• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two model equations with a second degree logarithmic nonlinearity and their Gaussian solutions

    2021-04-28 02:26:28ChengShiLiu
    Communications in Theoretical Physics 2021年4期

    Cheng-Shi Liu

    Department of Mathematics,Northeast Petroleum University,Daqing 163318,China

    Abstract In the paper,we try to study the mechanism of the existence of Gaussian waves in high degree logarithmic nonlinear wave motions.We first construct two model equations which include the high order dispersion and a second degree logarithmic nonlinearity.And then we prove that the Gaussian waves can exist for high degree logarithmic nonlinear wave equations if the balance between the dispersion and logarithmic nonlinearity is kept.Our mathematical tool is the logarithmic trial equation method.

    Keywords: Gaussian solitary wave,Gausson,logarithmic nonlinearity,wave equation,trial equation method

    1.Introduction

    Gaussian waves which include Gaussian solitary wave and Gausson[1,2],are different to the solitons like sech-function solution in integrable systems.Among those,Gaussian solitary wave is for real equations,while Gausson is for complex equations.Due to the pulse shape,and the shape of Gaussian wave being invariant by the balance between dispersion and logarithmic nonlinearity,some researchers are attracted to study this kind of wave equations from several aspects,such as the constructions of Gaussian solitary waves,stability of solutions,and dynamics of wave propagation and so on.

    In 1976,Bialynicki-Birula and Mycielsk[3]proposed the following first degree logarithmic nonlinear Schr?dinger equation (LNSE for simplicity)

    and obtained an analytic soliton-like solution namely Gausson for being of Gaussian wave shape.This is one of the most remarkable features of the LNSE.It also had been shown that the Gaussons can exist for any number of dimensions,and numerically are stable under collisions over a wide range of energies in one and two dimensional cases[4].Therefore,the model is applied to different areas such as superfluidity,open quantum systems,quantum liquid mixtures,Bose–Einstein condensates,and so forth [5–12].

    On the other hand,some scholars studied real logarithmic nonlinear wave equations [13–19].For example,Carles and Pelinovsky studied log-KdV equation and the stability of its Gaussian solitary waves [15].Biswas et al solved the Bousisinesq equation with first degree logarithmic nonlinearity[17]; Darvishi and Najafi gave the Gaussian waves for some logarithmic ZK equation [18].In addition,Wazwaz et al studied several logarithmic nonlinear evolution equations and obtained Gaussian solitary waves solutions,such as the following log-KdV,log-KG,log-Boussinesq,log-BBM,log-BBM-KP,log-TRLW and so forth [20–23]:

    It is obvious that the logarithmic nonlinear terms in the above equations are only the first degree form of ln∣u∣,and hence we can get the Gaussian solitary wave and the Gaussson by the elementary integral method.However,if we consider high order derivative dispersion,the shape of the Gaussian solitary wave and Gausson wave will not be kept.Therefore,if we hope there also exist the Gaussian solitary wave or the Gaussons for high dispersive wave motions,we have to consider more high degree nonlinear logarithmic terms likeln2∣u∣so that the balance between them can still keep.

    It is well-known that to construct the soliton equations is a meaningful work in integrable systems.These soliton equations play an important role for recovering the mechanism of the existence of solitons.Similarly,in the paper,our aim is to try to find the mechanism of the existence of the Gaussian waves for high degree logarithmic nonlinear wave propagations.We propose two nonlinear wave equations with a second degree logarithmic nonlinearity,and show their Gaussian propagation patterns.Because of the existence of the second degree logarithmic nonlinearity,these equations cannot be solved by the routine direct integral method,and hence we use the trial equation method [24–27] to get their integrable factor equations and give the explicit constructions of the Gaussian waves.In fact we provide a new type of trail equation namely logarithmic trial equation which is different to the usual rational or algebraic trial equations to solve two models.Our results mean that the Gaussian solitary waves and the Gaussons can exist not only for the first degree logarithmic nonlinearity but also for the high degree logarithmic cases,and show that the key for the existence of the Gaussian waves is also due to the balance between the dispersion and logarithmic nonlinearity.

    The paper is organized as follows.In section 2,we construct two second degree logarithmic nonlinear wave equations.In sections 3 and 4,we obtain the Gaussian wave solutions for two model equations.Last section is a short conclusion.

    2.Model equations

    For the usual wave equation

    there are the traveling wave solutions with fixed velocity v= ±k,and there are no dispersion and dissipation.If we consider dispersive wave equation,such as

    we will find its traveling wave solutions are the forms of hyperbolic functions or tangent functions which are not the Gaussian solitary wave.If we consider a nonlinear term(u2)xx,the Boussinesq equation

    will be an integrable equation and hence there exist the soliton solutions like sech-function solution.However,it has no the Gaussian solitary wave solution.

    On the other hand,by an elementary integral method,we can find there exists a Gaussian solitary wave solution for the following equations (22),(23)

    Furthermore,Wazwaz studied another wave equation

    which is a kind of Boussinesq equation with dual dispersion and logarithmic nonlinearity.For this equation and other related logarithmic nonlinear wave equations,all their logarithmic terms are of the first degree on lnu .

    If we consider high order dispersive effect,a natural problem is how to restrain dispersion so that the wave profile cannot be destroyed.We find that if a second degree nonlinear logarithmic term is considered,the balance between dispersion and nonlinearity will be achieved.Consequently,the second degree logarithmic nonlinear wave equation is given as follows

    whereγ1,γ2,μ1,μ2,μ3are coefficients of logarithmic nonlinearities and dispersions and satisfyγ2μ3<0.In addition,ln u can be written as ln∣u∣.If we only consider the Gaussian solitary wave,u will be positive,so we need not to write the absolute value symbol.

    As the second model,we consider the high degree logarithmic version of equation (1).Indeed,for the first degree logarithmic nonlinear Schr?dinger (1),as mentioned above,there exists a Gausson which is a localized nonspreadable solution,and keeps shape in propagation.This is just due to the balance between the logarithmic term and the second order derivative term.However,in general,Gausson will be destroyed if we consider only the high order dispersive terms or the high degree nonlinear logarithmic terms For the existence of Gaussons,we must keep the balance between dispersion and nonlinearity.And hence we propose the following nonlinear Schr?dinger equation

    which includes high order dispersive terms and a second degree nonlinear logarithmic term,and where the right side is the detuning term,u is the wave profile,β2γ2<0,all parameters are constants depending on the concrete model.When α1= α2= β2= γ2= 0,it becomes the equation (1).When γ1= γ2= 0,it describes the optical propagation in a linear dispersive media.We will prove that there exists the Gausson solutions for it.

    The second degree logarithmic nonlinear terms ln2u in equations(13)and(14)show a high order effect of nonlinear interaction by which the balance between the highest order nonlinearity and the high order dispersions such as the sixth order derivative in equation (13) and the fourth order derivative in equation (14) can be kept so that the Gaussian solitary waves can be given.In some real models,the term ln2uwill appear naturally.For example,if we take the nonlinear interaction asus?1in the chain model of propagation of acoustic wave,then we expand it at s=1 to getus?1? 1= (s? 1) lnu+We will study it in details in further work.

    Unlike the equations(1)–(7)can be solved by elementary integral method,these two model equations (13) and (14)cannot be reduced directly to the integral forms since they contain the high order derivative terms Thus,in next sections,we use the logarithmic trial equation method to solve them.

    3.Gaussian wave solution for equation (13)

    Firstly,Taking the traveling wave transformation

    and substituting it into equation (13) and integrating twice yield the ODE as follows

    where we have taken two integral constants to be zeros.

    Then take trial equation

    where m and ajare constants to be determined forj=0,… ,m.Setting it into equation (16),by the balance principle we get m=1.Therefore,the trial equation equation is given by

    From the equation (18),we derive out by taking the integral constant be zero

    and

    and substitute them into equation (16) to get an identity

    Letting all coefficients be zeros yields a system of nonlinear algebraic equations

    Solving the equations system,we get

    and the parameters condition

    Therefore we can solve the equation (19),that is

    whereξ0is an arbitrary constant.And then we give the desired Gaussian solitary wave solution

    For concrete parameters,we can obtain concrete Gaussian solitary waves.For example,we takeγ1=2,γ2=1,μ1= 1,μ2= 1,μ3= ? 1 ,k=ω= ±1,then we geta2= ? 1,a1=1.So the Gaussian solitary wave is given as follows:

    4.Gausson for equation (14)

    Firstly,substituting envelope traveling wave transformation

    into equation (14) and separating real and imaginary parts yield two ODEs as follows

    where

    In equation(32),we let the coefficients ofp′andp′ be zeros to give

    Solving the equations system,we get the parameters relations

    Under the above conditions,we only need to solve equation (33).Since equation (33) has the similar form with equation (16),we can solve it by the same method as above section.However,they have different parameters,for the purpose of completeness,we list the computations.

    By the same way with the equation (13),the trial equation equation is given by

    From the equation (40),we have by taking the integral constant be zero

    Furthermore,substituting them into equation (33) gives an identity

    Letting all coefficients be zeros yields a system of nonlinear algebraic equations

    Solving the equations system,we get

    and all undetermined parametersk1,k2,ω1,ω2must satisfy the condition

    Next we write the equation (41) as the integral form

    whereξ0is an arbitrary constant.And then solving the integral gives

    For concrete parameters,we can give concrete Gaussons.For example,we take1,γ2= ? 1 ,k1= 1,ω2= ?1,then we getSo the Gausson solution is given as follows:

    Remark 2.For the second degree logarithmic nonlinear Schr?dinger equation(14),it is just the third and fourth order dispersions to balance the effect of second degree logarithmic nonlinearity.Here,the third order dispersion is a necessary term for p being dependent with temporal variable t.Indeed,if we remove this term,that is,if we takeα1=α2= 0,the model equation becomes

    From equations(36)and(37),we must haveω1= 0.Without loss of generality,we can takek1=1andk2=0.The degenerate Gausson is given by

    It is easy to see that the amplitude of the wave is of Gaussian shape and is independent with the temporal variable,while the phase of the wave is independent with the spatial variable.

    5.Conclusion

    Due to the balance between dispersion and logarithmic nonlinearity,the Gaussian waves can exist for two second degree logarithmic nonlinear model equations.These equations include both real and complex cases.In addition,for all model equations (2)–(7) in introduction,we can give the second degree logarithmic forms For example,

    The above these high degree logarithmic nonlinear equations show the balance between logarithmic nonlinear and dispersion,and hence can be solved by the trial equation method,and hence the Gaussian waves can be given.This should be a basic principle for the existences of Gaussian solitary waves or Gaussons for the propagation patterns in high degree nonlinear logarithmic media.

    国产三级黄色录像| 亚洲欧美一区二区三区黑人| 久久人人爽人人片av| 亚洲精品久久午夜乱码| 中文精品一卡2卡3卡4更新| 亚洲伊人久久精品综合| 亚洲精品乱久久久久久| 精品国产乱码久久久久久小说| 一区在线观看完整版| 婷婷色综合大香蕉| 亚洲人成电影观看| 国产黄频视频在线观看| 亚洲av欧美aⅴ国产| 大陆偷拍与自拍| 男女床上黄色一级片免费看| 亚洲精品久久成人aⅴ小说| 免费黄频网站在线观看国产| 天堂俺去俺来也www色官网| 啦啦啦啦在线视频资源| 精品亚洲乱码少妇综合久久| 麻豆乱淫一区二区| 亚洲熟女毛片儿| 一级毛片我不卡| 水蜜桃什么品种好| 我要看黄色一级片免费的| 不卡av一区二区三区| 国产精品熟女久久久久浪| 中文字幕高清在线视频| 欧美国产精品va在线观看不卡| 五月天丁香电影| 久久人人爽av亚洲精品天堂| 成年女人毛片免费观看观看9 | 久久人人爽av亚洲精品天堂| 操美女的视频在线观看| 亚洲av欧美aⅴ国产| 性高湖久久久久久久久免费观看| 日本欧美视频一区| 妹子高潮喷水视频| 最近手机中文字幕大全| 黑人欧美特级aaaaaa片| 女人精品久久久久毛片| 免费看十八禁软件| 19禁男女啪啪无遮挡网站| 国产真人三级小视频在线观看| 久久精品久久久久久久性| 下体分泌物呈黄色| 精品少妇内射三级| 精品一区二区三区av网在线观看 | 人人妻人人澡人人看| 亚洲,欧美,日韩| 晚上一个人看的免费电影| 精品第一国产精品| 欧美日韩福利视频一区二区| 一区在线观看完整版| 欧美日韩成人在线一区二区| 亚洲成色77777| 中文字幕人妻丝袜一区二区| 欧美激情 高清一区二区三区| 美女午夜性视频免费| 黑人欧美特级aaaaaa片| 国产极品粉嫩免费观看在线| 国产精品av久久久久免费| 1024香蕉在线观看| 国产又色又爽无遮挡免| 国产精品久久久av美女十八| 欧美成人精品欧美一级黄| 久久国产精品影院| 日本vs欧美在线观看视频| 18在线观看网站| 日本a在线网址| 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版| 亚洲av日韩精品久久久久久密 | 亚洲专区中文字幕在线| 久热爱精品视频在线9| 国产视频一区二区在线看| 欧美少妇被猛烈插入视频| 日韩一卡2卡3卡4卡2021年| 久9热在线精品视频| 亚洲精品自拍成人| 亚洲欧美精品自产自拍| 欧美人与善性xxx| 久久久久久久国产电影| 亚洲熟女毛片儿| 在线观看免费高清a一片| 极品少妇高潮喷水抽搐| 国产精品三级大全| 亚洲成国产人片在线观看| 亚洲色图 男人天堂 中文字幕| 一级片免费观看大全| 免费观看人在逋| 黄色视频不卡| 熟女av电影| 国产精品香港三级国产av潘金莲 | 欧美人与性动交α欧美精品济南到| 欧美人与性动交α欧美精品济南到| 电影成人av| 在线观看免费午夜福利视频| 最新在线观看一区二区三区 | 黄色怎么调成土黄色| 成人影院久久| 校园人妻丝袜中文字幕| 久久国产亚洲av麻豆专区| 夜夜骑夜夜射夜夜干| 成年人午夜在线观看视频| 久久久精品区二区三区| 国产野战对白在线观看| kizo精华| 美女脱内裤让男人舔精品视频| 美女大奶头黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩大片免费观看网站| 国产激情久久老熟女| 男女国产视频网站| 丝袜美足系列| 99国产精品一区二区三区| 亚洲欧美一区二区三区国产| 午夜激情av网站| 男人舔女人的私密视频| 国产一区有黄有色的免费视频| 国产老妇伦熟女老妇高清| 成人影院久久| 亚洲情色 制服丝袜| 天天躁日日躁夜夜躁夜夜| 免费在线观看视频国产中文字幕亚洲 | 一本综合久久免费| 91九色精品人成在线观看| 日日夜夜操网爽| 在线观看国产h片| 人人澡人人妻人| 真人做人爱边吃奶动态| av在线播放精品| 成人免费观看视频高清| 嫩草影视91久久| 国产精品免费视频内射| 狠狠精品人妻久久久久久综合| 在线观看人妻少妇| avwww免费| av在线老鸭窝| 精品一区二区三卡| 欧美老熟妇乱子伦牲交| 天天躁夜夜躁狠狠躁躁| 性色av一级| 男人舔女人的私密视频| 考比视频在线观看| 激情视频va一区二区三区| 精品久久蜜臀av无| 国产成人免费观看mmmm| 日本av手机在线免费观看| 99久久综合免费| 七月丁香在线播放| 男人操女人黄网站| 亚洲欧美成人综合另类久久久| av片东京热男人的天堂| 一本色道久久久久久精品综合| 性少妇av在线| 国产精品人妻久久久影院| 色综合欧美亚洲国产小说| 欧美黄色淫秽网站| 国产精品秋霞免费鲁丝片| 黑人欧美特级aaaaaa片| 亚洲国产欧美日韩在线播放| 国产成人欧美| 欧美日韩视频高清一区二区三区二| 国产成人精品久久二区二区免费| av不卡在线播放| 激情视频va一区二区三区| 亚洲图色成人| 欧美av亚洲av综合av国产av| 精品人妻在线不人妻| 亚洲人成网站在线观看播放| kizo精华| 亚洲精品美女久久久久99蜜臀 | 日本午夜av视频| 久久性视频一级片| 欧美成狂野欧美在线观看| 中文欧美无线码| 美女主播在线视频| 99热国产这里只有精品6| a级毛片黄视频| 精品久久久精品久久久| 欧美日韩国产mv在线观看视频| 日韩中文字幕欧美一区二区 | 观看av在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 男女下面插进去视频免费观看| 亚洲精品日韩在线中文字幕| 一级毛片 在线播放| 一区二区三区四区激情视频| 欧美日韩精品网址| 亚洲 国产 在线| 十八禁高潮呻吟视频| 亚洲人成网站在线观看播放| 欧美激情极品国产一区二区三区| 欧美精品一区二区大全| 在线观看免费午夜福利视频| av又黄又爽大尺度在线免费看| 欧美日韩亚洲国产一区二区在线观看 | 又紧又爽又黄一区二区| 女人高潮潮喷娇喘18禁视频| 国产伦理片在线播放av一区| 久久毛片免费看一区二区三区| 亚洲国产日韩一区二区| 免费看十八禁软件| 女警被强在线播放| 大片电影免费在线观看免费| 99国产精品99久久久久| 一级黄色大片毛片| 国产精品久久久av美女十八| 黄色视频不卡| 亚洲人成77777在线视频| 欧美黑人精品巨大| 欧美97在线视频| 亚洲国产日韩一区二区| 1024视频免费在线观看| 欧美激情高清一区二区三区| 天天操日日干夜夜撸| 嫁个100分男人电影在线观看 | 韩国高清视频一区二区三区| 人人妻,人人澡人人爽秒播 | 男女之事视频高清在线观看 | 亚洲av男天堂| 国产精品成人在线| 欧美人与性动交α欧美精品济南到| 老司机午夜十八禁免费视频| 中文精品一卡2卡3卡4更新| 一级毛片电影观看| 激情五月婷婷亚洲| 久久99热这里只频精品6学生| 亚洲av片天天在线观看| 欧美日韩av久久| 晚上一个人看的免费电影| 午夜福利乱码中文字幕| 蜜桃在线观看..| 一本一本久久a久久精品综合妖精| 国产亚洲欧美在线一区二区| 国产精品国产三级专区第一集| 成年人黄色毛片网站| 亚洲欧洲国产日韩| 大码成人一级视频| 高潮久久久久久久久久久不卡| 欧美日韩av久久| 国产xxxxx性猛交| 在线天堂中文资源库| 久久人妻熟女aⅴ| 亚洲av成人精品一二三区| 校园人妻丝袜中文字幕| 99热全是精品| 国产av一区二区精品久久| 精品少妇黑人巨大在线播放| 十八禁网站网址无遮挡| 一本一本久久a久久精品综合妖精| 亚洲av日韩在线播放| 午夜老司机福利片| 国产99久久九九免费精品| 久久人人爽人人片av| 久久久精品免费免费高清| 人人妻人人澡人人爽人人夜夜| 丝袜美腿诱惑在线| 如日韩欧美国产精品一区二区三区| 亚洲精品国产色婷婷电影| 国产老妇伦熟女老妇高清| 新久久久久国产一级毛片| 精品视频人人做人人爽| 亚洲av日韩精品久久久久久密 | 观看av在线不卡| 久久午夜综合久久蜜桃| 丝袜美足系列| 97精品久久久久久久久久精品| 伊人久久大香线蕉亚洲五| 国产一卡二卡三卡精品| 一级片免费观看大全| 国产男人的电影天堂91| 亚洲色图综合在线观看| 亚洲欧美日韩另类电影网站| 亚洲伊人色综图| 人人妻人人爽人人添夜夜欢视频| 国产成人精品久久久久久| 69精品国产乱码久久久| 黑人猛操日本美女一级片| 91九色精品人成在线观看| 丰满饥渴人妻一区二区三| 国产成人系列免费观看| 国产在线一区二区三区精| 亚洲精品成人av观看孕妇| 18禁观看日本| 男人添女人高潮全过程视频| 19禁男女啪啪无遮挡网站| 国产精品 国内视频| e午夜精品久久久久久久| 青春草亚洲视频在线观看| 人妻人人澡人人爽人人| 亚洲熟女毛片儿| 欧美97在线视频| 色94色欧美一区二区| 免费看十八禁软件| 一级片'在线观看视频| 99久久综合免费| 老汉色∧v一级毛片| 国产主播在线观看一区二区 | 中文字幕最新亚洲高清| 热99国产精品久久久久久7| 免费在线观看影片大全网站 | 久久国产精品大桥未久av| 亚洲色图 男人天堂 中文字幕| 午夜91福利影院| 搡老岳熟女国产| 欧美精品人与动牲交sv欧美| 成人18禁高潮啪啪吃奶动态图| 建设人人有责人人尽责人人享有的| 看十八女毛片水多多多| 91麻豆av在线| 性色av一级| 国产熟女欧美一区二区| 中国国产av一级| 午夜免费成人在线视频| 精品福利永久在线观看| 伦理电影免费视频| av天堂在线播放| 日韩人妻精品一区2区三区| 一区二区三区四区激情视频| 美女午夜性视频免费| 成人黄色视频免费在线看| 天天躁日日躁夜夜躁夜夜| 精品视频人人做人人爽| 亚洲一卡2卡3卡4卡5卡精品中文| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜一区二区| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 女性生殖器流出的白浆| 国产男女内射视频| 少妇 在线观看| 免费高清在线观看日韩| 国产精品秋霞免费鲁丝片| 亚洲精品日本国产第一区| 亚洲av美国av| 一级,二级,三级黄色视频| 国产成人啪精品午夜网站| 夜夜骑夜夜射夜夜干| 亚洲av成人不卡在线观看播放网 | 精品少妇黑人巨大在线播放| 久久久久视频综合| av电影中文网址| 少妇精品久久久久久久| 最近最新中文字幕大全免费视频 | 一边摸一边做爽爽视频免费| 久久狼人影院| 亚洲激情五月婷婷啪啪| 久久久久国产一级毛片高清牌| 欧美性长视频在线观看| 亚洲欧美色中文字幕在线| 交换朋友夫妻互换小说| 亚洲精品国产一区二区精华液| 久久精品亚洲熟妇少妇任你| 国产精品香港三级国产av潘金莲 | 日韩免费高清中文字幕av| 日韩精品免费视频一区二区三区| 99国产综合亚洲精品| 亚洲欧美成人综合另类久久久| av天堂久久9| 一边摸一边抽搐一进一出视频| 日韩欧美一区视频在线观看| 日韩一本色道免费dvd| 人人妻人人添人人爽欧美一区卜| 悠悠久久av| 香蕉丝袜av| 自拍欧美九色日韩亚洲蝌蚪91| 国产老妇伦熟女老妇高清| 国产主播在线观看一区二区 | 91九色精品人成在线观看| 自线自在国产av| 看十八女毛片水多多多| 亚洲国产欧美在线一区| 国产视频一区二区在线看| www.av在线官网国产| 亚洲伊人久久精品综合| 国产成人免费无遮挡视频| 亚洲欧美激情在线| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 我要看黄色一级片免费的| 日韩欧美一区视频在线观看| 交换朋友夫妻互换小说| svipshipincom国产片| 曰老女人黄片| 欧美变态另类bdsm刘玥| 国产女主播在线喷水免费视频网站| 国产精品免费大片| 午夜两性在线视频| 日本黄色日本黄色录像| 久久这里只有精品19| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲成国产av| 亚洲av日韩在线播放| 精品一区在线观看国产| 91字幕亚洲| 久久人妻熟女aⅴ| 国产视频首页在线观看| 丰满饥渴人妻一区二区三| 国产成人一区二区在线| 日本午夜av视频| 热re99久久国产66热| 精品亚洲成a人片在线观看| 久久人妻福利社区极品人妻图片 | 999精品在线视频| 国产三级黄色录像| 日本vs欧美在线观看视频| 亚洲自偷自拍图片 自拍| 在线观看免费视频网站a站| 天天躁夜夜躁狠狠久久av| 在线观看国产h片| 晚上一个人看的免费电影| 欧美另类一区| 久久久久国产精品人妻一区二区| 波野结衣二区三区在线| 精品第一国产精品| 搡老岳熟女国产| 亚洲人成电影免费在线| 午夜两性在线视频| 纵有疾风起免费观看全集完整版| 免费一级毛片在线播放高清视频 | 嫩草影视91久久| 免费女性裸体啪啪无遮挡网站| 日本猛色少妇xxxxx猛交久久| 亚洲成人免费电影在线观看 | 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看 | 啦啦啦在线观看免费高清www| 精品少妇一区二区三区视频日本电影| 亚洲精品一二三| 成年人黄色毛片网站| av电影中文网址| 一区二区日韩欧美中文字幕| av福利片在线| 国产老妇伦熟女老妇高清| 亚洲视频免费观看视频| 国产成人91sexporn| 一级黄色大片毛片| 精品国产乱码久久久久久男人| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| 成人亚洲精品一区在线观看| 成人影院久久| av在线app专区| 美女大奶头黄色视频| 首页视频小说图片口味搜索 | 久久亚洲精品不卡| 成人黄色视频免费在线看| 热re99久久国产66热| 国产又色又爽无遮挡免| 亚洲国产av影院在线观看| 97人妻天天添夜夜摸| 国产欧美日韩精品亚洲av| 一本色道久久久久久精品综合| 亚洲欧美激情在线| 90打野战视频偷拍视频| 国产片内射在线| 午夜免费成人在线视频| 亚洲美女黄色视频免费看| 人妻人人澡人人爽人人| 中文字幕人妻丝袜一区二区| av片东京热男人的天堂| 狂野欧美激情性bbbbbb| 久久久国产精品麻豆| 欧美国产精品一级二级三级| 97在线人人人人妻| 波多野结衣一区麻豆| 亚洲精品国产av成人精品| 国产不卡av网站在线观看| 日本vs欧美在线观看视频| 亚洲成人免费电影在线观看 | 50天的宝宝边吃奶边哭怎么回事| 国产精品麻豆人妻色哟哟久久| 亚洲熟女精品中文字幕| a级毛片黄视频| 人人妻人人澡人人爽人人夜夜| 激情五月婷婷亚洲| 亚洲少妇的诱惑av| 一区在线观看完整版| 亚洲欧美一区二区三区国产| 精品久久久久久久毛片微露脸 | 国产成人精品在线电影| 亚洲综合色网址| 久久久久久免费高清国产稀缺| 中文字幕人妻丝袜制服| 青春草亚洲视频在线观看| 成年av动漫网址| av网站免费在线观看视频| 制服人妻中文乱码| 精品亚洲成国产av| 成年人黄色毛片网站| 99国产精品一区二区三区| 老汉色av国产亚洲站长工具| 国产精品人妻久久久影院| 一级黄色大片毛片| 老司机影院毛片| 成人18禁高潮啪啪吃奶动态图| 国产亚洲av片在线观看秒播厂| 国产色视频综合| 亚洲一区中文字幕在线| 中文字幕人妻丝袜一区二区| 女人精品久久久久毛片| 欧美日韩精品网址| 99re6热这里在线精品视频| 一边亲一边摸免费视频| 自线自在国产av| 超色免费av| 亚洲精品日本国产第一区| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 午夜视频精品福利| 男人操女人黄网站| 一级黄色大片毛片| 中国美女看黄片| 免费在线观看视频国产中文字幕亚洲 | 久久精品久久精品一区二区三区| 国产不卡av网站在线观看| 大片电影免费在线观看免费| videos熟女内射| 极品人妻少妇av视频| 丝袜在线中文字幕| 一级,二级,三级黄色视频| 午夜福利影视在线免费观看| 亚洲精品美女久久av网站| 国产一区二区 视频在线| 热99久久久久精品小说推荐| 午夜久久久在线观看| 青春草视频在线免费观看| 亚洲成国产人片在线观看| av在线app专区| 老司机午夜十八禁免费视频| 欧美日韩亚洲高清精品| 久久九九热精品免费| 亚洲五月色婷婷综合| 亚洲国产欧美一区二区综合| 五月天丁香电影| 日本a在线网址| 夜夜骑夜夜射夜夜干| 美女脱内裤让男人舔精品视频| 大片免费播放器 马上看| 精品人妻熟女毛片av久久网站| √禁漫天堂资源中文www| 无遮挡黄片免费观看| bbb黄色大片| 飞空精品影院首页| 国产黄频视频在线观看| 一级黄片播放器| 中文欧美无线码| 最近中文字幕2019免费版| 国产成人免费无遮挡视频| 国产免费现黄频在线看| 丝袜美足系列| 天堂中文最新版在线下载| av不卡在线播放| 亚洲一码二码三码区别大吗| 少妇猛男粗大的猛烈进出视频| 国产在线免费精品| 国产成人免费无遮挡视频| 国产在线免费精品| 欧美乱码精品一区二区三区| 黄频高清免费视频| 老司机影院成人| 国产免费福利视频在线观看| 又黄又粗又硬又大视频| 国产成人精品在线电影| 久久青草综合色| videosex国产| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 日日夜夜操网爽| 最近中文字幕2019免费版| 热re99久久国产66热| 亚洲精品美女久久久久99蜜臀 | 天堂俺去俺来也www色官网| 久久99精品国语久久久| 老司机在亚洲福利影院| 亚洲五月婷婷丁香| 下体分泌物呈黄色| 亚洲av欧美aⅴ国产| www日本在线高清视频| 亚洲欧美精品自产自拍| 色播在线永久视频| 满18在线观看网站| 9191精品国产免费久久| 亚洲一码二码三码区别大吗| 一本大道久久a久久精品| 国产欧美日韩精品亚洲av| 亚洲色图综合在线观看| 国产在线免费精品| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 欧美乱码精品一区二区三区| 久久精品国产亚洲av涩爱| 亚洲成人手机| 99精国产麻豆久久婷婷| 在线 av 中文字幕| 亚洲精品自拍成人| 又紧又爽又黄一区二区| 99精品久久久久人妻精品| 精品亚洲成国产av| 欧美少妇被猛烈插入视频| 亚洲成av片中文字幕在线观看| 日日夜夜操网爽| 国产高清不卡午夜福利| 超碰成人久久| 日韩一本色道免费dvd| 精品国产超薄肉色丝袜足j| 麻豆国产av国片精品| 午夜免费成人在线视频| 啦啦啦在线观看免费高清www| 一区二区日韩欧美中文字幕| 9色porny在线观看|