• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高催化活性M-BHT(M=Co,Cu)電催化還原CO2為CH4的密度泛函理論研究

    2021-04-17 10:04:46姚會影遲力峰
    關(guān)鍵詞:蘇州大學(xué)材料科學(xué)北京師范大學(xué)

    楊 濤,姚會影,李 青,郝 偉,遲力峰,朱 嘉

    (1.蘇州大學(xué)功能納米與軟物質(zhì)研究院,江蘇省碳基功能材料與器件高技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,蘇州215123;2.北京師范大學(xué)化學(xué)學(xué)院,北京100875;3.南洋理工大學(xué)材料科學(xué)與工程學(xué)院,新加坡639798)

    1 Introduction

    The electrochemical reduction of carbon dioxide(CO2)into chemicals of economic value(hydrocarbon or alcohols)holds a sustainable and promising way to produce renewable energy sources[1—4]. The best solutions for energy transition from“fossil fuel economy”to a sustainable“CO2economy”are reducing CO2to CH4or alcohol compounds[5]. However,the free electrocatalysts for reducing CO2to these target products are in the exploration and need more development and improvement,particularly theoretical outlooking[6—15]. The most limitation mainly caused by the electronic structure properties of catalysts may affect the product’s selectivity.The apparent evidence is given by the large overpotential needed for CO2reduction to these products[5].Hence,it is critically necessary and essential to explore and predict the catalytic activities and selectivity of the catalysts for CO2reduction reaction(CRR)from the atomic level. So far,various two-dimensional(2D)materials,including metals,metal oxides,chalcogenides,and even metal-free catalysts,have been extensively demonstrated both theoretically and experimentally to have significant potential for CRR[1,13,16—21]. As the most efficient Cu-based material for CRR electrocatalysts,2D Cu-C3N4has excellent catalytic activity[the Gibbs free energy change(ΔGL)of the rate-limiting step for CH4formation is 0.75 eV]for CRR[13]. The critical requirements are the development of highly active electrocatalysts,by increasing the number of the active sites[22]. Recently,metal-BHT(metal=Cu,Co;BHT=benzenehexathiol)[23,24]as a new type ofπ?conjugated 2D materials have been synthesized,which has abundant exposed surface atoms and unique electronic properties. For example,Co-BHT is a ferromagnetic half-metal. Moreover,the theoretical studies indicated that Co-BHT shows the spin-filtering effect and strong attractivity to CO[25]. CO is the critical intermediate for CO2reduction to CH4. CO’s adsorption on the catalyst surface indicates it can be further hydrogenated to other reaction intermediates[13,26]. This property suggests that Co-BHT is candidate efficient catalysts for CO2reduction to CH4.

    In this work,we select the monolayer Co-BHT and Cu-BHT as electrocatalysts to investigate the reduction mechanism of CO2to CH4from the atomic level and compare their catalytic performance. The reaction mechanisms for CO2reduction into CH4catalyzed by Co-BHT and Cu-BHT were determined by the Gibbs free energy calculations. Thed-band center and ΔGLcalculations suggest that Co-BHT is a more promising candidate for CH4production than Cu-BHT.

    2 Computational Method

    The spin-polarized electronic structure calculations were carried out by the Viennaab initiosimulation package(VASP)[27,28]. The projector augmented wave(PAW)[29]method was adopted to describe the ionelectron interaction,and the electron exchange-correction was represented by the Perdew-Burke-Ernzerhof(PBE)functional[30]. Regarding the plane-basis set,a kinetic energy cutoff of 500 eV with Gaussian-level smearing of 0.05 eV was used in all calculations. Thek-space samplings were set as 5×5×1 for the Cu-BHT unit cell and 2×2×1 for the Co-BHT model. The convergence thresholds for structural geometry optimization and for electronic structure iteration were set as 0.1 eV/nm and 10?5eV,respectively. According to the previous studies,the Grimme’s method(DFT-D3)[31—35]can obtain more accurate adsorption results for CRR intermediates. So,the DFT-D3 was applied to all calculations to include the van der Waals correction.

    The Gibbs free energy(G)of each species was defined as

    whereEtotal(eV),EZPE(eV),CP(J·K?1·mol?1),S(J·K?1·mol?1)andT(K)are total electronic energy,zeropoint energy,heat capacity,entropy,and system temperature(298.15 K),respectively. Free energy of the adsorbates was calculated by treating all 3N(Nis the number of atoms of the adsorbate)degrees of freedom of the adsorbates as vibrational without consi-dering contributions from the substrate,in which all vibrations were treated in the harmonic oscillator approximation. TheEZPE,CP,andSwere calculated from these vibrations based on standard methods[36]. The parameters of the molecules were taken from the NIST database[37]. According to previous studies,the adsorbate solvation effects were similar:hydroxyl adsorbates(*OH)and hydroxyl functional groups(*R-OH)were stabilized by 0.50 and 0.25 eV,respectively,and intermediates containing adsorbed CO such as*CO and*CHO were stabilized by 0.10 eV[26]. Gas-phase energetics of species containing a CO backbone were compensated to match experimental values;the total energy corrections for CO2and CO were 0.16 and ?0.27 eV,respectively[38]. The Gibbs free energy change of the elementary reaction step(such as*CO+H++e?→*CHO)was calculated as below[26]:

    According to the computational hydrogen electrode(CHE)[39]model,theG(H++ e?) is equal to half of the free energy of gaseous hydrogen[1/2G(H2)]at the electrode potential of 0 V(vs. RHE)and all temperature. ΔGU=?neU,wheren(1)is the number of transferred electrons,eis the elementary positive charge,andU(V)is the bias applied on the electrode. ΔGpH(ΔGpH=kBT× ln10 × pH)is the correction of the pH,wherekBis the Boltzmann constant. pH is zero for the acidic condition.

    The adsorption energy(Eads)[40]is used to evaluate the binding strength between the adsorbates and the substrate,which is defined as below:

    whereEX*(eV),EX(eV)andE*(eV)represent the total energy of the adsorption system,the adsorbate,and the substrate,respectively. According to this definition,the negativeEadsindicates that the adsorption is exothermic process.

    Thed-band center(εd)was calculated by the following equation based on projected density of states(PDOS)calculation results as below[41—46]:

    wheren(ε)represents the density of states occupied when the electron energy equal toε(eV).

    3 Results and Discussion

    Cu-BHT and Co-BHT have hexagonal unit cell,as shown in Fig.1. By means of DFT optimization,the 2D lattice parameters of Cu-BHT are obtained to bea=b=0.875 nm,agreeing well with the experimental observations(a=b=0.845 nm)[24]. The 2D lattice parameters of Co-BHT area=b=1.470 nm,which are also in agreement with previous theoretical calculations(a=b=1.471 nm)[25].

    Fig.1 Structures of Cu?BHT(A)and Co?BHT(B)

    The total density of states(DOS)and partial density of states(PDOS)of Cu-BHT and Co-BHT are shown in Fig.2. For Cu-BHT,the PDOS shows that the total DOS near Fermi level is contributed by S atoms,C atoms and d-orbital density of states of the Cu atoms. For Co-BHT,the density of states projected onto C,S,and metal atomic orbitals show thatd-orbital density of states of the Co atoms contribute mainly to the total DOS for both spin-up and spin-down channels,while small amounts of the total DOS are from S atoms and C atoms. Thed-band center gives an indication of the catalyst activity,and it is an important indicator for predicting the catalytic activity of metal and half-metal catalysts[43—47]. The closerd-band center to the Fermi level usually leads to better catalytic activity of the catalyst[13,47]. Thed-band centers of Co-BHT for spin-up and spin-down channels are ?1.62 and ?0.65 eV,respectively,which are closer to the Fermi level than those of Cu-BHT(?2.38,?2.38 eV),indicating that Co-BHT may have stronger interactions with the CO2reduction intermediates.

    Scheme 1 Possible reaction paths for CO2 reduction to CH4 by electrochemical catalysis on the catalyst surfaces

    According to previous studies[13,26,47~49],there are four possible reaction paths for CO2reduction to CH4,as shown in Scheme 1. Among these four paths,the first step starts with hydrogenation of the physisorption CO2to form*COOH. The second step is*COOH→*CO,which involves the OH desorption and further hydrogenation to form H2O and left*CO on the catalyst surface. The major difference between path Ⅰand paths Ⅱ—Ⅳis that*CO is hydrogenated to*COH or*CHO intermediate. For path Ⅱand path Ⅲ,the major branching point is whether*CHO is reduced to a CHOH or*CH2O intermediate by the formation of an O—H bond or a C—H bond,respectively. For path Ⅲand path Ⅳ,the major branching point depends on whether*OCH3or*CH2OH is formed. Moreover,the major difference between path Ⅲand other paths is that the formation of CH4occurs during the sixth proton/electron pairs transferring process in path III,while lefts adsorption*O intermediate on the catalyst surface,which would be further reduced to*OH. Additionally,the last step of path III is the formation of H2O,while,for the rest paths,the last step is the formation of CH4.

    Based on these reaction paths,we first investigated the adsorption performance of all reaction intermediates on Cu-BHT and Co-BHT by density functional theory(DFT)calculations. All possible adsorption sites of these reaction intermediates were considered to determine the most stable sites(Table S1 and Table S2,see the Supporting Information of this paper). The values of the adsorption energy(Eads)of CO2,*COOH,*CO,*CHO and CH4on M-BHT(M=Cu,Co)are summarized in Table 1.

    Table 1 Calculated Eads of CO2, *COOH, *CO, *CHO and CH4 on Cu-BHT and Co-BHT

    For Cu-BHT,Cu,S and C sites are considered as the adsorption sites[see Fig.1(A)]. The results show that the CO2,*COOH,*CHO,*CH2O,*OCH3,*O,*OH,*CH2OH and CH4prefer to absorb on the S sites,while the*CO and*C prefer to adsorb on the Cu sites,and other reaction intermediates prefer to adsorb on the C sites. In general,the adsorption is physisorption when the absolute value ofEadsis less than 0.31 eV(30 kJ/mol)[50],and the adsorption is strong chemisorption when the absolute value ofEadsis large than 1 eV[51,52].As shown in Table 1,theEadsof CO2and CH4are ?0.19 and ?0.15 eV,respectively,indicating that the adsorption is physisorption and CO2and CH4can be desorbed from the catalysts. However,theEadsof*CO is?0.41 eV,which indicates that the adsorption is weak chemisorption so that CO can be further hydrogenated.For Co-BHT,the most stable adsorption sites of possible reaction intermediates were obtained by DFT calculations. The calculation results show that the CO2,*COOH,*CHO,*OH,*CH2O,*CH2OH and CH4prefer to adsorb on metal atom sites(Co sites),which are different from the adsorption sites on Cu-BHT(prefer to adsorb on non-metal atom site:S site). TheEadscalculations show that both CO2and CH4are physically adsorbed on Co-BHT,which is the same as that on Cu-BHT(see Table 1). Furthermore,theEadsof*CO is?1.42 eV,indicating that the adsorption of CO on Co-BHT is strong chemisorption,which means that CO can be hydrogenated.

    The Gibbs free energy profile of the four reaction paths for CO2reduction to CH4on Cu-BHT is displayed in Fig.3(A). The first and the second proton/electron pairs transferring steps for the four reaction paths are CO2→*COOH and*COOH→*CO with Gibbs free energy changes by 0.76 and ?0.17 eV,respectively. The third step is the production of*COH(path Ⅰ)or*CHO(paths Ⅱ—Ⅳ)by hydrogenating*CO. The Gibbs free energy change of*CO→*COH is 0.50 eV,which is larger than that of*CO→*CHO(0.17 eV). Therefore,the reaction of path Ⅰis more difficult thermodynamically than that of the rest reaction paths. The*CHOH intermediate is the key reaction intermediate in path Ⅱ. The ΔGof*CHO→*CHOH is 0.21 eV,while ΔGfor the formation of*CH2O in path Ⅲand Ⅳis 0.04 eV. The result indicates that the*CHO intermediate will be hydrogenated to*CH2O rather than*CHOH. Hence,path Ⅱis not the prior reaction path compared with paths Ⅲand Ⅳ. The major difference between path Ⅲand path Ⅳis the hydrogenation of*CH2O to*OCH3versusto*CH2OH(path Ⅳ). The elementary reaction step of*CH2O→*OCH3in path Ⅲis increased in free energy by 0.17 eV,whereas the ΔGof*CH2O→*CH2OH(in path Ⅳ)is ?0.70 eV. Thus,the CO2follows path Ⅳreduction to CH4on Cu-BHT. Additionally,the ΔGof*CH2OH→*CH2reaction is 0.60 eV,which is lower than that of the first elementary reaction step(0.76 eV). Therefore,the path Ⅳpossesses the lowest energy reaction pathway of CO2reduction to CH4on Cu-BHT,and the rate-limiting step is CO2→*COOH with Gibbs free energy change of 0.76 eV[see Fig.3(A)].

    Fig.3 Free energy diagrams of CO2 reduction to CH4 on Cu?BHT(A)and Co?BHT(B)

    For Co-BHT,the calculated Gibbs free energy diagram of the possible reaction pathways for CRR is summarized in Fig.3(B). The results show that the steps of CO2→*COOH and*COOH→*CO have ΔGvalue of 0.29 and ?0.71 eV,respectively. As shown in Fig.3(B),the ΔGfor the formation of the key intermediate*COH in path Ⅰis 1.15 eV,which is larger than that of the reaction*CO→*CHO(0.66 eV),indicating that path Ⅰis not the lowest energy reaction pathway for CO2reduction to CH4on Co-BHT. Moreover,the ΔGfor*CHO hydrogenation to*CH2O(in paths Ⅲand Ⅳ)is 0.56 eV,which is larger than that of reduction of*CHO to*CHOH(0.01 eV). Therefore,path Ⅱis the lowest energy pathway for CO2reduction to CH4on Co-BHT.

    To compare the catalytic mechanism and the performance of Cu-BHT and Co-BHT for CO2reduction to CH4,the calculated free energy diagram of CRR is summerized in Fig.4 and Fig.S1(see the Supporting Information of this paper). The rate-limiting steps of CH4formation,CO2→*COOH with ΔGLof 0.76 eV on Cu-BHT,and*CO→*CHO with ΔGLof 0.66 eV on Co-BHT,indicate that the CO2reduction to CH4catalyzed by Co-BHT is more favorable. Note that ΔGLfor CO2reduction to CH4on Cu(211)[26]and Cu-C3N4[13]are 0.74 and 0.75 eV,respectively. Thus,our calculations show that both Cu-BHT and Co-BHT are promising electrocatalyst candidates for CO2reduction to CH4.

    Fig.4 Free energy diagram of the lowest energy pathway of CO2 reduction to CH4 on Cu?BHT and Co?BHT

    4 Conclusions

    In summary,we investigated the electrocatalytic activities of Cu-BHT and Co-BHT for the reduction of CO2to CH4based on DFT calculations. The reduction of CO2to CH4on Co-BHT and Cu-BHT follows different reaction pathways and rate-limiting steps. The lowest energy reaction pathway for CO2reduction into CH4catalyzed by Co-BHT is CO2→*COOH→*CO→*CHO→*CHOH→*CH→*CH2→*CH3→CH4,with the rate-limiting step of*CO→*CHO. The reaction pathway on Cu-BHT is CO2→*COOH→*CO→*CHO→*CH2O→*CH2OH→*CH2→*CH3→CH4. The DFT calculations show that the Co-BHT has higher catalytic activity than Cu-BHT for CRR because it possesses small ΔGL(0.66 eV)for CO2reduction to CH4than that of Cu-BHT(0.76 eV). Thed-band center calculations show that Co-BHT may has better catalytic activity than Cu-BHT for CRR,which is consistent with the onset potential calculations.

    Acknowledgments

    The most calculations were supported by HPC from Key Laboratory of Theoretical and Computational Photochemistry,Ministry of Education,College of Chemistry,Beijing Normal University. Especially acknowledge the discussion and suggestions of M-BHT with Dr. HUANG Xing and Prof. XU Wei.

    The Supporting Information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20200729.

    This paper is supported by the National Natural Science Foundation of China(Nos.21790053,51821002,21773016).

    猜你喜歡
    蘇州大學(xué)材料科學(xué)北京師范大學(xué)
    中海油化工與新材料科學(xué)研究院
    國家藝術(shù)基金“基礎(chǔ)美術(shù)教育百年文獻(xiàn)展”首站在蘇州大學(xué)開幕
    蘇州大學(xué)藏《吳中葉氏族譜》考述
    尋根(2022年2期)2022-04-17 11:01:38
    材料科學(xué)與工程學(xué)科
    北京師范大學(xué)長春附屬學(xué)校
    北京師范大學(xué)數(shù)學(xué)系教授葛建全
    Shifting of the Agent of Disciplinary Power in J. M.Coetzee’s Foe
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    Moliere’s Sublimation of the Three Unities
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    国产亚洲5aaaaa淫片| 日韩成人伦理影院| 一个人看的www免费观看视频| 国产精品成人在线| 777米奇影视久久| 日日摸夜夜添夜夜爱| 国产美女午夜福利| 青春草视频在线免费观看| 日韩,欧美,国产一区二区三区| 国产高潮美女av| 18禁裸乳无遮挡动漫免费视频| 少妇猛男粗大的猛烈进出视频| 日韩一区二区三区影片| 香蕉精品网在线| 亚洲国产精品国产精品| 免费看日本二区| 亚洲图色成人| 亚洲美女搞黄在线观看| 建设人人有责人人尽责人人享有的 | 一区二区三区精品91| 免费观看av网站的网址| 国产精品一区二区三区四区免费观看| 久久毛片免费看一区二区三区| 日本欧美视频一区| 欧美一级a爱片免费观看看| 联通29元200g的流量卡| 成人一区二区视频在线观看| 天堂中文最新版在线下载| 亚洲国产精品专区欧美| 国产精品久久久久久av不卡| 婷婷色av中文字幕| 18+在线观看网站| 亚洲第一区二区三区不卡| 久久精品国产自在天天线| 视频中文字幕在线观看| 嘟嘟电影网在线观看| 免费看不卡的av| 国产爱豆传媒在线观看| 国产精品免费大片| 亚洲国产精品成人久久小说| 男人添女人高潮全过程视频| 1000部很黄的大片| 啦啦啦在线观看免费高清www| 最近手机中文字幕大全| 又爽又黄a免费视频| 久久鲁丝午夜福利片| 亚洲精品视频女| 国产精品三级大全| 久久久久国产精品人妻一区二区| a级一级毛片免费在线观看| 交换朋友夫妻互换小说| 国产精品欧美亚洲77777| av女优亚洲男人天堂| 免费少妇av软件| 亚洲欧美精品自产自拍| 中国三级夫妇交换| 最近手机中文字幕大全| 蜜桃久久精品国产亚洲av| kizo精华| 中国美白少妇内射xxxbb| 黄色欧美视频在线观看| 99视频精品全部免费 在线| av在线老鸭窝| 午夜激情福利司机影院| 一级av片app| 亚洲欧美一区二区三区国产| 在线免费十八禁| 久久久久国产精品人妻一区二区| 国产v大片淫在线免费观看| 青春草视频在线免费观看| 伦精品一区二区三区| 国产精品一区二区性色av| 精华霜和精华液先用哪个| 狂野欧美激情性xxxx在线观看| 成人无遮挡网站| 免费黄色在线免费观看| 久久国产精品男人的天堂亚洲 | 中文天堂在线官网| 最黄视频免费看| 国产成人精品婷婷| 黄色怎么调成土黄色| 下体分泌物呈黄色| 国产精品伦人一区二区| 亚洲精品一区蜜桃| 夜夜爽夜夜爽视频| 亚洲,欧美,日韩| 午夜视频国产福利| 一个人看视频在线观看www免费| 欧美人与善性xxx| 女人久久www免费人成看片| 少妇高潮的动态图| 一级毛片黄色毛片免费观看视频| 国产有黄有色有爽视频| 天天躁夜夜躁狠狠久久av| 日韩av在线免费看完整版不卡| 成人黄色视频免费在线看| 国产成人91sexporn| 久久久久视频综合| 在线观看美女被高潮喷水网站| 最近中文字幕高清免费大全6| 国模一区二区三区四区视频| 99久国产av精品国产电影| 国产精品久久久久久精品电影小说 | 伊人久久国产一区二区| 一级爰片在线观看| 久久亚洲国产成人精品v| 久久亚洲国产成人精品v| 人妻制服诱惑在线中文字幕| 黑丝袜美女国产一区| 久久久亚洲精品成人影院| 亚洲欧美日韩无卡精品| 国产精品秋霞免费鲁丝片| 午夜激情久久久久久久| 校园人妻丝袜中文字幕| 国模一区二区三区四区视频| 精品人妻熟女av久视频| 热re99久久精品国产66热6| 熟妇人妻不卡中文字幕| 亚洲丝袜综合中文字幕| 小蜜桃在线观看免费完整版高清| 亚洲色图av天堂| 国产熟女欧美一区二区| 男女免费视频国产| 午夜福利高清视频| 精品国产乱码久久久久久小说| 国产精品国产三级国产av玫瑰| 国产精品欧美亚洲77777| 一二三四中文在线观看免费高清| 国产老妇伦熟女老妇高清| 日韩一区二区三区影片| 久久精品国产鲁丝片午夜精品| 少妇精品久久久久久久| 久久久久久久久久成人| 黄色一级大片看看| 男女免费视频国产| 中文欧美无线码| 一级毛片 在线播放| 国产精品免费大片| 18禁在线无遮挡免费观看视频| 久久国内精品自在自线图片| 国产黄色视频一区二区在线观看| 女的被弄到高潮叫床怎么办| 亚洲第一av免费看| 人妻一区二区av| 欧美日韩一区二区视频在线观看视频在线| 国产女主播在线喷水免费视频网站| 亚洲精品日韩av片在线观看| av免费在线看不卡| 中国国产av一级| 欧美zozozo另类| 在线免费十八禁| 国产无遮挡羞羞视频在线观看| 少妇精品久久久久久久| 亚洲,欧美,日韩| 国产免费福利视频在线观看| 免费人妻精品一区二区三区视频| 国产一区亚洲一区在线观看| 国产视频首页在线观看| 大片免费播放器 马上看| 色婷婷久久久亚洲欧美| 亚洲人成网站在线播| 久久婷婷青草| 高清午夜精品一区二区三区| 免费人妻精品一区二区三区视频| 国产精品人妻久久久影院| 久久久久人妻精品一区果冻| 嫩草影院入口| 免费人妻精品一区二区三区视频| 在线观看免费日韩欧美大片 | 国产久久久一区二区三区| 国产成人一区二区在线| 你懂的网址亚洲精品在线观看| 免费高清在线观看视频在线观看| 少妇人妻久久综合中文| 午夜免费鲁丝| 精品人妻熟女av久视频| 亚洲美女搞黄在线观看| 国产伦精品一区二区三区四那| 久久女婷五月综合色啪小说| 蜜臀久久99精品久久宅男| www.色视频.com| 久久影院123| 色婷婷久久久亚洲欧美| 在线亚洲精品国产二区图片欧美 | 国产亚洲最大av| 亚洲综合精品二区| 精品99又大又爽又粗少妇毛片| 成人综合一区亚洲| 伊人久久精品亚洲午夜| 亚洲精品视频女| 亚洲国产欧美在线一区| 日韩成人av中文字幕在线观看| 99久久精品国产国产毛片| 婷婷色av中文字幕| 日本欧美视频一区| 亚洲成色77777| 欧美亚洲 丝袜 人妻 在线| 亚洲精品乱久久久久久| 少妇裸体淫交视频免费看高清| 99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲久久久国产精品| 大话2 男鬼变身卡| 精品久久久久久电影网| 成人18禁高潮啪啪吃奶动态图 | 亚洲人成网站在线观看播放| 91久久精品电影网| 菩萨蛮人人尽说江南好唐韦庄| 亚洲高清免费不卡视频| 韩国高清视频一区二区三区| 99久久精品一区二区三区| 一级毛片黄色毛片免费观看视频| 成人国产av品久久久| 黄片无遮挡物在线观看| 18禁裸乳无遮挡动漫免费视频| 18禁裸乳无遮挡免费网站照片| 一级av片app| 欧美变态另类bdsm刘玥| 日韩电影二区| 欧美人与善性xxx| 国产高潮美女av| 各种免费的搞黄视频| 久久97久久精品| 欧美3d第一页| 人人妻人人爽人人添夜夜欢视频 | 亚洲av中文字字幕乱码综合| 少妇高潮的动态图| 国产永久视频网站| 18禁裸乳无遮挡动漫免费视频| 国产高清有码在线观看视频| 天堂俺去俺来也www色官网| 中文字幕久久专区| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲5aaaaa淫片| 高清av免费在线| 王馨瑶露胸无遮挡在线观看| 涩涩av久久男人的天堂| 天堂中文最新版在线下载| 日本av手机在线免费观看| av黄色大香蕉| 精品人妻视频免费看| 最后的刺客免费高清国语| 欧美老熟妇乱子伦牲交| 亚洲自偷自拍三级| 中文字幕制服av| 亚洲av日韩在线播放| 亚洲aⅴ乱码一区二区在线播放| 国产av一区二区精品久久 | 99热这里只有是精品在线观看| 老司机影院毛片| 超碰av人人做人人爽久久| 在线观看人妻少妇| 最新中文字幕久久久久| 欧美3d第一页| 午夜日本视频在线| 国产片特级美女逼逼视频| 亚洲国产日韩一区二区| 国产精品三级大全| 亚洲国产毛片av蜜桃av| 成人国产麻豆网| 国产黄色视频一区二区在线观看| 成年美女黄网站色视频大全免费 | 舔av片在线| 在线观看一区二区三区激情| 国内揄拍国产精品人妻在线| 国产精品久久久久久精品古装| 久久久久久九九精品二区国产| 欧美日韩国产mv在线观看视频 | 国产精品久久久久成人av| 国产成人精品福利久久| 国产综合精华液| 久久这里有精品视频免费| 精品国产三级普通话版| 国产精品伦人一区二区| 日韩av在线免费看完整版不卡| 日本一二三区视频观看| 一个人看的www免费观看视频| 久久综合国产亚洲精品| 国产欧美日韩精品一区二区| 我的女老师完整版在线观看| 超碰97精品在线观看| 国产永久视频网站| 五月天丁香电影| 国产黄片美女视频| 久久6这里有精品| 欧美老熟妇乱子伦牲交| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕| 国产在线一区二区三区精| freevideosex欧美| 乱系列少妇在线播放| 久久女婷五月综合色啪小说| 亚洲aⅴ乱码一区二区在线播放| 熟女av电影| 有码 亚洲区| 亚洲av综合色区一区| 一级毛片黄色毛片免费观看视频| 亚洲熟女精品中文字幕| 精品国产一区二区三区久久久樱花 | 国产一区二区在线观看日韩| 免费观看性生交大片5| 精品久久久噜噜| 蜜臀久久99精品久久宅男| 99久久综合免费| 一级爰片在线观看| 观看av在线不卡| 国产淫片久久久久久久久| 欧美一级a爱片免费观看看| 欧美日韩视频精品一区| 国产在视频线精品| 亚洲av在线观看美女高潮| 日韩国内少妇激情av| 亚洲国产精品专区欧美| 国产淫片久久久久久久久| 日韩电影二区| 亚洲欧美精品专区久久| 美女xxoo啪啪120秒动态图| 啦啦啦啦在线视频资源| 久久精品国产亚洲av涩爱| 日本wwww免费看| 亚洲精品国产av成人精品| 国产色爽女视频免费观看| 纵有疾风起免费观看全集完整版| 青青草视频在线视频观看| 中文字幕免费在线视频6| av天堂中文字幕网| 男女国产视频网站| 九九爱精品视频在线观看| 免费高清在线观看视频在线观看| 国产成人aa在线观看| 特大巨黑吊av在线直播| 亚洲精品乱码久久久久久按摩| 亚洲国产最新在线播放| 人体艺术视频欧美日本| 美女内射精品一级片tv| 亚洲最大成人中文| 国产av国产精品国产| 久久精品国产亚洲av涩爱| 免费大片18禁| 人人妻人人爽人人添夜夜欢视频 | 一级毛片久久久久久久久女| 亚洲精华国产精华液的使用体验| 91久久精品国产一区二区三区| 国产成人a区在线观看| 中国三级夫妇交换| 国产成人精品一,二区| 我的女老师完整版在线观看| 精品亚洲乱码少妇综合久久| 久久久成人免费电影| 高清毛片免费看| 国产精品福利在线免费观看| 国产 精品1| 中文天堂在线官网| 最近的中文字幕免费完整| 身体一侧抽搐| 国产 精品1| 在线观看av片永久免费下载| 97精品久久久久久久久久精品| 男女啪啪激烈高潮av片| 狂野欧美激情性bbbbbb| 蜜臀久久99精品久久宅男| 人妻少妇偷人精品九色| av网站免费在线观看视频| 一本一本综合久久| 高清黄色对白视频在线免费看 | 日韩一区二区视频免费看| 国产精品人妻久久久影院| 国产深夜福利视频在线观看| 七月丁香在线播放| 日本欧美视频一区| 亚洲欧洲日产国产| 欧美97在线视频| 国产亚洲欧美精品永久| 亚洲丝袜综合中文字幕| 夫妻午夜视频| 久久久欧美国产精品| 夫妻午夜视频| 亚洲无线观看免费| 午夜免费鲁丝| h日本视频在线播放| 亚洲婷婷狠狠爱综合网| 大陆偷拍与自拍| 一区二区三区乱码不卡18| 国产男女超爽视频在线观看| 亚洲四区av| 最近中文字幕2019免费版| 欧美xxxx黑人xx丫x性爽| 美女脱内裤让男人舔精品视频| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久久电影| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 五月天丁香电影| 欧美精品人与动牲交sv欧美| 秋霞在线观看毛片| 一区二区三区精品91| 妹子高潮喷水视频| 日韩伦理黄色片| 亚洲不卡免费看| 美女国产视频在线观看| 国产久久久一区二区三区| 亚洲综合色惰| 国产高清三级在线| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 成人18禁高潮啪啪吃奶动态图 | 中文字幕制服av| 欧美日韩精品成人综合77777| 国产v大片淫在线免费观看| 日韩伦理黄色片| 亚洲国产精品国产精品| 一本—道久久a久久精品蜜桃钙片| 亚洲av成人精品一区久久| 九色成人免费人妻av| 小蜜桃在线观看免费完整版高清| 午夜免费鲁丝| 成人亚洲欧美一区二区av| 丰满少妇做爰视频| av.在线天堂| 2021少妇久久久久久久久久久| 永久免费av网站大全| 乱系列少妇在线播放| 天天躁夜夜躁狠狠久久av| 最近的中文字幕免费完整| 亚洲一区二区三区欧美精品| 香蕉精品网在线| 亚洲国产av新网站| 亚洲av成人精品一区久久| 国产亚洲午夜精品一区二区久久| 国产精品不卡视频一区二区| 嫩草影院新地址| 欧美激情极品国产一区二区三区 | 日韩一本色道免费dvd| 国产人妻一区二区三区在| 日韩人妻高清精品专区| 国产69精品久久久久777片| 一区在线观看完整版| av线在线观看网站| 精品午夜福利在线看| 美女中出高潮动态图| 久久ye,这里只有精品| 中国三级夫妇交换| 黄色欧美视频在线观看| 精品人妻一区二区三区麻豆| 亚洲av男天堂| 男人添女人高潮全过程视频| 99九九线精品视频在线观看视频| 欧美激情国产日韩精品一区| 久久韩国三级中文字幕| 黑丝袜美女国产一区| 五月天丁香电影| 国产极品天堂在线| 99热这里只有是精品在线观看| 91aial.com中文字幕在线观看| 男人狂女人下面高潮的视频| 搡女人真爽免费视频火全软件| videos熟女内射| 国产精品免费大片| 一个人看视频在线观看www免费| 高清不卡的av网站| 夜夜看夜夜爽夜夜摸| 国产美女午夜福利| 国产一区二区在线观看日韩| 涩涩av久久男人的天堂| 欧美少妇被猛烈插入视频| 99国产精品免费福利视频| 日本爱情动作片www.在线观看| 日韩成人伦理影院| 国精品久久久久久国模美| 欧美区成人在线视频| 黄色视频在线播放观看不卡| 久久国产乱子免费精品| 直男gayav资源| 亚洲精品色激情综合| 赤兔流量卡办理| 免费大片18禁| 精品国产露脸久久av麻豆| 乱系列少妇在线播放| 自拍偷自拍亚洲精品老妇| 蜜桃亚洲精品一区二区三区| 久久久久久久久大av| 国产伦精品一区二区三区四那| 久久久久久久精品精品| av.在线天堂| 水蜜桃什么品种好| 哪个播放器可以免费观看大片| 国产深夜福利视频在线观看| 精品久久久久久久久av| 亚洲欧美成人精品一区二区| 啦啦啦视频在线资源免费观看| 久久人妻熟女aⅴ| 人妻系列 视频| 日本色播在线视频| videos熟女内射| av一本久久久久| 国产精品.久久久| 亚洲va在线va天堂va国产| 纵有疾风起免费观看全集完整版| 国产一级毛片在线| 久久久久久久久大av| 小蜜桃在线观看免费完整版高清| 美女福利国产在线 | 好男人视频免费观看在线| 午夜福利在线观看免费完整高清在| 午夜激情福利司机影院| 国产精品秋霞免费鲁丝片| 秋霞伦理黄片| 卡戴珊不雅视频在线播放| 精品熟女少妇av免费看| 久久人人爽人人片av| 看非洲黑人一级黄片| 免费黄频网站在线观看国产| 国产视频首页在线观看| 女性生殖器流出的白浆| 水蜜桃什么品种好| 亚洲欧洲国产日韩| 精品久久久噜噜| 青春草亚洲视频在线观看| 亚洲最大成人中文| 中文乱码字字幕精品一区二区三区| 日本av免费视频播放| 国产日韩欧美亚洲二区| 91久久精品国产一区二区三区| 亚洲国产日韩一区二区| 国产精品熟女久久久久浪| 国产精品国产三级专区第一集| 精品亚洲乱码少妇综合久久| 国产高清国产精品国产三级 | 狂野欧美激情性bbbbbb| 亚洲国产av新网站| kizo精华| 六月丁香七月| 国产女主播在线喷水免费视频网站| 国产一级毛片在线| 亚洲精品乱久久久久久| 内射极品少妇av片p| 国产精品熟女久久久久浪| 亚洲精品日韩av片在线观看| 国产色爽女视频免费观看| 国产精品女同一区二区软件| 人人妻人人澡人人爽人人夜夜| 国产人妻一区二区三区在| 免费观看a级毛片全部| 国产大屁股一区二区在线视频| 欧美国产精品一级二级三级 | 一级毛片 在线播放| 日日摸夜夜添夜夜添av毛片| 国产免费一区二区三区四区乱码| 亚洲精品久久久久久婷婷小说| videos熟女内射| 超碰av人人做人人爽久久| 九九在线视频观看精品| a级毛色黄片| 亚洲伊人久久精品综合| 久久亚洲国产成人精品v| 久久午夜福利片| 久久久亚洲精品成人影院| 99久久人妻综合| 国产亚洲欧美精品永久| 国产精品.久久久| 在线免费十八禁| 婷婷色综合大香蕉| 精品一区二区三卡| 一区二区三区四区激情视频| 边亲边吃奶的免费视频| 久久久久久久大尺度免费视频| 麻豆国产97在线/欧美| 成人免费观看视频高清| 99热全是精品| 美女国产视频在线观看| 91精品一卡2卡3卡4卡| 欧美xxxx黑人xx丫x性爽| 国产精品偷伦视频观看了| 免费少妇av软件| 国产成人免费无遮挡视频| 亚洲精品视频女| 老女人水多毛片| 精品久久国产蜜桃| 黄色配什么色好看| 国产亚洲精品久久久com| 久久精品国产自在天天线| 99久久精品一区二区三区| 国产免费一区二区三区四区乱码| 国产精品成人在线| 日韩电影二区| 国模一区二区三区四区视频| 国产精品无大码| 久久久a久久爽久久v久久| 一级毛片久久久久久久久女| 精品熟女少妇av免费看| 一级av片app| 午夜激情久久久久久久| 波野结衣二区三区在线| 久久久久精品性色| 亚洲欧美成人综合另类久久久| 91精品一卡2卡3卡4卡| 亚洲va在线va天堂va国产| 欧美精品一区二区免费开放| 一级毛片aaaaaa免费看小| 久久青草综合色| 亚洲精品自拍成人| 国产乱人偷精品视频| 久久影院123| 我的老师免费观看完整版| 成年av动漫网址| 狂野欧美激情性xxxx在线观看| 美女脱内裤让男人舔精品视频| 嘟嘟电影网在线观看| 麻豆国产97在线/欧美| 国产av码专区亚洲av| 亚洲精品456在线播放app| 亚洲内射少妇av| 插逼视频在线观看| 久久精品久久久久久久性| 国产亚洲91精品色在线|