 久久久久久人人人人人| 三级毛片av免费| 色在线成人网| 777米奇影视久久| 80岁老熟妇乱子伦牲交| 欧洲精品卡2卡3卡4卡5卡区| 一a级毛片在线观看| 国产男女内射视频| 人妻 亚洲 视频| 成人18禁高潮啪啪吃奶动态图| 亚洲久久久国产精品| 高潮久久久久久久久久久不卡| 美女高潮喷水抽搐中文字幕| 精品国产乱子伦一区二区三区| 国产欧美亚洲国产| 在线国产一区二区在线| 香蕉丝袜av| www日本在线高清视频| 亚洲精品中文字幕一二三四区| 欧美乱色亚洲激情| 高清黄色对白视频在线免费看| 精品福利观看| 桃红色精品国产亚洲av| 老汉色∧v一级毛片| 欧美色视频一区免费| 欧美日韩亚洲高清精品| 免费在线观看黄色视频的| 国产男靠女视频免费网站| 欧美成人免费av一区二区三区 | 欧美日韩亚洲综合一区二区三区_| 天天躁日日躁夜夜躁夜夜| 精品免费久久久久久久清纯 | 大型av网站在线播放| 变态另类成人亚洲欧美熟女 | 男女午夜视频在线观看| 国产激情久久老熟女|