• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vector NLS solitons interacting with a boundary*

    2021-04-28 02:26:20ChengZhangandDajunZhang
    Communications in Theoretical Physics 2021年4期

    Cheng Zhangand Da-jun Zhang

    Department of Mathematics,Shanghai University,Shanghai,200444,China

    Abstract We construct multi-soliton solutions of the n-component vector nonlinear Schr?dinger equation on the half-line subject to two classes of integrable boundary conditions (BCs): the homogeneous Robin BCs and the mixed Neumann/Dirichlet BCs.The construction is based on the so-called dressing the boundary,which generates soliton solutions by preserving the integrable BCs at each step of the Darboux-dressing process.Under the Robin BCs,examples,including boundary-bound solitons,are explicitly derived; under the mixed Neumann/Dirichlet BCs,the boundary can act as a polarizer that tunes different components of the vector solitons.Connection of our construction to the inverse scattering transform is also provided.

    Keywords: polarizer effect,solitons on the half-line,vector nonlinear Schr?dinger equation,integrable boundary conditions,boundary-bound states

    1.Introduction

    The concept of integrable boundary conditions(BCs),mainly developed by Sklyanin [1],represents one of the most successful approaches to initial-boundary-value problems for two-dimensional integrable nonlinear partial differential equations(PDEs).The idea lies in translating the integrability of soliton equations with boundaries into certain algebraic constraints known as reflection equations,cf [1–3].As consequences,classes of soliton models,restricted on a finite interval,are integrable subject to integrable BCs [1].

    In this paper,we consider the focusing vector nonlinear Schr?dinger (VNLS) equation,also known as the Manakov model [4],restricted to the half-line space domain.The equation reads

    wherer=(r1,… ,r n)T,0 denotes the zero n-vector,and r?denotes the conjugate transpose of r.Each component rjis a complex field,and H is an n×n positive definite Hermitian matrix modeling interactions among the components.There is a natural U(n) -invariance of the model under the transformation r ?T r,whereT∈U(n).Let T diagonalize H,then the VNLS equation (1),up to certain scaling,can be reduced to its standard form

    The VNLS equation is a vector generalization of the(scalar) NLS equation by allowing internal degrees of freedom.Physically,it is a relevant model to describe optical solitons and collective states in low-temperature physics,cf[5,6]; mathematically,the nontrivial interactions of vector solitons are related to the notion of Yang–Baxter maps,cf[7–10].

    Integrable BCs for the VNLS equation,as well as soliton solutions to the VNLS equation on the half-line,were derived in [11] by means of a nonlinear mirror-image technique [12](see also [13]) that extends the half-line space domain to the whole axis.However,there was severe difficulty constructing N-soliton solutions on the half-line as the soliton data can only be computed recursively.In practice,the computations are becoming increasingly complicated for N ≥2 (see for instance [11],conclusions).

    We provide an efficient approach to deriving N-soliton solutions of the VNLS equation on the half-line.The construction is based on the so-called dressing the boundary,introduced recently by one of the authors [14,15].The essential ideas are: given integrable BCs of the VNLS equation (or any integrable PDEs),by generating soliton solutions using the Darboux-dressing transformations (DTs),we look for those DTs that preserve the integrable BCs.This gives rise to exact solutions of the underlying integrable model on the half-line,and admits a natural inverse scattering transform (IST) interpretation.The true powers of our construction consist of:(i)the N-soliton solutions can be obtained in compact forms (this was highly complicated following the mirror-image method[11,12],see the discussion provided in section 6); (ii) it does not require any extension of the space domain.This reveals that dressing the boundary represents a natural approach to solve the VNLS equation (or classes of PDEs) on the half-line equipped with integrable BCs.

    Note that Fokas’ unified transform method [16,17]represents a systematic approach to treating initial-boundaryvalue problems for integrable PDEs.This method can be regarded as a generalization of the IST,cf [18–21],and was already applied to the NLS [22] and VNLS [23] equations.However,it is a difficult task to obtain exact solutions within the Fokas’ method,although asymptotic solutions at large times could be derived.

    The outline and main results of the paper are as follows.First,DTs for generating soliton solutions of the VNLS equation are reviewed in section 2.Then,we recall in section 3 results on integrable BCs for the VNLS equation on the half-line[11].There are two classes of integrable BCs:the homogeneous Robin BCs and mixed Neumann/Dirichlet BCs.In section 4,we apply the approach of dressing the boundary to the VNLS equation on the half-line,which gives rise to explicit N-soliton solutions on the half-line.Our results provide a clear answer to the question of obtaining general Nsoliton solutions in the presence of a boundary [11].Moreover,we can construct stationary vector solitons subject to the Robin BCs at the boundary.These correspond to boundarybound solitons.In section 5,we provide explicit examples of vector solitons interacting with the boundary.In particular,by combining the effects of the mixed Neumann/Dirichlet BCs and the U(n) -invariance of the VNLS equation,the boundary can act as a polarizer that tunes components of solitons after interacting with the boundary.We provide connections of our construction to the IST in section 6.Possible connections of the half-line VNLS equation under integrable BCs to the Gross–Pitaevskii (GP) equation are also discussed.

    2.DTs and soliton solutions

    The n-component VNLS equation (2) is equivalent to the compatibility of the linear differential system

    Here,U,V,known as the Lax pair,are (n+1×n+1)matrix-valued functions

    where λ is the spectral parameter,and Σ and Q are block matrices

    with In,Onbeing the identity and zero square matrices of size n,respectively.There is a natural gauge group acting on the Lax pair(3)

    and DTs can be represented by G that preserves the forms of U,V by extracting the singular structures,cf[24–27].A onestep DT for the VNLS equation amounts to the mapwhere D[1] is called a dressing factor of degree 1

    Here,Ψ1is a particular solution of the undressed Lax pair(3)associated with λ1.Having a set of N particular solutions{Ψj,λj},j=1,…,N,one can iterate the DTs and construct the dressing factor D[N] of degree N.For simplicity Ψj's are assumed to be vectors(of rank 1).In the IST formalism,D[N]plays the role of the scattering matrix: one adds a pair of complex zero/poleto the scattering system at each step of the DTs .There are two important properties of DTs:(1) the Bianchi permutativity,meaning that the order of adding Ψjis irrelevant; and (2) the action of D[N](λ) can be expressed in compact forms (usually in terms of determinant structures).

    Since we are focusing on soliton solutions,the zero seed solution r=0 is imposed to the undressed Lax pair.Without loss of generality,let Ψj's be in the forms

    where bj's are constant complex n-vectors called norming vectors.Now,encoding the soliton data into{bj,λj},j=1,…,N,with distinct λj,the N-soliton solutions to the VNLS equation (2) are,cf [21,26]

    where r?is the ?th component of r,with βj;?being its ?th component,and the N×N matrix M has the componentsAs an illustration,the one-soliton data {b1,λ1},withν1>0,lead to the one vector soliton solution

    3.Integrable BCs for VNLS

    Now we restrict the space domain of the VNLS equation to the positive semi-axis.Integrable BCs for the half-line VNLS equation were investigated in [11] (see also [28] in which only the vector Robin BCs were derived).The integrability in the presence of a boundary was translated into a constraint on the t-part of the Lax pair

    Here,the boundary matrix K(λ) is assumed to be nondegenerate.As solutions of the boundary constraint(11),two classes of BCs were obtained [11]: (i) the homogeneous vector Robin BCs:

    having the boundary matrix

    The real parameter α controls the boundary behavior: the Neumann(rx|x=0=0)and Dirichlet BCs(r|x=0=0)appear as special cases of (12) as α=0 and |α|→∞,respectively; (ii)the mixed Neumann/Dirichlet (mND) BCs:

    where r?is the ?th component of r.Accordingly,one has the boundary matrix

    where the+/?sign of δ?corresponds to Neumann/Dirichlet BCs.

    Remark 1.The boundary constraint (11) was derived in [11]by considering the space-reverse symmetry of the VNLS equation as a B?cklund transformation.The same constraint was also introduced in Fokas’ unified transform,known as linearizable BCs.Note that the boundary matrixKis related to a far-reaching context as it represents solutions of the classical and quantum reflection equations [1–3].

    Remark 2.The integrable BCs are compatible with the U(n)-invariance of the VNLS equation.The transformationis trivial to the Robin BCs,because a collective change in the components ofrtakes place at the boundary underT.However,Tinduces a nontrivial effect under the mND BCs: since the components ofrcan interact differently with the boundary in two ways that are Neumann and Dirichlet BCs,the action ofTcan mix the two interactions and make transmissions among the different components appear.These transmission phenomena have the interpretation that the boundary acts as a‘polarizer’tuning the polarizations of the incoming solitons and,after interacting with the boundary,changes in the polarizations among the solitons take place [11].

    4.Dressing the boundary

    The integrable BCs for the VNLS equation on the half-line are completely determined by the t-part of the Lax pair through the boundary constraint (11).By dressing the boundary[14],we mean that in the process of DTs to generate exact solutions,the boundary constraint is preserved at each step of the DTs.By construction,this leads to exact solutions of the VNLS equation subject to the integrable BCs.In practice this requires one to find appropriate particular solutions in DTs.

    Lemma 1.[Dressing the boundary] LetU,Vbe the undressed Lax pair.Assume thatVsatisfies the boundary constraint (11),and that the Lax pair admits a pair of particular solutionsassociated withrespectively (assumeλjis not pure imaginary),such that

    whereK(λ)is the boundary matrix; then the boundary constraint (11) is preserved after dressingVusing Ψj,

    The proof is closely related to the structure of dressing factors.Similar statements can be found in[14]for the scalar case.To obtain exact solutions on the half-line,it remains to find the paired particular solutions Ψj,satisfying (16).

    Proposition 1.[N-soliton solutions on the half-line] Let{bj,λj} andj=1,…,N,be two sets of N-soliton data.Assume thatis not pure imaginary) andwithB(λ)=fα(λ)In(fα(λ)defined in (13)),then the so-constructed solutions restricted tox≥ 0 correspond to N-soliton solutions on the half-line subject to the Robin BCs(12);ifB= ?diag (δ1,...,δn),δ?= 1,δj= ?1,forj≠?,then the solutions restricted tox≥ 0 satisfy the mND BCs (14).

    The proof is a direct consequence of lemma 1 by taking into account the forms of the particular solutions(8).Dressing the Lax pair using the N-paired soliton data {bj,λj} andgives rise to 2N-soliton solutions on the whole-line,and the requirements thatcreate solitons with opposite velocities.By restricting the space domain to the positive semi-axis,the BCs appear as interactions of solitons with opposite velocities at x=0,then one obtains N-soliton solutions on the half-line.Although this whole-line picture helps to interpret interactions of solitons as BCs,the derivation of soliton solutions on the half-line can be restricted to x ≥0.This is in contrast to the nonlinear mirror-image technique[11,12],where an extended potential to the wholeline is required.

    Note that in the above construction,pure imaginary λj's,corresponding to stationary solitons are excluded.By dressing the boundary,we can also construct stationary solitons satisfying the Robin BCs.These are boundary-bound solitons on the half-line.

    Proposition 2.[Boundary-bound solitons] Letβbe any realn-vector such that∣β∣= 1,and,j= 1,… ,Nbe a set ofN-soliton data.Assume thatλj’s are pure imaginary numbers and distinct,and for given α,satisfyfα(λj)<0(fα(λ)defined in (13)).Moreover,assume the following forms of the norming constantsthen the so-constructed solutions restricted tox≥ 0 correspond toN-stationary solitons on the half-line subject to the Robin BCs (12).

    The requirement that β is a real vector with |β|=1 can be easily obtained by taking any real vectordivided by its normalAgain,the restriction on the soliton data follows the idea of dressing the boundary: the boundary constraint (11) is preserved at each step of the DTs.In computing the boundary-bound solitons,the expressions for the norming constants are different for the odd and even soliton numbers.One also excludes the situation where the stationary solitons are subject to the Dirichlet BCs by assuming fα(λj)<0.Note that for the scalar NLS case,the boundary-bound states were investigated in[14,29].One can put the stationary and moving solitons together by combining the associated soliton data.Due to the Bianchi permutativity of DTs,the order of adding the soliton data is irrelevant.

    5.Examples of VNLS soliton interacting with a boundary

    It is straightforward to apply Prop.1 and 2 to obtain soliton solutions of the VNLS equation on the half-line.Fix n=2;three examples under the Robin BCs are shown in figures 1–3.The left and right figures represent,respectively,the norms of the 1st and 2nd components of the solutions.

    As for the mND BCs,fix n=2,and let the transformation matrixT∈SU(2) (following remark 2) parameterized by three parameters ω,θ,ξ be in the form

    Clearly,r?Trinduces a mixture of components of r at the boundary.In the computations of the half-line soliton solution,this amounts to B ?TBT?1for B defined in Prop.1.Examples of two solitons interacting with an mND boundary are shown below.Having B=diag(1,?1) gives rise to solitons with the 1st component subject to Neumann BCs and 2nd to Dirichlet BCs(see figure 4);under the action of T,for certain choices of the parameters,one can make one component of the outgoing solitons vanishingly small1The complete analysis,requiring some asymptotic estimations of the solutions as t →±∞,is omitted here.Detailed analysis can be found,for instance,in [10].(see figure 5).In other words,the boundary polarizer switches off the 1st component after solitons interact with the boundary.

    6.Discussion

    The approach of dressing the boundary is successfully applied to the VNLS equation on the half-line.Although our construction is rather algebraic,it admits a perfect IST interpretation.Since the integrable BCs are only governed by the t-part of the Lax pair through the boundary constraint (11),the soliton data on the half-line can be derived by performing the IST using the t-part of the Lax pair on the boundary.Precisely,this amounts to the direct scattering analysis of

    where QTis defined in (4).Let Φ±be the fundamental solutions (3) at x=0

    Figure 2.One soliton interacts with a boundary-bound soliton subject to the Robin BCs (α=2).The moving soliton data are: b1} andwith μ1=1.4,ν1=4,=(3 ,2) ;the static soliton data are:

    Figure 3.Three stationary solitons interfere with themselves at the boundary subject to the Robin BCs (α=2).Here,

    Figure 4.Two solitons interact with the mixed Neumann(1st component)and Dirichlet(2nd component)BCs with B=?diag(1,?1).The soliton data areand j=1,2 with μ1=1,ν1=2,=(4 ,4),μ2=2,ν2=1.5

    they are connected by the scattering system Φ+(λ)=S(λ)Φ?(λ),where S(k) is the scattering matrix.The domain of analyticity of the components of S(k) can be split into the four quadrants of the complex plane.The boundary constraint (11) yields

    which governs the soliton data at the boundary x=0.It is easy to see that paired singularities {λj,?λj} appear (see figure 6),and the relations between the paired norming constants can also be accordingly extracted.These are the requirements listed in Prop.1.Then,making the soliton data evolve in x for x >0 gives rise to N-soliton solutions on the half-line.

    Figure 5.Polarizer effect:the boundary tunes the polarizations,and the 1st component becomes vanishingly small after interacting with the boundary.Here,the parameters in T (17) are fixed as ω=0,θ=0,ξ=50.66.

    Figure 6.Pairing of soliton data in the spectral plane

    Note that the relation (20) is in sharp contrast to the formulae (3.43) and (3.46) in [11],which are the governing relations of the soliton data following the nonlinear mirrorimage approach.In [11],the singularities are paired asand the paired norming constants,that are nonlinearly coupled,can be only be computed recursively.This makes the computation of N-soliton solutions on the half-line highly complicated.However,the relation (20) only involves linear relations between the paired norming constantsin Prop.1).Therefore,the half-line N-soliton solutions can be easily derived.

    As pointed out by Fokas,the scalar NLS equation on the half-line under the Robin BCs can even model solutions to the GP equation on the whole-line with a Dirac-function potential at the origin,cf [30],introduction.Similarly,the VNLS equation on the half-line under the integrable BCs can also describe certain special cases of the vector GP equation.Fix the number of components n=2,and one has the vector GP equation

    where u(x),v(x) are the potentials. Let u(x)=v(x)=?4αδ0(x),and let r1,r2be even in x.Then,after integration,the Dirac function δ0(x) introduces a jump in the derivatives

    which corresponds to the half-line VNLS equation under the vector Robin BCs (12).Again,let u(x)=0,v(x)=δ0(x),and let r1be even and r2be odd in x.This corresponds to the halfline VNLS equation under the mND BCs(14),with r1and r2satisfying,respectively,the Neumann and Dirichlet BCs.

    ORCID iDs

    综合色av麻豆| 午夜久久久久精精品| 亚洲黑人精品在线| 国产免费av片在线观看野外av| 欧美一区二区精品小视频在线| 在线视频色国产色| 日韩 欧美 亚洲 中文字幕| 国产99白浆流出| 色av中文字幕| 亚洲欧美一区二区三区黑人| 亚洲精品在线美女| 中文资源天堂在线| 淫妇啪啪啪对白视频| 日本在线视频免费播放| 日本撒尿小便嘘嘘汇集6| 人人妻人人澡欧美一区二区| 99久久综合精品五月天人人| 51午夜福利影视在线观看| 女生性感内裤真人,穿戴方法视频| 一夜夜www| 色精品久久人妻99蜜桃| 香蕉丝袜av| 又粗又爽又猛毛片免费看| 两个人看的免费小视频| 露出奶头的视频| 在线观看av片永久免费下载| 国产精品一及| 亚洲国产欧洲综合997久久,| 日本精品一区二区三区蜜桃| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 欧美色视频一区免费| 亚洲欧美精品综合久久99| 国产亚洲欧美98| 99久久无色码亚洲精品果冻| 欧美午夜高清在线| 国产精品久久久久久久电影 | 亚洲aⅴ乱码一区二区在线播放| 欧美xxxx黑人xx丫x性爽| 99热6这里只有精品| 精品久久久久久成人av| 99久久成人亚洲精品观看| 麻豆国产av国片精品| 国产私拍福利视频在线观看| 国产精品乱码一区二三区的特点| 欧美激情在线99| 黄色女人牲交| 午夜免费观看网址| 51午夜福利影视在线观看| a在线观看视频网站| 欧美成狂野欧美在线观看| 国产精品女同一区二区软件 | 搡女人真爽免费视频火全软件 | 国产成人a区在线观看| aaaaa片日本免费| 亚洲av日韩精品久久久久久密| 国内毛片毛片毛片毛片毛片| 精品欧美国产一区二区三| 亚洲成a人片在线一区二区| 校园春色视频在线观看| 亚洲在线观看片| 日韩欧美在线乱码| 精品不卡国产一区二区三区| 国产精品久久久久久亚洲av鲁大| 欧美av亚洲av综合av国产av| 亚洲欧美日韩无卡精品| 亚洲av美国av| 嫩草影院入口| 国产v大片淫在线免费观看| 久久精品国产综合久久久| 97碰自拍视频| 久久久精品欧美日韩精品| 三级毛片av免费| 熟女少妇亚洲综合色aaa.| 成人高潮视频无遮挡免费网站| 亚洲美女黄片视频| av视频在线观看入口| 成年女人毛片免费观看观看9| 国产伦在线观看视频一区| 婷婷精品国产亚洲av在线| 亚洲熟妇熟女久久| 很黄的视频免费| 人人妻人人看人人澡| 91久久精品电影网| 九九热线精品视视频播放| 可以在线观看的亚洲视频| 成人一区二区视频在线观看| 男女午夜视频在线观看| 搡老妇女老女人老熟妇| 欧美日韩亚洲国产一区二区在线观看| www日本在线高清视频| 色在线成人网| 99国产精品一区二区蜜桃av| 亚洲天堂国产精品一区在线| 色哟哟哟哟哟哟| 波多野结衣高清作品| 桃红色精品国产亚洲av| 观看免费一级毛片| 老汉色∧v一级毛片| 五月玫瑰六月丁香| bbb黄色大片| 成人精品一区二区免费| 日本五十路高清| 国产精品爽爽va在线观看网站| 午夜激情欧美在线| 一本综合久久免费| 国产精品久久久人人做人人爽| 亚洲国产精品成人综合色| 熟女少妇亚洲综合色aaa.| 国产精品1区2区在线观看.| 亚洲片人在线观看| 国产精华一区二区三区| 国产aⅴ精品一区二区三区波| 精品国产亚洲在线| 变态另类丝袜制服| 热99re8久久精品国产| 看黄色毛片网站| 亚洲av成人不卡在线观看播放网| 18禁在线播放成人免费| 日韩欧美在线二视频| 搞女人的毛片| 99热只有精品国产| 中文字幕精品亚洲无线码一区| 在线播放无遮挡| 99国产极品粉嫩在线观看| 欧美性感艳星| 亚洲欧美精品综合久久99| 亚洲国产精品合色在线| 久久久久久久久久黄片| 在线免费观看不下载黄p国产 | 免费在线观看成人毛片| 亚洲最大成人中文| 国产精品av视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产午夜福利久久久久久| 国产精品三级大全| 国内精品久久久久精免费| 国产午夜精品论理片| 成人三级黄色视频| 母亲3免费完整高清在线观看| 国产高清videossex| 精品不卡国产一区二区三区| 精品久久久久久久毛片微露脸| av片东京热男人的天堂| 内射极品少妇av片p| 一a级毛片在线观看| 夜夜爽天天搞| 怎么达到女性高潮| 97人妻精品一区二区三区麻豆| 一夜夜www| 亚洲av电影不卡..在线观看| 国产极品精品免费视频能看的| 美女黄网站色视频| 亚洲人与动物交配视频| 国产精品亚洲美女久久久| 丁香欧美五月| 天天躁日日操中文字幕| 脱女人内裤的视频| av国产免费在线观看| 国产伦人伦偷精品视频| 亚洲avbb在线观看| 人妻夜夜爽99麻豆av| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区久久| 美女高潮的动态| 欧美日韩精品网址| 床上黄色一级片| 国产亚洲欧美98| 免费看光身美女| av欧美777| a在线观看视频网站| 精品人妻一区二区三区麻豆 | 搡老妇女老女人老熟妇| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 每晚都被弄得嗷嗷叫到高潮| 51午夜福利影视在线观看| av黄色大香蕉| 伊人久久大香线蕉亚洲五| or卡值多少钱| 亚洲久久久久久中文字幕| 身体一侧抽搐| 国产精品久久久久久人妻精品电影| 高清在线国产一区| 国产av在哪里看| 母亲3免费完整高清在线观看| 夜夜躁狠狠躁天天躁| 成人国产一区最新在线观看| 嫩草影院入口| 国产亚洲精品一区二区www| 少妇丰满av| 高清毛片免费观看视频网站| 久久精品亚洲精品国产色婷小说| 精品国产三级普通话版| 久99久视频精品免费| 中文资源天堂在线| 亚洲激情在线av| tocl精华| 国产精品乱码一区二三区的特点| 亚洲18禁久久av| 在线看三级毛片| av福利片在线观看| 亚洲av电影在线进入| 久久草成人影院| av天堂中文字幕网| 俄罗斯特黄特色一大片| 在线播放国产精品三级| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| 国内精品一区二区在线观看| 久久久久久国产a免费观看| 久久久国产成人精品二区| 亚洲av二区三区四区| 亚洲国产欧洲综合997久久,| 亚洲第一欧美日韩一区二区三区| 国产午夜福利久久久久久| 天天添夜夜摸| 欧美国产日韩亚洲一区| 女人高潮潮喷娇喘18禁视频| 亚洲av免费高清在线观看| 99久久精品一区二区三区| 国产一区二区在线观看日韩 | 伊人久久精品亚洲午夜| 婷婷六月久久综合丁香| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久亚洲av鲁大| 免费观看精品视频网站| av天堂在线播放| 在线观看午夜福利视频| 18+在线观看网站| 亚洲,欧美精品.| 首页视频小说图片口味搜索| 日韩精品青青久久久久久| 色精品久久人妻99蜜桃| 又黄又爽又免费观看的视频| 天天添夜夜摸| 看片在线看免费视频| 在线观看一区二区三区| 国产成人aa在线观看| 亚洲色图av天堂| 久久精品综合一区二区三区| 怎么达到女性高潮| 亚洲,欧美精品.| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 久久6这里有精品| 小蜜桃在线观看免费完整版高清| 亚洲,欧美精品.| 欧美成人免费av一区二区三区| 1000部很黄的大片| 99久久无色码亚洲精品果冻| 在线十欧美十亚洲十日本专区| 国产一区二区亚洲精品在线观看| 日本三级黄在线观看| 97碰自拍视频| 国产亚洲av嫩草精品影院| 亚洲国产欧美网| 亚洲av美国av| 一卡2卡三卡四卡精品乱码亚洲| 两个人的视频大全免费| a在线观看视频网站| 老司机深夜福利视频在线观看| 亚洲精品美女久久久久99蜜臀| 欧洲精品卡2卡3卡4卡5卡区| 97人妻精品一区二区三区麻豆| 午夜精品久久久久久毛片777| 成年版毛片免费区| 久久久久久大精品| 久久伊人香网站| 老汉色∧v一级毛片| 国产成年人精品一区二区| 在线免费观看不下载黄p国产 | 久久香蕉国产精品| 亚洲天堂国产精品一区在线| 神马国产精品三级电影在线观看| 欧美激情在线99| 国内久久婷婷六月综合欲色啪| 久久久久久人人人人人| 国产高清有码在线观看视频| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩无卡精品| 最近最新免费中文字幕在线| 成人一区二区视频在线观看| 88av欧美| 国产v大片淫在线免费观看| 国产欧美日韩精品一区二区| 亚洲av成人不卡在线观看播放网| 69av精品久久久久久| 国产aⅴ精品一区二区三区波| 身体一侧抽搐| 男人和女人高潮做爰伦理| 波野结衣二区三区在线 | 亚洲欧美日韩东京热| 精华霜和精华液先用哪个| 久久久久久久精品吃奶| 日韩欧美在线乱码| 一进一出好大好爽视频| 国产中年淑女户外野战色| 亚洲精品在线美女| av在线天堂中文字幕| 欧美日韩亚洲国产一区二区在线观看| 99久久久亚洲精品蜜臀av| 欧美在线一区亚洲| 看免费av毛片| 午夜福利欧美成人| 亚洲欧美精品综合久久99| 国产精品久久久久久久电影 | 国产精品乱码一区二三区的特点| 88av欧美| 蜜桃亚洲精品一区二区三区| 熟女电影av网| 男插女下体视频免费在线播放| 欧美高清成人免费视频www| 久久精品国产自在天天线| 女人被狂操c到高潮| 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩无卡精品| 久久午夜亚洲精品久久| 国产午夜精品论理片| 国产欧美日韩一区二区三| 日韩亚洲欧美综合| 成年版毛片免费区| 观看美女的网站| 国内久久婷婷六月综合欲色啪| 国产乱人视频| 亚洲成av人片免费观看| 韩国av一区二区三区四区| 一a级毛片在线观看| 免费在线观看成人毛片| 欧美日韩黄片免| 国产精品爽爽va在线观看网站| 99久国产av精品| 国产男靠女视频免费网站| 夜夜爽天天搞| 在线观看舔阴道视频| 九九热线精品视视频播放| 国产淫片久久久久久久久 | 最近在线观看免费完整版| 人人妻人人看人人澡| 3wmmmm亚洲av在线观看| 精品欧美国产一区二区三| 成年女人看的毛片在线观看| 母亲3免费完整高清在线观看| 国产精品一区二区三区四区免费观看 | 亚洲成av人片免费观看| 亚洲无线观看免费| www.999成人在线观看| 夜夜夜夜夜久久久久| 99久久九九国产精品国产免费| 两个人视频免费观看高清| 夜夜躁狠狠躁天天躁| av中文乱码字幕在线| 香蕉丝袜av| 国产成+人综合+亚洲专区| 美女黄网站色视频| xxx96com| 亚洲片人在线观看| 免费在线观看亚洲国产| ponron亚洲| 国产淫片久久久久久久久 | 免费看光身美女| 国产不卡一卡二| 特大巨黑吊av在线直播| 大型黄色视频在线免费观看| 老鸭窝网址在线观看| 少妇高潮的动态图| 国产三级黄色录像| 蜜桃久久精品国产亚洲av| 国产真人三级小视频在线观看| 毛片女人毛片| 黄色日韩在线| 天天躁日日操中文字幕| 香蕉久久夜色| 日日干狠狠操夜夜爽| 两性午夜刺激爽爽歪歪视频在线观看| 深爱激情五月婷婷| 国产精品嫩草影院av在线观看 | 亚洲熟妇中文字幕五十中出| 中出人妻视频一区二区| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 国产亚洲av嫩草精品影院| 欧美3d第一页| 亚洲av一区综合| 亚洲精华国产精华精| 成熟少妇高潮喷水视频| 中文字幕人妻熟人妻熟丝袜美 | 久久久久久人人人人人| 五月伊人婷婷丁香| 搡老妇女老女人老熟妇| 夜夜夜夜夜久久久久| 在线播放无遮挡| 亚洲精品一区av在线观看| 亚洲av电影在线进入| 国产精品久久久久久久久免 | 国产伦精品一区二区三区视频9 | 男女视频在线观看网站免费| bbb黄色大片| 日韩精品中文字幕看吧| 3wmmmm亚洲av在线观看| 可以在线观看的亚洲视频| 欧美最新免费一区二区三区 | 丰满的人妻完整版| 久久草成人影院| 少妇丰满av| 亚洲人与动物交配视频| 中文亚洲av片在线观看爽| 免费看十八禁软件| 日本熟妇午夜| 亚洲av日韩精品久久久久久密| 亚洲国产日韩欧美精品在线观看 | 热99re8久久精品国产| 久久欧美精品欧美久久欧美| 亚洲成av人片免费观看| 黄色日韩在线| 久久久色成人| 99视频精品全部免费 在线| 我要搜黄色片| 国语自产精品视频在线第100页| 九九热线精品视视频播放| 成年免费大片在线观看| 五月伊人婷婷丁香| 日本撒尿小便嘘嘘汇集6| 搡老岳熟女国产| 1024手机看黄色片| 99视频精品全部免费 在线| 久久久色成人| 午夜两性在线视频| 欧美日韩一级在线毛片| 九九在线视频观看精品| 一个人免费在线观看电影| 国产探花极品一区二区| 亚洲av电影在线进入| 啦啦啦韩国在线观看视频| 噜噜噜噜噜久久久久久91| 伊人久久精品亚洲午夜| 国产精品久久视频播放| 国产毛片a区久久久久| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩东京热| 亚洲av成人av| 欧美黄色淫秽网站| 日韩欧美国产一区二区入口| 国产精品女同一区二区软件 | 99在线视频只有这里精品首页| 国产精品99久久久久久久久| 亚洲av第一区精品v没综合| 中文字幕av在线有码专区| 国产欧美日韩精品亚洲av| 成人精品一区二区免费| 一二三四社区在线视频社区8| 国产综合懂色| 九色成人免费人妻av| 级片在线观看| 亚洲专区中文字幕在线| 美女高潮的动态| 大型黄色视频在线免费观看| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 国产精品一及| 天堂影院成人在线观看| 在线观看av片永久免费下载| 亚洲av第一区精品v没综合| svipshipincom国产片| 精品国产超薄肉色丝袜足j| www.999成人在线观看| 最新在线观看一区二区三区| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 黑人欧美特级aaaaaa片| 久久精品人妻少妇| 一夜夜www| 一卡2卡三卡四卡精品乱码亚洲| ponron亚洲| 少妇裸体淫交视频免费看高清| 日本在线视频免费播放| ponron亚洲| 51午夜福利影视在线观看| 国产在线精品亚洲第一网站| 午夜福利在线在线| 成年人黄色毛片网站| netflix在线观看网站| 色综合亚洲欧美另类图片| 欧美日韩福利视频一区二区| 欧美绝顶高潮抽搐喷水| 他把我摸到了高潮在线观看| 99久久综合精品五月天人人| 国产伦精品一区二区三区视频9 | 小蜜桃在线观看免费完整版高清| 色综合亚洲欧美另类图片| 啦啦啦韩国在线观看视频| 99热只有精品国产| 欧美乱码精品一区二区三区| 精品国产美女av久久久久小说| 欧美最黄视频在线播放免费| 欧美性猛交╳xxx乱大交人| 亚洲午夜理论影院| 狠狠狠狠99中文字幕| 啦啦啦观看免费观看视频高清| 精品人妻1区二区| 亚洲七黄色美女视频| 国产亚洲精品av在线| 久久这里只有精品中国| 国产在视频线在精品| 人人妻,人人澡人人爽秒播| 叶爱在线成人免费视频播放| 日韩欧美在线二视频| 波多野结衣高清无吗| 国产亚洲av嫩草精品影院| 国产三级在线视频| 在线看三级毛片| www.色视频.com| 国产精品永久免费网站| 久久99热这里只有精品18| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 最近最新中文字幕大全电影3| 天天添夜夜摸| 好看av亚洲va欧美ⅴa在| 99riav亚洲国产免费| 99视频精品全部免费 在线| 国产精品久久视频播放| 欧美+亚洲+日韩+国产| 成人av在线播放网站| 亚洲人成网站在线播放欧美日韩| 三级毛片av免费| 久久精品91蜜桃| 香蕉丝袜av| 欧美乱色亚洲激情| 精品乱码久久久久久99久播| 首页视频小说图片口味搜索| 中文亚洲av片在线观看爽| a级毛片a级免费在线| 成人18禁在线播放| 丁香欧美五月| 亚洲人成电影免费在线| 亚洲av二区三区四区| 叶爱在线成人免费视频播放| 中文字幕av在线有码专区| 欧美成人a在线观看| 亚洲av二区三区四区| 听说在线观看完整版免费高清| av福利片在线观看| 免费看十八禁软件| 一个人看的www免费观看视频| 18美女黄网站色大片免费观看| 搡老熟女国产l中国老女人| a在线观看视频网站| 日韩中文字幕欧美一区二区| 国产单亲对白刺激| www日本黄色视频网| 成年女人毛片免费观看观看9| 亚洲精品美女久久久久99蜜臀| 免费在线观看日本一区| 最近最新中文字幕大全免费视频| 手机成人av网站| 99久久无色码亚洲精品果冻| 日韩精品青青久久久久久| 欧美色欧美亚洲另类二区| 国产私拍福利视频在线观看| 国产在线精品亚洲第一网站| 国产av不卡久久| 国产乱人伦免费视频| 桃红色精品国产亚洲av| 美女免费视频网站| 成熟少妇高潮喷水视频| 亚洲av日韩精品久久久久久密| av黄色大香蕉| 国产成年人精品一区二区| 国产激情偷乱视频一区二区| 国产精品日韩av在线免费观看| 美女被艹到高潮喷水动态| 亚洲av熟女| 欧美日韩综合久久久久久 | 午夜日韩欧美国产| 久久久久国内视频| 免费在线观看影片大全网站| 蜜桃久久精品国产亚洲av| 精品国产美女av久久久久小说| 国产伦一二天堂av在线观看| 最近最新中文字幕大全免费视频| 国产精品国产高清国产av| 操出白浆在线播放| 亚洲精品一区av在线观看| 午夜精品一区二区三区免费看| 久久香蕉国产精品| 国产精品亚洲一级av第二区| 欧美成狂野欧美在线观看| 老熟妇仑乱视频hdxx| 日本三级黄在线观看| 国产精品免费一区二区三区在线| 国产精品乱码一区二三区的特点| 一区二区三区免费毛片| 在线视频色国产色| 成人亚洲精品av一区二区| 国产私拍福利视频在线观看| 国产成人a区在线观看| 99久久无色码亚洲精品果冻| 久久国产精品影院| 国产精品 国内视频| 亚洲中文字幕日韩| 亚洲欧美日韩高清专用| 每晚都被弄得嗷嗷叫到高潮| xxxwww97欧美| 一区二区三区激情视频| 国产精品 国内视频| 亚洲美女黄片视频| 日日摸夜夜添夜夜添小说| 国产精品精品国产色婷婷| 每晚都被弄得嗷嗷叫到高潮| 女警被强在线播放| 国产私拍福利视频在线观看| 成人一区二区视频在线观看|