唐宇其 顏彥 李美英 胡偉
摘要:【目的】克隆粉蕉1-氨基環(huán)丙烷-1-羧酸(ACC)氧化酶(ACO)基因(MbACO2),并進(jìn)行表達(dá)分析,為研究ACO基因家族在香蕉果實(shí)發(fā)育成熟過程及逆境脅迫過程中的功能作用提供參考依據(jù),也為改良香蕉采后貯藏提供潛在的基因資源?!痉椒ā坷肦T-PCR從粉蕉果實(shí)克隆MbACO2基因,運(yùn)用生物信息學(xué)軟件分析其編碼蛋白的理化性質(zhì)、親疏水性、保守結(jié)構(gòu)域及二、三級(jí)結(jié)構(gòu)。利用農(nóng)桿菌介導(dǎo)的瞬時(shí)轉(zhuǎn)化法進(jìn)行亞細(xì)胞定位,并利用實(shí)時(shí)熒光定量PCR檢測(cè)MbACO2基因在果實(shí)發(fā)育成熟過程及高鹽、干旱和低溫脅迫處理下的表達(dá)情況。【結(jié)果】克隆獲得的MbACO2基因開放閱讀框(ORF)長(zhǎng)度為918 bp,編碼305個(gè)氨基酸殘基,其蛋白分子量為34.583 kD,理論等電點(diǎn)(pI)為5.43,屬于親水性蛋白,具有典型的植物ACO蛋白家族的結(jié)構(gòu)特征,含有DIOX_N和2OG-FeⅡ_Oxy 2個(gè)保守結(jié)構(gòu)域。MbACO2氨基酸序列與同屬的香蕉(Musa acuminata AAA group)ACO氨基酸序列(XP_010908825.1)相似性最高,為98.04%,表明其具有高度的保守性。MbACO2蛋白在細(xì)胞核和細(xì)胞質(zhì)中均有表達(dá)。隨著粉蕉果實(shí)發(fā)育成熟,MbACO2基因表達(dá)量整體呈升高趨勢(shì),極顯著高于開花后0 d(對(duì)照)(P<0.01,下同),尤其是在果實(shí)采后6 d,其相對(duì)表達(dá)量達(dá)最高值。高鹽、干旱和低溫脅迫處理下,MbACO2基因的相對(duì)表達(dá)量較對(duì)照(未脅迫處理)顯著(P<0.05)或極顯著提高?!窘Y(jié)論】MbACO2基因?qū)儆贏CO基因家族成員,含有該家族的典型結(jié)構(gòu)域,在粉蕉果實(shí)發(fā)育成熟過程及逆境脅迫的應(yīng)答中發(fā)揮正向調(diào)控作用,高鹽、干旱和低溫脅迫處理均能誘導(dǎo)其上調(diào)表達(dá)。
關(guān)鍵詞: 粉蕉;1-氨基環(huán)丙烷-1-羧酸氧化酶(ACO);果實(shí)發(fā)育;逆境脅迫;表達(dá)分析
中圖分類號(hào): S668.1? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)01-0155-08
Abstract:【Objective】To clone 1-aminocyclopropane-1-carboxylic acid(ACC) oxidase(ACO) gene (MbACO2) from Musa ABB group,cv Pisang Awak,F(xiàn)J,and analyze its bioinformatics and expression,so as to provide reference for studying the function of ACO gene family in banana fruit ripening and stress process,and to provide potential gene resources for improving banana postharvest storage. 【Method】Gene MbACO2 was cloned from Musa ABB group,cv Pisang Awak,F(xiàn)J by RT-PCR. The physicochemical properties,hydrophilicity/hydrophobicity,conserved domains and sec-ondary/tertiary structures of the encoded protein were predicted by bioinformatics analysis. Subcellular localization was conducted using Agrobacterium-mediated transient transformation. The expression level of MbACO2 gene in fruit deve-lopment and stress response(high-salt, drought and low temperature) was detected by real-time quantitative PCR. 【Result】The open reading frame(ORF) length of MbACO2 was 918 bp,encoding 305 amino acid residues. The molecular weight of the protein was 34.583 kD and the theoretical isoelectric point(pI) was 5.43. The protein encoded by MbACO2 gene belonged to hydrophilic protein,which had typical plant ACO structural characteristics and contained two conservative domainsDIOX_N and 2OG-FeⅡ_Oxy. The amino acid sequence of MbACO2 was similar to that of ACO amino acid sequence(XP_010908825.1) in banana(Musa acuminata AAA group) and the similarity reached 98.04%,indicating that the amino acid sequence of MbACO2 protein was highly conserved. The subcellular localization results showed that MbACO2 protein was expressed in both nucleus and cytoplasm. The expression of MbACO2 gene increased with the development of fruit ripening, and was extremely higher than 0 d after flowering(control) (P<0.01, the same below). The expression level of MbACO2 was the highest 6 d after harvest. Under high-salt, drought and low temperature,the relative expression of MbACO2 gene was significantly up-regulated(P<0.05) or extremely up-regulated compared with control(no stress treatment). 【Conclusion】MbACO2 gene belongs to ACO gene family, it contains the typical domains of the family, and? it playsa positive regulation role in banana fruit ripening and stress resistance of Musa ABB group,cv Pisang Awak,F(xiàn)J. High-salt, drought and low temperature can induce its upregulation of expression.
Key words:Musa ABB group,cv Pisang Awak,F(xiàn)J; 1-aminocyclopropane-1-carboxylic acid oxidase(ACO); fruit growth; stress; expression analysis
Foundation item: Hainan Key Research and Development Project(SKJC-2020-02-002)
0 引言
【研究意義】香蕉作為世界四大水果之一,其果實(shí)富含碳水化合物和蛋白質(zhì),是熱帶地區(qū)及亞熱帶地區(qū)重要的糧食作物和經(jīng)濟(jì)作物(Inaba et al.,2007)。香蕉是典型的呼吸躍變型果實(shí),其成熟過程受乙烯的調(diào)控,在生產(chǎn)上主要通過乙烯吸收劑來延長(zhǎng)香蕉的貨架期(施怡婷和楊淑華,2016)。乙烯(Ethylene)作為一種非常重要的氣態(tài)激素,其介導(dǎo)的信號(hào)通路在植物生長(zhǎng)發(fā)育、果實(shí)成熟及脅迫應(yīng)答等過程中發(fā)揮重要作用(賀立紅等,2009)。1-氨基環(huán)丙烷-1-羧酸(ACC)氧化酶(ACO)作為乙烯生物合成途徑的限速酶,能直接催化ACC產(chǎn)生乙烯(Alexander and Grierson,2002;侯曉婉等,2015)。因此,加強(qiáng)ACO基因研究有助于深入探究乙烯生物合成的調(diào)控機(jī)制及其在脅迫應(yīng)答中的潛在功能。【前人研究進(jìn)展】目前,ACO基因已在擬南芥(5個(gè))(Vandenbussche et al.,2003)、玉米(13個(gè))(Gallie and Young,2004)、番茄(7個(gè))(Sell and Hehl,2005)、水稻(9個(gè))(Iwai et al.,2006)、蘋果(7個(gè))(Binnie and McManus,2009)、菠蘿(朱家紅等,2018)等多種植物中被鑒定出來,且進(jìn)行克隆及表達(dá)分析。Andersson-Gunneras等(2003)研究發(fā)現(xiàn),重力刺激使張力木材形成組織中ACO活性急劇增強(qiáng),進(jìn)而促進(jìn)形成楊樹應(yīng)拉木。Shi等(2006)研究發(fā)現(xiàn),乙烯生物合成是棉花纖維伸長(zhǎng)過程中最顯著上調(diào)的生化途徑之一,且可通過ACO調(diào)控乙烯以促進(jìn)棉花纖維細(xì)胞的伸長(zhǎng)。Zhang等(2009)研究發(fā)現(xiàn),乙烯應(yīng)答因子ERF通過調(diào)控ACS和ACO基因在乙烯合成中發(fā)揮正向調(diào)控作用。Liu等(2015)通過基因沉默(VIGS)方法瞬時(shí)沉默ACS2、ACS4和ACO1基因后,ACS和ACO活性顯著降低,進(jìn)而抑制果實(shí)成熟。Chen等(2016)研究發(fā)現(xiàn),蛋白磷酸酶基因(WIP1)通過調(diào)控ACO基因的表達(dá)來控制黃瓜單性花的發(fā)育進(jìn)程。在AAA型同源三倍體香蕉中,MaACS1、MaACO1、MaACO5、MaACO13和MaACO14與果實(shí)成熟密切相關(guān),且一系列轉(zhuǎn)錄因子如MaHDZI19、MaHDZI126、MaHDZII4、MaHDZII7、MaBZR1、MaBZR2、MaERF9、MaERF11和MaMADS7與MaACS或MaACO基因啟動(dòng)子互作調(diào)控其轉(zhuǎn)錄及乙烯合成(Xiao et al.,2013;Liu et al.,2015;Han et al.,2016;Guo et al.,2019;Yang et al.,2020)。此外,已有研究表明ACO基因在番茄果實(shí)呼吸躍變期具有重要的調(diào)控和限速作用(Van de Poel et al.,2012,2014;Grierson et al.,2014)。本課題組前期研究結(jié)果(Wang et al.,2019)表明,粉蕉B基因組上的ACO基因在果實(shí)成熟過程中發(fā)揮重要作用?!颈狙芯壳腥朦c(diǎn)】ACO基因在植物的生長(zhǎng)發(fā)育及果實(shí)成熟過程中具有重要調(diào)控功能作用,但目前有關(guān)香蕉ACO基因,尤其是B基因組上ACO基因克隆及表達(dá)分析的研究鮮見報(bào)道?!緮M解決的關(guān)鍵問題】以粉蕉(Musa ABB group,cv Pisang Awak,F(xiàn)J)為研究對(duì)象,選擇B基因組上的ACO基因家族成員MbACO2基因進(jìn)行生物信息學(xué)及表達(dá)分析,明確其在粉蕉組織和逆境脅迫中的表達(dá)水平,為解析該基因在乙烯信號(hào)通路及脅迫應(yīng)答中的調(diào)控功能打下基礎(chǔ)。
1 材料與方法
1. 1 試驗(yàn)材料
粉蕉由中國(guó)熱帶農(nóng)業(yè)科學(xué)院香蕉品種協(xié)會(huì)提供。本生煙由中國(guó)熱帶農(nóng)業(yè)科學(xué)院熱帶生物技術(shù)研究所提供。多糖多酚植物總RNA提取試劑盒、DNA純化(回收)試劑盒及質(zhì)粒小提試劑盒購(gòu)自天根生化科技(北京)有限公司;2×Rapid Taq MasterMix、反轉(zhuǎn)錄試劑盒HiScript III 1st Strand cDNA Synthesis Kit(+gDNA wi-per)和熒光定量試劑盒ChamQ Universal SYBR qPCR MasterMix購(gòu)自南京諾唯贊生物科技股份有限公司;大腸桿菌TOP10感受態(tài)細(xì)胞和農(nóng)桿菌GV3101(psoup-p19)感受態(tài)細(xì)胞購(gòu)自上海唯地生物技術(shù)有限公司;亞細(xì)胞定位載體pNC-Green-SubC和連接酶試劑盒Nimble Cloning購(gòu)自海南壹田生物科技有限公司;氯化鈉購(gòu)自西隴科學(xué)股份有限公司;甘露醇購(gòu)自廣州化學(xué)試劑公司。主要儀器設(shè)備:CT15RT高速冷凍離心機(jī)[天美(中國(guó))科學(xué)儀器有限公司]、EPS300電泳儀(上海天能科技有限公司)、4100凝膠成像儀(上海天能科技有限公司)、NanoDropTM One/OneC超微量紫外分光光度計(jì)(Thermo,美國(guó))、PCR儀(Analytikjena,德國(guó))、FluoView FV1000激光共聚焦顯微鏡(Olympus,日本)和MX3000熒光定量PCR儀(Agilent,美國(guó))。
1. 2 樣品采集及脅迫處理
選擇發(fā)育狀況良好、無(wú)病蟲害的植株,分別取開花后0、20和80 d的果實(shí)及采后3和6 d的成熟果實(shí),切片取樣,經(jīng)液氮處理后置于-80 ℃冰箱保存?zhèn)溆谩_x擇大小均一,生長(zhǎng)良好,無(wú)病蟲害且僅帶有5片葉的粉蕉幼苗進(jìn)行高鹽(300 mmol/L氯化鈉)、干旱(200 mmol/L甘露醇)和低溫(4 ℃ 22 h)脅迫處理,置于溫室[培養(yǎng)條件:28 ℃,200 ?mol/(m2·s)光強(qiáng)、16 h光照/8 h黑暗、相對(duì)濕度70%]培養(yǎng)7 d。取不同處理葉片經(jīng)液氮冷凍后置于-80 ℃冰箱保存?zhèn)溆谩?/p>
1. 3 RNA提取及cDNA合成
將不同時(shí)期及不同處理的粉蕉樣品,按照多糖多酚植物總RNA提取試劑盒說明提取其總RNA。利用超微量紫外分光光度計(jì)分別測(cè)定RNA濃度,然后按照反轉(zhuǎn)錄試劑盒HiScript III 1st Strand cDNA Synthesis Kit說明反轉(zhuǎn)錄合成cDNA。
1. 4 基因克隆及載體構(gòu)建
根據(jù)香蕉基因組數(shù)據(jù)庫(kù)Banana Genome Database(http://musagd.biocloud.net/home)中的MbACO2基因序列(>Mb_03_t02600.1),設(shè)計(jì)其特異性擴(kuò)增引物(pNC-MbACO2F和pNC-MbACO2R)(表1),以粉蕉果實(shí)cDNA為模板進(jìn)行PCR擴(kuò)增。反應(yīng)體系25.0 μL:2×Rapid Taq MasterMix 12.5 μL,cDNA模板1.0 μL,上、下游引物各1.0 μL,ddH2O補(bǔ)足至25.0 μL。擴(kuò)增程序:95 ℃預(yù)變性3 min;95 ℃ 15 s,56 ℃ 15 s,72 ℃ 6 s,進(jìn)行25個(gè)循環(huán);72 ℃延伸5 min。PCR產(chǎn)物用1%瓊脂糖凝膠電泳檢測(cè)后進(jìn)行切膠回收,并利用Nimble Cloning試劑盒與目的載體pNC-Green-SubC連接,轉(zhuǎn)化大腸桿菌TOP10感受態(tài)細(xì)胞。挑取陽(yáng)性單克隆送至生工生物工程(上海)股份有限公司進(jìn)行測(cè)序,將測(cè)序正確的單克隆菌液保存并提取其質(zhì)粒,轉(zhuǎn)化農(nóng)桿菌GV3101(psoup-p19),保存?zhèn)溆谩?/p>
1. 5 生物信息學(xué)分析
通過NCBI數(shù)據(jù)庫(kù)BLASTx對(duì)MbACO2基因進(jìn)行開放閱讀框(ORF)預(yù)測(cè)及同源序列搜索;利用DNAMAN 6.0進(jìn)行氨基酸序列比對(duì)及同源性分析;利用ExPASy預(yù)測(cè)MbACO2蛋白的理化性質(zhì);采用NCBI數(shù)據(jù)庫(kù)CDD進(jìn)行保守結(jié)構(gòu)域預(yù)測(cè)分析;運(yùn)用PRABI和SWISS-MODEL預(yù)測(cè)MbACO2蛋白的二、三級(jí)結(jié)構(gòu);并以MEGA 5.0中的鄰接法(Neighbor-joining,NJ)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹。
1. 6 亞細(xì)胞定位
將MbACO2基因編碼區(qū)(CDS)序列與攜帶有綠色熒光蛋白(GFP)基因的pNC-Green-SubC表達(dá)載體連接,構(gòu)建pNC-Green-SubC-MbACO2瞬時(shí)表達(dá)載體,通過農(nóng)桿菌GV3101(psoup-p19)介導(dǎo)瞬時(shí)侵染本生煙草葉片,25 ℃培養(yǎng)3 d后,通過激光共聚焦顯微鏡觀察是否存在GFP信號(hào)。
1. 7 基因表達(dá)分析
分別設(shè)計(jì)MbACO2基因編碼區(qū)(CDS)序列的定量PCR引物(qRT-MbACO2F和qRT-MbACO2R)(表1) 。以粉蕉不同發(fā)育成熟階段的果實(shí)及高鹽、干旱和低溫脅迫處理下的葉片cDNA為模板、Maactin為內(nèi)參基因,通過實(shí)時(shí)熒光定量PCR對(duì)MbACO2基因的表達(dá)量進(jìn)行檢測(cè)。反應(yīng)體系20.0 μL:SYBR qPCR MasterMix 10.0 μL,上、下游引物各1.0 μL,cDNA模板1.0 μL,ddH2O補(bǔ)足至20.0 μL。擴(kuò)增程序:95 ℃預(yù)變性30 s;95 ℃ 10 s,60 ℃ 30 s,進(jìn)行40個(gè)循環(huán)。每樣品技術(shù)重復(fù)均為3次。采用2-△△Ct法計(jì)算相對(duì)表達(dá)量。
1. 8 統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用Excel 2016進(jìn)行整理及單因素方差分析(One-way ANOVA)。
2 結(jié)果與分析
2. 1 MbACO2基因PCR擴(kuò)增結(jié)果
以粉蕉果實(shí)cDNA為模板、pNC-MbACO2F和pNC-MbACO2R為引物進(jìn)行特異性擴(kuò)增,獲得大小約900 bp的特異條帶(圖1)。測(cè)序結(jié)果顯示,該條帶長(zhǎng)918 bp,編碼305個(gè)氨基酸殘基,經(jīng)序列比對(duì)鑒定為目的基因MbACO2。
2. 2 MbACO2蛋白理化性質(zhì)及結(jié)構(gòu)預(yù)測(cè)分析結(jié)果
MbACO2蛋白的原子總數(shù)為4839個(gè),化學(xué)分子式 C1548H2404N418O456S13,分子量34.583 kD,理論等電點(diǎn)(pI)5.43,蛋白脂肪系數(shù)77.12。鑒于不穩(wěn)定系數(shù)值為32.62,親水性平均值(GRAVY)為-0.475,推測(cè)MbACO2屬于穩(wěn)定的親水性蛋白。利用NCBI數(shù)據(jù)庫(kù)中的CDD預(yù)測(cè)MbACO2蛋白保守結(jié)構(gòu)域(圖2),結(jié)果發(fā)現(xiàn)其含保守結(jié)構(gòu)域PLN02299,故推測(cè)MbACO2屬于ACO家族成員。MbACO2蛋白二級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果(圖3)顯示,α-螺旋120個(gè),占39.22%;延伸鏈58個(gè),占18.95%;β-轉(zhuǎn)角23個(gè),占7.52%,無(wú)規(guī)則卷曲105個(gè),占34.31%。利用SWISS-MODEL預(yù)測(cè)Mb-ACO2蛋白三級(jí)結(jié)構(gòu),其結(jié)果(圖4)與二級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果相符。
2. 3 MbACO2氨基酸序列同源比對(duì)及系統(tǒng)發(fā)育進(jìn)化樹分析結(jié)果
利用NCBI數(shù)據(jù)庫(kù)中的BLASTp搜索MbACO2蛋白的同源氨基酸序列,結(jié)果顯示MbACO2氨基酸序列與多個(gè)物種的ACO氨基酸序列相似性均較高,包括香蕉(M. acuminata AAA group) AAG43057.1、海棗(Phoenix dactylifera) XP_008799050.1、油棕(Elaeis guineensis) XP_010908825.1、蘆筍(Asparagus officinalis)XP_020246901.1、南瓜(Cucurbita mo-schata)XP_022936989.1、黃瓜(Cucumis sativus)XP_004142637.1、菠蘿(Ananas comosus) XP_02010670 6.1、橡膠樹(Hevea brasiliensis) XP_021636599.1、黍(Panicum hallii) XP_025807219.1、小米(Setaria ita-lic) XP_004960278.1、稗子(Echinochloa crus-galli) AKA60095.1、苦瓜(Momordica charantia)XP_0221 34061.1、高粱(Sorghum bicolor)XP_002439286.1和野燕麥(Avena fatua) QCG69018.1,其ACD氨基酸序列相似性分別為98.04%、82.90%、81.99%、74.35%、73.79%、73.79%、73.55%、73.46%、73.14%、72.67%、72.17%、71.52%、71.02%和70.55%。利用ClustalX進(jìn)行多序列比對(duì)分析,結(jié)果發(fā)現(xiàn)MbACO2具有典型的植物ACO家族特征結(jié)構(gòu)域(朱家紅等,2018),即 DIOX_N(黑色劃線處)和2OG-FeⅡ_Oxy(綠色劃線處)2個(gè)保守結(jié)構(gòu)域(圖5)。
基于ACO氨基酸序列相似性構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹(圖6)顯示,MbACO2蛋白和香蕉、油棕和海棗ACO蛋白聚在同一分支上,親緣關(guān)系較近,與黍、小米和稗子親緣關(guān)系相對(duì)較遠(yuǎn)。
2. 4 MbACO2蛋白的亞細(xì)胞定位分析結(jié)果
利用農(nóng)桿菌介導(dǎo)的瞬時(shí)轉(zhuǎn)化法將pNC-Green-SubC-MbACO2轉(zhuǎn)化至煙草葉片中進(jìn)行表達(dá),結(jié)果(圖7)顯示,煙草葉片細(xì)胞質(zhì)和細(xì)胞核均顯示出熒光信號(hào),說明MbACO2蛋白可能在粉蕉的細(xì)胞質(zhì)和細(xì)胞核中均有表達(dá)。
2. 5 MbACO2基因表達(dá)分析結(jié)果
利用實(shí)時(shí)熒光定量PCR檢測(cè)MbACO2基因在粉蕉果實(shí)發(fā)育階段及高鹽、干旱、低溫脅迫下的表達(dá)情況。由圖8可知,隨著粉蕉果實(shí)發(fā)育成熟,MbACO2基因表達(dá)量整體上呈逐漸升高趨勢(shì),均極顯著高于開花后0 d(對(duì)照)(P<0.01,下同),尤其是在果實(shí)采后6 d,其相對(duì)表達(dá)量達(dá)最高值,是對(duì)照的1000多倍。由圖9可知,在高鹽、干旱和冷脅迫處理下,MbACO2基因的相對(duì)表達(dá)量較對(duì)照(未脅迫處理)顯著(P<0.05)或極顯著提高,說明這3種脅迫處理能誘導(dǎo)該基因上調(diào)表達(dá),推測(cè)MbACO2基因在粉蕉果實(shí)發(fā)育成熟過程及逆境脅迫的應(yīng)答中發(fā)揮重要作用。
3 討論
香蕉是典型的呼吸躍變型果實(shí),其果實(shí)發(fā)育和成熟決定果實(shí)品質(zhì)(Xu et al.,2007),因此研究粉蕉果實(shí)發(fā)育成熟的分子機(jī)理對(duì)延長(zhǎng)其貨架期非常重要。粉蕉在廣東、廣西和海南已有廣泛種植(游伐,2019),其中ABB基因型植株特點(diǎn)是果實(shí)成熟快,較普通的巴西蕉(AAA group)提前約10 d(Wang et al.,2019)。ACO是乙烯形成過程中的關(guān)鍵酶,其對(duì)于果實(shí)成熟具有重要貢獻(xiàn)(Houben and Van de poel,2019)。且本課題組前期研究發(fā)現(xiàn),粉蕉B基因組上的ACO基因在果實(shí)成熟過程中發(fā)揮重要調(diào)控作用(Wang et al.,2019)。由于目前針對(duì)于粉蕉成熟機(jī)理的研究報(bào)道較少,因此本研究選擇粉蕉中B基因組上的ACO基因家族成員MbACO2作為研究對(duì)象,經(jīng)蛋白結(jié)構(gòu)預(yù)測(cè)、序列比對(duì)及系統(tǒng)發(fā)育進(jìn)化樹分析等發(fā)現(xiàn),MbACO2基因的CDS序列長(zhǎng)度為918 bp,編碼305個(gè)氨基酸殘基,含有ACO蛋白家族的2個(gè)保守結(jié)構(gòu)域DIOX_N和2OG-FeⅡ_Oxy,且與香蕉、海棗和油棕的氨基酸序列相似性均在80.00%以上,該蛋白定位于細(xì)胞質(zhì)和細(xì)胞核,與Tatsuki等(2006)報(bào)道的紅花CtACO1定位結(jié)果一致。
香蕉是對(duì)逆境脅迫非常敏感的作物,低溫、干旱和高鹽脅迫均會(huì)造成其減產(chǎn)和品質(zhì)降低(孫雪麗等,2019),因此研究香蕉對(duì)逆境脅迫的應(yīng)答機(jī)理十分重要。隨著粉蕉果實(shí)發(fā)育成熟,MbACO2基因的表達(dá)量整體上呈升高趨勢(shì),與Liu等 (2015)研究巴西蕉中MaMADS7基因的表達(dá)趨勢(shì)一致,進(jìn)一步證實(shí)不同物種中ACO基因在果實(shí)發(fā)育成熟過程中發(fā)揮一定的調(diào)控作用。且低溫、高鹽和干旱均會(huì)顯著或極顯著提高M(jìn)bACO2基因的相對(duì)表達(dá)量,與前人針對(duì)桃(Tatsuki et al.,2006)、馬鈴薯(Kim et al.,2008)及番茄(Mei et al.,2009)等物種的ACO基因研究結(jié)果一致,表明不同物種的ACO基因均可對(duì)逆境產(chǎn)生應(yīng)答反應(yīng)。這也與前人研究發(fā)現(xiàn)乙烯可提高植物對(duì)逆境抵抗能力的結(jié)論相符(Yang et al.,2020)。
本研究克隆獲得的MbACO2基因在果實(shí)發(fā)育成熟過程中高度表達(dá),且經(jīng)高鹽、干旱和低溫脅迫后呈高效表達(dá),故推測(cè)其在果實(shí)發(fā)育成熟和逆境脅迫響應(yīng)中發(fā)揮重要作用。在今后的研究中,可通過誘導(dǎo)或沉默MbACO2基因在果實(shí)中的表達(dá),進(jìn)一步深入解析其在果實(shí)發(fā)育成熟及響應(yīng)逆境脅迫中的功能。
4 結(jié)論
MbACO2基因是ACO基因家族成員,含有該家族的典型結(jié)構(gòu)域,在粉蕉果實(shí)成熟及逆境脅迫的應(yīng)答中發(fā)揮正向調(diào)控作用,高鹽、干旱和低溫脅迫處理均能誘導(dǎo)其上調(diào)表達(dá)。
參考文獻(xiàn):
賀立紅,陳建業(yè),于偉民,王勇,陸旺金. 2009. 香蕉果實(shí)乙烯受體基因克隆及其表達(dá)特性[J]. 中國(guó)農(nóng)業(yè)科學(xué),42(4):1359-1364. [He L H,Chen J Y,Yu W M,Wang Y,Lu W J. 2009. Cloning and expression analysis of ethylene receptor in harvested banana fruit[J]. Scientia Agricultura Sinica,42(4):1359-1364.]
侯曉婉,胡偉,顏彥,徐碧玉,金志強(qiáng). 2015. 香蕉MaPIP2-2基因的克隆、亞細(xì)胞定位及表達(dá)分析[J]. 熱帶作物學(xué)報(bào),36(7):1267-1273. [Hou X W,Hu W,Yan Y,Xu B Y,Jin Z Q. 2015. Cloning,subcellular localization and expression analysis of MaPIP2-2 gene in banana[J]. Chinese Journal of Tropical Crops,36(7):1267-1273.]
施怡婷,楊淑華. 2016. 中國(guó)科學(xué)家在乙烯信號(hào)轉(zhuǎn)導(dǎo)領(lǐng)域取得突破性進(jìn)展[J]. 植物學(xué)報(bào),51(3):287-289. [Shi Y T,Yang S H. 2016. Chinese scientists made breakthrough in study on ethylene signaling transduction in plants[J]. Chinese Bulletin of Botany,51(3):287-289. ]
孫雪麗,劉范,Bodjrenou Mahoudjro David,項(xiàng)蕾蕾,程春振. 2019. 香蕉MaMPK1基因的克隆與表達(dá)模式[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),25(4):985-992. [Sun X L,Liu F,Bodjrenou M D,Xiang L L,Cheng C Z. 2019. Cloning and expre-ssion pattern analysis of the banana MaMPK1 gene[J]. Chinese Journal of Applied and Environmental Bio-logy,25(4):985-992.]
游伐. 2019. 粉蕉優(yōu)良品種兩款[J]. 農(nóng)村新技術(shù),(12):40-41. [You F. 2019. Two kinds of fine plantain[J]. New Rural Technology,(12):40-41.]
朱家紅,李超燕,范鴻雁,胡福初,羅志文,張治禮. 2018. 菠蘿ACC氧化酶基因AcACO1的克隆與表達(dá)分析[J]. 基因組學(xué)與應(yīng)用生物學(xué),37(1):339-344. [Zhu J H,Li C Y,F(xiàn)an H Y,Hu F C,Luo Z W,Zhang Z L. 2018. Cloning and expression analysis of ACC oxidase gene AcACO1 in pineapple(Ananas comosus L. Merr.)[J]. Genomics and Applied Biology,37(1):339-344.]
Alexander L,Grierson D. 2002. Ethylene biosynthesis and action in tomato:A model for climacteric fruit ripening[J]. Journal of Experimental Botany,53(377):2039-2055.
Andersson-Gunneras S,Hellgren J M,Bjorklund S,Regan S,Moritz T,Sundberg B. 2003. Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood[J]. Plant,34(3):339-349.
Binnie J E,McManus M T. 2009. Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase mu-ltigene family of Malus domestica borkh[J]. Phytochemi-stry,70(3):348-360.
Chen H M,Sun J J,Li S,Cui Q Z,Zhang H M,Xin F J. 2016. An ACC oxidase gene essential for cucumber carpel development[J]. Molecular Plant,9(9):1315-1327.
Gallie D R,Young T E. 2004. The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize[J]. Molecu-lar Genetics and Genomics,271(3):267-281.
Grierson D,Nath P,Bouzayen M,Mattoo A K,Pech J C. 2014. Mattoo A, Nath P, Bouzayen M, Pech J C. Ethy-lene biosynthesis[M]//Fruit ripening:Physiology,signalling and genomics[J]. Oxfordshire:Center for Agriculture and Biology International:178-192.
Guo Y F,Shan W,Liang S M,Wu C J,Wei W,Chen J Y,Lu W J,Kuang J F. 2019. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit[J]. Physiologia Plantarum,165(3):555-568.
Han Y C,Kuang J F,Chen J Y,Liu X C,Xiao Y Y,F(xiàn)u C C,Wang J N,Wu K Q,Lu W J. 2016. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening[J]. Plant Physiology,171(2):1070-1084.
Houben M,Van de Poel B. 2019. 1-aminocyclopropane-1-carboxylic acid oxidase(ACO):The enzyme that makes the plant hormone ethylene[J]. Frontiers in Plant Science,10:695.
Inaba A,Liu X,Yokotani N,Yamane M,Lu W J,Nakano R,Kubo Y. 2007. Differential feedback regulation of ethy-lene biosynthesis in pulp and peel tissues of banana fruit[J]. Journal of Experimental Botany,58(5):1047-1057.
Iwai T,Miyasaka A,Seo S,Ohashi Y. 2006. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants[J]. Plant Physiology,142(3):1202–1215.
Kim Y S,Kim H S,Lee Y H. 2008. Elevated H2O2 production via overexpression of a chloroplastic Cu/ZnSOD gene of lily(Lilium o-riental hybrid ‘Marco Polo) triggers ethy-lene synthesis in transgenic potato[J]. Plant Cell Reports,27(6):973-983.
Liu J H,Liu L,Li Y,Jia C,Zhang J,Miao H X,Hu W,Wang Z,Xu B Y,Jin Z. 2015. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality[J]. Physiologia Plantarum,155(3):217-231.
Mei Z,Bing Y,Ping L. 2009. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit[J]. Journal of Experimental Botany,60(6):1579-1588.
Sell S,Hehl R. 2005. A fifth member of the tomato 1-aminocyclopropane1-carboxylic acid(ACC) oxidase gene family harbours a leucine zipper and is anaerobically induced[J]. DNA Sequence:The Journal of DNA Sequencing and Mapping,16(1):80-82.
Shi Y H,Zhu S W,Mao X Z,F(xiàn)eng J X,Qin Y M,Zhang L. 2006. Transcriptome profiling molecular biological,and physiological studies reveal a major role for ethylene in cotton fiber cell elongation[J]. The Plant Cell,18(3):651-664.
Tatsuki M,Haji T,Yamaguchi M. 2006. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene Pp-ACS1,in peach fruit softening[J]. Journal of Experimental Botany,57(6):1281-1289.
Van de Poel B,Bulens I,Hertog M L A T M,Nicolai B M,Geeraerd A H. 2014. A transcriptomics-based kinetic model for ethylene biosynthesis in tomato(Solanum lycopersicum) fruit:Development,validation and exploration of novel regulatory mechanisms[J]. The New Phytologist,202(3):952-963.
Van de Poel B,Bulens I,Markoula A,Hertog M L A T M,Dreesen R,Wirtz M. 2012. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis du-ring postclimacteric ripening[J]. Plant Physiology,160(3):1498-1514.
Vandenbussche F,Vriezen W H,Smalle J,Laarhoven L J J,Harren F J M,van der Straeten D. 2003. Ethylene and auxin control the Arabidopsis response to decreased light intensity[J]. Plant Physiology,133(2):517-527.
Wang Z,Miao H X,Liu J H,Xu B Y,Yao X M,Xu C Y,Zhao S C,F(xiàn)ang X D,Jia C H,Wang J Y,Zhang J B,Li J Y,Xu Y,Wang J S,Ma W H,Wu Z Y,Yu L L,Yang Y L,Liu C,Guo Y,Sun S L,Baurens F C,Guillaume M,F(xiàn)rederic S,Olivier G,Nabila Y,Catherine H,Mathieu R,Nathalie L,Remy H,Sebastien R,Ming P,Anping G,Xie J H,LiY,Ding Z H,Yan Y,Tie W W,Angélique D,Hu W,Jin Z Q. 2019. Musa balbisiana genome reveals subgenome evolution and functional divergence[J]. Nature Plants,5(8):810-821.
Xiao Y Y,Chen J Y,Kuang J F,Shan W,Xie H,Jiang Y M,Lu W J. 2013. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes[J]. Journal of Experimental Botany,64(8):2499-2510.
Xu B Y,Su W,Liu J H,Wang J B,Jin Z Q. 2007. Differentially expressed cDNAs at the early stage of banana ripe-ning identified by suppression subtractive hybridization and cDNA microarray[J]. Planta,226(2):529-539.
Yang Y Y,Shan W,Kuang J F,Chen J Y,Lu W J. 2020. Four HD-ZIPs are involved in banana fruit ripening by activating the transcription of ethylene biosynthetic and cell wall-modifying genes[J]. Plant Cell Reports,9(3):351-362.
Zhang Z J,Zhang H W,Quan R D,Wang X C,Huang R. 2009. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco[J]. Plant Physiology,150(1):365-377.
(責(zé)任編輯 陳 燕)