• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parametric Transformation of Timed Weighted Marked Graphs: Applications in Optimal Resource Allocation

    2021-04-14 06:55:06ZhouHeMemberIEEEZiyueMaMemberIEEEZhiwuLiFellowIEEEandAlessandroGiuaFellowIEEE
    IEEE/CAA Journal of Automatica Sinica 2021年1期

    Zhou He, Member, IEEE, Ziyue Ma, Member, IEEE, Zhiwu Li, Fellow, IEEE, and Alessandro Giua, Fellow, IEEE

    Abstract—Timed weighted marked graphs are a subclass of timed Petri nets that have wide applications in the control and performance analysis of flexible manufacturing systems. Due to the existence of multiplicities (i.e., weights) on edges, the performance analysis and resource optimization of such graphs represent a challenging problem. In this paper, we develop an approach to transform a timed weighted marked graph whose initial marking is not given, into an equivalent parametric timed marked graph where the edges have unitary weights. In order to explore an optimal resource allocation policy for a system, an analytical method is developed for the resource optimization of timed weighted marked graphs by studying an equivalent net.Finally, we apply the proposed method to a flexible manufacturing system and compare the results with a previous heuristic approach. Simulation analysis shows that the developed approach is superior to the heuristic approach.

    I. INTRODUCTION

    MANY artificial systems that consist of a limited quantity of resources shared by different tasks can be classified as resource allocation systems [1]; among them include flexible manufacturing systems, traffic transportation systems,and logistics systems [2]-[7]. Performance of flexible manufacturing systems is usually affected by timing specifications and resource allocation. For the sake of improving productivity and saving cost considerations, the resources of a flexible manufacturing system must be well allocated. The resource optimization of manufacturing systems with operation delay, assembly, disassembly, and batch processing, is a challenging problem for manufacturing engineers.

    Timed Petri nets (TPNs) are a model of discrete event systems that are widely applied to control, performance evaluation, and fault diagnosis in timed systems, e.g., flexible manufacturing systems [8]-[11]. As an important subclass of TPNs, timed marked graphs (TMGs) are suitable to model and analyze synchronization appearing in discrete event systems[12], [13].

    The performance of a system modeled with TMGs was usually characterized by the cycle time. When the initial marking of a TMG is given, a linear programming is developed to estimate the cycle time [14]. The properties of cyclic TMGs were explored in [15] and it was shown that the evolution of cyclic TMGs is periodic. Therefore, it is possible to estimate the cycle time by analyzing its periodical behaviors. In addition, the linear algebraic approaches can also be applied to model and analyze the dynamic behavior of TMGs [16], [17].

    To make a trade-off between the throughput of manufacturing systems and the resource cost, two main resource optimization problems were investigated in the literature: marking optimization [18] and cycle time optimization [19], [20]. The marking optimization problem finds a minimal cost marking such that the system's cycle time does not fall short of a predefined upper bound and the cycle time optimization problem investigated in [20] explores a minimal cycle time marking such that the cost of the machines/resources does not exceed an upper bound.Deadlock control of flexible manufacturing systems is another important problem that has been extensively investigated in a class of Petri nets (PNs) [21]-[23].

    For modelling, analyzing, and controlling flexible manufacturing systems with batch processing, a possible method is to use timed weighted marked graphs (TWMGs)[24]. TWMGs have been proven to be adequate for performance evaluation and resource optimization of jobshops, kanban systems, and flexible manufacturing systems that are decision free [14], [15]. In such nets, each place has a unique output transition and a unique input transition but the weights on edges may be greater than one, to represent multiple edges. The behaviors and properties of TWMGs were investigated in [25]. Due to the existence of multiplicities(weights) on edges, the analysis of TWMGs is a challenging problem. When the initial marking of a TWMG is given, its cycle time could be analyzed by converting to an equivalent TMG [26], [27] using the well-known linear programming approach in [14]. However, when the initial marking becomes a decision variable to be determined for an optimization problem, the approaches developed in [26], [27] cannot be directly used. Heuristic methods were developed in [28], [29]for the marking optimization problem of TWMGs to obtain a sub-optimal solution.

    By transforming a TWMG whose initial marking is unknown into a finite number of equivalent TMG classes, an optimal initial marking can be obtained by solving a mixed integer linear programming problem for each equivalent TMG class [30], [31]. However, these approaches have high computational cost since the number of equivalent TMG classes increases exponentially w.r.t. the number of places of the original TWMG. In practice it is inefficient to solve a resource optimization problem by exploring all the equivalent TMGs1Although several techniques that may help to speed up the approaches in[30], [31] are developed, these procedures are still subject to high computational complexity..

    To this end, this paper proposes a method to convert a TWMG whose initial marking is unknown to an equivalent parametric TMG system that fully describes the finite family of TMGs equivalent to the original TWMG. Using this transformation, a resource optimization problem for the original TWMG can be reduced to an optimization problem for the equivalent parametric TMG, which, as shown later, can be solved more efficiently. Particularly, this approach is used to handle the marking optimization of TWMGs by solving a mixed integer quadratically constrained programming problem for the equivalent parametric TMG system. To the best of our knowledge, the existing results for the marking optimization problem of TWMGs are all based on heuristic strategies.

    The main contributions of this work are as follows:

    1) We develop an approach to transform a TWMG, whose initial marking is not given, into an equivalent parametric TMG system that fully describes the finite family of TMGs equivalent to the original TWMG.

    2) We propose a mixed integer quadratically constrained programming problem for the marking optimization problem of TWMGs.

    3) We test the proposed approach on different cases and compare its performance with a previous heuristic approach.

    This paper is organized in six sections. The basics of PNs is given in Section II. A method developed in [26] to transform a TWMG whose initial marking is given into an equivalent TMG is introduced in Section III. In Section IV, an approach to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system is presented. In Section V,an analytical approach for the resource optimization problem is developed based on the equivalent parametric TMG system.In Section VI, we give the conclusions.

    II. BACKGROUND

    A. Petri Nets

    A Petri net (PN) is a four-tuple N=(P,T,Pre,Post), where P={p1,...,pn} is a set of n places, T ={t1,...,tm} is a set ofm transitions with P∪T ≠? and P∩T =?, Pre:P×T →N and Post:P×T →Nare the pre-incidence and post-incidence

    Fig. 1. A place pi with an input transition t in(p) and an output transitiontout(p).

    B. Cycle Time of TWMGs

    There mainly exist three ways of introducing the timing parameters in PN models, i.e., a delay can be associated with transitions, places, or arcs [32]. In this paper, we consider TPNs, in which each transition is associated with a deterministic firing delay. A timed PN is a pair (N,δ), where Nis a PN, and δ :T →N is a firing delay function that assigns to each transition a non-negative integer [30]. The single server semantic is considered in this paper, which means that at each time an enabled transition cannot fire more than once.More details can be found in [32].

    For a TWMG system 〈N,M〉, the cycle time is defined as the average period to fire one time the minimal T-semiflow as soon as possible, denoted by χ(M). In [14], a linear programming was developed to obtain a cycle time lower bound as follows:

    where β ∈R+is the throughput (inverse of the cycle time, i.e.,β=1/χ(M)) and α ∈ Rmare the decision variables. Note that LPP (1) provides an exact value for the cycle time of a TMG system 〈N,M〉. In addition, by simulating the dynamic behavior of a TWMG system [29], the cycle time can also be obtained.

    III. TRANSFORMATION OF A TWMG SYSTEM

    For a TWMG system, an analytical approach to evaluate the cycle time is to transform it into an equivalent TMG system that has the same cycle time. In [26], Munier proposed a method to convert a TWMG system 〈 N,M〉 (with n places and m transitions) to an equivalent TMG system 〈N?, M?〉 (withn? places and m? transitions) whose cycle time is identical. This procedure is shown in Algorithm 1.

    As discussed in [30], for a TWMG system the structure of its equivalent TMG depends on the initial marking. In addition, the number of equivalent TMG systems of a TWMG, whose initial marking is not given, increases exponentially with the size of place set, which makes the resource optimization problem where the initial marking is unknown quite difficult to solve2The solutions developed in [30] and [31] for the cycle time optimization have high computational cost since they require one to solve a mixed integer linear programming for each possible equivalent TMG system..

    Example 1: Consider a TWMG N in Fig. 2 whose minimal T-semiflow is x = (2, 1)T. We assume that the initial marking is M=(2,0)T. According to Algorithm 1, an equivalent TMG system 〈 N?, M?〉 is obtained as follows.

    Fig. 2. A TWMG N considered in Examples 1, 2 and 3.

    Fig. 3. The equivalent subsystem 〈 N?t, M?t〉 of transitions.

    Algorithm 1 [26] Transformation of a TWMG System into an Equivalent TMG System Under Single Server Semantics Input: A TWMG system with a minimal T-semiflow〈N,M〉x=(x1,...,xm)T〈?N, ?M〉〈N,M〉Output: An equivalent TMG system whose cycle time is identical to〈?Nt, ?Mt〉ti ∈T xi t1it2i... txi i 1: (Equivalent subsystem of transitions) Replace each transition by transitions, , , , , with delay time ?δ(tj i)=δ(ti), j=1,...,xi. (2)xi q1i ... qxi i qai a=1,...,xi-1 tai ta+1i qxi i Add places , , , where ( ) is a place connecting to with unitary weights and is a place connecting to with unitary weights.txi i t1i■■■■■■■■■?M(qai)=0, i=1,...,m, a=1,...,xi-1 ?M(qxi i )=1.(3)〈?Np, ?Mp〉pi ∈P w(pi)>v(pi) ni=xin(pi) psi s=1,...,ni 2: (Equivalent subsystem of places: Case 1) Replace each place such that by places , where for:■■■■■■■■■■■■■■■?as·xout(pi)+bs=?M(pi)+w(pi)·(s-1)+1 bs ∈{1,...,xout(pi)}as ∈N.v(pi)(4)n(pi) tbsout(pi) as Place connects transition to transition and contains ps i tsi tokens, i.e.,■■■■■■■■■■■■■■■in(pi), or equivalently Post(psi,tsin(pi))=1 tout(psi)=tbsout(pi), or equivalently Pre(psi,tbsout(pi))=1 μ(ps tin(psi)=ts(5)i)= ?M(psi)=as.〈?Np, ?Mp〉pi ∈P w(pi)≤v(pi) ni=xout(pi) psi s=1,...,ni 3: (Equivalent subsystem of places: Case 2) Replace each place such that by places , where for:■■■■■■■■■■■■■■■?cs·xin(pi)+ds=?s·v(pi)-M(pi)w(pi)ds ∈{1,...,xin(pi)}cs ∈Z≤0.(6)psi tdsin(pi) tsout(pi)-cs Place connects transition to transition and contains tokens, i.e.,■■■■■■■■■■■■■■■tin(psi)=tds in(pi)or equivalently Post(psi,tds in(pi))=1 tout(psi)=tsout(pi) or equivalently Pre(psi,tsout(pi))=1 μ(psi)= ?M(psi)=-cs.(7)〈?N, ?M〉4: (Equivalent TMG system ) The TMG system is equivalent to the union of the subsystems of transitions and places, i.e.,〈?N, ?M〉=〈?Nt, ?Mt〉∪〈?Np, ?Mp〉. (8)

    Fig. 4. The equivalent subsystem 〈 N?p, M?p〉 of places.

    Finally, we obtain the equivalent TMG system 〈N?, M?〉 by combining the equivalent subsystems of transitions and places as shown in Fig. 5.

    IV. PARAMETRIC TRANSFORMATION OF TWMGS

    Since the equivalent structure of the TMG depends on the initial marking of the TWMG, the number of equivalent TMG systems of a TWMG whose initial marking is unknown could increase exponentially with the size of place set. Therefore, it is practically inefficient to solve a resource optimization problem by exploring all the equivalent TMG systems. This section proposes a method to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system. First, we discuss the logic constraints of the possible equivalent subsystems in Section IV-A. Then, some techniques are introduced to convert a TWMG to an equivalent parametric TMG in Section IV-B.

    Fig. 5. The equivalent TMG system of the TWMG N depicted in Fig. 2 with M=[2,0]T.

    A. Logic Constraints of the Equivalent Subsystems

    B. Parametric Transformation

    For each place p ∈P, the logic constraints of its possible equivalent subsystems are logic or constraints. In particular,all the constraints are equality constraints. In this subsection,some transformation rules to convert logic or constraints into linear constraints are adopted to synthesize all equivalent subsystems into one.

    Consider the following equality constraints:

    The work in [33]-[35] showed that the above equality constraints can be transformed into following linear constraints:

    V. APPLICATION TO THE RESOURCE OPTIMIZATION PROBLEM

    A. An Optimal Solution for Marking Optimization

    This section demonstrates that the transformation approach discussed in Section IV can be further used to handle the marking optimization of TWMGs [28], [29]. Then, an optimal solution based on mixed integer quadratically constrained programming is developed.

    The mathematical model of the marking optimization of a TWMG can be summarized as follows [29]:

    It is worth mentioning that a mixed integer quadratically constrained programming is a non-convex optimization problem and thus a local optimal solution, which is easy to find, cannot guarantee global optimality [36].

    This subsection is concluded with some discussion on its application to the cycle time optimization of TWMGs.Optimal approaches have been developed for TWMGs [30],[31]. However, theses approaches rely on solving mixed integer linear programming for a finite family of equivalent TMGs whose number could increase exponentially w.r.t. that of places. The transformation method proposed in this paper could also be used to the cycle time optimization of TWMGs with a similar technique as Proposition 2.

    B. Illustrative Examples

    This section applies the proposed approach to the marking optimization of a flexible manufacturing system (FMS) and the obtained results are compared with a previous approach in[29] that is based on the heuristic strategy.

    Consider the TWMG of an FMS [28] depicted in Fig. 6. It consists of three machines U1, U2and U3and can manufacture two products, namely R1and R2. The production ratio for R1and R2is 60% and 40%, respectively. The manufacturing processes are as follows:R1:U1, U2, U3(denoted by transitions t1, t2, and t3, respectively) and R2: U2, U1(denoted by transitions t4and t5, respectively).Transitions t6, t7, t8, and t9are used to represent the cyclic manufacturing process.

    Fig. 6. The TWMG model of a flexible manufacturing system.

    In Table I, the proposed approach is compared with the heuristic approach developed in [29] that is implemented by the PN tool HYPENS [38]. All cases run on a computer running Windows 10 with CPU Intel Core i7 at 3.60 GHz and 8 GB RAM. Case 1 is the flexible manufacturing system discussed above, Case 2 is an example taken from Fig. 6 in[29], Case 3 is a flexible manufacturing system studied in[27], and Case 4 is a real assembly line studied in [39] that consists of 41 places and 25 transitions. For each case, the tested approach, the upper bound on the cycle time, the objective function, and the CPU time are shown. Note that the first proposed approach is tested by using LINGO without the global optimal solver option which means that the obtained solution cannot guarantee the optimality, and the second proposed approach is tested by using LINGO with the global optimal solver option. In Table I, “o.o.t” (out of time) means that the solution cannot be found within 12 hours.

    The results in Table I show that the locally optimal solutions obtained by the proposed approach (Loc. Opt.) and the heuristic approach in [29] for Cases 1 and 2 are also global optimal. The solution obtained by the heuristic approach in[29] is better than the locally optimal solution for Case 3,while only a locally optimal solution is found for Case 4. It should be noticed that the computational cost for finding an optimal solution is very high with the increase of the net size.Therefore, a locally optimal solution is also useful.

    TABLE I SIMULATIONS RESULTS OF THE APPROACH IN [29] AND THE PROPOSED APPROACH

    VI. CONCLUSIONS

    This work aims to present an approach to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system where the arcs have unitary weights.Using this transformation, a resource optimization problem for the original TWMG can be reduced to an optimization problem for the equivalent parametric TMG, which can be solved more efficiently. Particularly, this approach is used to handle the marking optimization problem of TWMGs and a mixed integer quadratically constrained programming method is developed for the equivalent parametric TMG system. To the best of our knowledge, the existing results for the marking optimization problem of TWMGs are all based on heuristic strategies. Future work aims to extend the developed approach to a general model where shared resources (i.e., conflicts)exist.

    eeuss影院久久| 丰满人妻一区二区三区视频av | 国产美女午夜福利| 啦啦啦韩国在线观看视频| 精品不卡国产一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| www.999成人在线观看| 最近最新中文字幕大全免费视频| 欧美中文日本在线观看视频| 91九色精品人成在线观看| 国产精品综合久久久久久久免费| www.999成人在线观看| 久久久久九九精品影院| 亚洲av成人精品一区久久| 国产精品国产高清国产av| 国产精品久久久久久亚洲av鲁大| 久久精品综合一区二区三区| 99热6这里只有精品| 成人一区二区视频在线观看| 男人舔奶头视频| 亚洲18禁久久av| 最近最新中文字幕大全免费视频| 欧美国产日韩亚洲一区| h日本视频在线播放| 3wmmmm亚洲av在线观看| 欧美成人性av电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品亚洲一级av第二区| 一二三四社区在线视频社区8| 一本久久中文字幕| 免费观看精品视频网站| 欧美+亚洲+日韩+国产| 九色成人免费人妻av| 欧美成狂野欧美在线观看| 国产综合懂色| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 日韩亚洲欧美综合| 观看免费一级毛片| 身体一侧抽搐| 免费高清视频大片| 亚洲人与动物交配视频| 亚洲成av人片在线播放无| 日韩人妻高清精品专区| 嫩草影院精品99| 热99re8久久精品国产| av专区在线播放| 两个人的视频大全免费| 天堂√8在线中文| 丰满乱子伦码专区| 熟女人妻精品中文字幕| 国产精品一区二区免费欧美| 国产精品国产高清国产av| 一a级毛片在线观看| 女人十人毛片免费观看3o分钟| 久久精品国产99精品国产亚洲性色| 香蕉久久夜色| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 老司机福利观看| www日本在线高清视频| 午夜福利欧美成人| 久久天躁狠狠躁夜夜2o2o| 亚洲不卡免费看| 白带黄色成豆腐渣| 精品国产美女av久久久久小说| 欧美xxxx黑人xx丫x性爽| 国产精品 欧美亚洲| 精品福利观看| 国产蜜桃级精品一区二区三区| 久久精品91无色码中文字幕| 成人一区二区视频在线观看| 国产三级中文精品| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 网址你懂的国产日韩在线| 午夜a级毛片| 老鸭窝网址在线观看| 内地一区二区视频在线| 又紧又爽又黄一区二区| 亚洲av美国av| 久久久久性生活片| 手机成人av网站| 精品国产三级普通话版| 欧美成狂野欧美在线观看| 哪里可以看免费的av片| 夜夜夜夜夜久久久久| 搞女人的毛片| 欧美在线黄色| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 听说在线观看完整版免费高清| 两人在一起打扑克的视频| 特级一级黄色大片| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 99久久精品一区二区三区| 亚洲专区中文字幕在线| 国产高清有码在线观看视频| 亚洲天堂国产精品一区在线| 黄色成人免费大全| www.999成人在线观看| 一进一出抽搐动态| 国产精品国产高清国产av| www.色视频.com| 国产成人影院久久av| 中文字幕久久专区| 亚洲成人精品中文字幕电影| 午夜免费激情av| 午夜精品一区二区三区免费看| 成人av一区二区三区在线看| 51午夜福利影视在线观看| 欧美成人免费av一区二区三区| 国产精品国产高清国产av| 91麻豆精品激情在线观看国产| 国产精品嫩草影院av在线观看 | 99精品久久久久人妻精品| 精品久久久久久久人妻蜜臀av| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 午夜免费男女啪啪视频观看 | 国产 一区 欧美 日韩| 不卡一级毛片| 国产伦人伦偷精品视频| 久久人妻av系列| 欧美一区二区精品小视频在线| 90打野战视频偷拍视频| 蜜桃亚洲精品一区二区三区| 网址你懂的国产日韩在线| 97超视频在线观看视频| 国产精品亚洲av一区麻豆| 国产精品一区二区三区四区免费观看 | 国产精品女同一区二区软件 | 亚洲欧美激情综合另类| 欧美日韩瑟瑟在线播放| 亚洲av免费在线观看| 亚洲成人久久爱视频| 国产午夜精品论理片| av欧美777| 嫁个100分男人电影在线观看| 啦啦啦观看免费观看视频高清| 精品人妻偷拍中文字幕| av视频在线观看入口| 亚洲第一电影网av| 亚洲精品在线观看二区| 亚洲精华国产精华精| 精品久久久久久久久久免费视频| 亚洲欧美日韩无卡精品| 国产精华一区二区三区| 欧美+日韩+精品| 最新中文字幕久久久久| 真人一进一出gif抽搐免费| 18+在线观看网站| 五月伊人婷婷丁香| a在线观看视频网站| 真人做人爱边吃奶动态| 久久99热这里只有精品18| 一本一本综合久久| 色老头精品视频在线观看| 久久中文看片网| 日韩有码中文字幕| 免费av不卡在线播放| 国产高清视频在线观看网站| 老司机福利观看| 成年女人看的毛片在线观看| 精品免费久久久久久久清纯| 可以在线观看毛片的网站| 亚洲美女黄片视频| 桃红色精品国产亚洲av| 成人精品一区二区免费| 久久久久久久久大av| 少妇人妻精品综合一区二区 | 日本黄大片高清| 噜噜噜噜噜久久久久久91| 91麻豆av在线| 成人av一区二区三区在线看| 精品免费久久久久久久清纯| 可以在线观看毛片的网站| 搡老岳熟女国产| 一本久久中文字幕| 韩国av一区二区三区四区| avwww免费| 1024手机看黄色片| 伊人久久精品亚洲午夜| 欧美黑人欧美精品刺激| 特大巨黑吊av在线直播| 午夜福利高清视频| 精品久久久久久久末码| 国产伦在线观看视频一区| 精品国产美女av久久久久小说| 亚洲国产色片| 成人国产综合亚洲| 国产真人三级小视频在线观看| 亚洲黑人精品在线| 日韩大尺度精品在线看网址| ponron亚洲| 香蕉丝袜av| av黄色大香蕉| www日本黄色视频网| a在线观看视频网站| 午夜日韩欧美国产| 国产私拍福利视频在线观看| 欧美成人免费av一区二区三区| 欧美日韩黄片免| 国内毛片毛片毛片毛片毛片| 免费观看精品视频网站| 一进一出好大好爽视频| 久久精品国产99精品国产亚洲性色| 久久精品91蜜桃| 俄罗斯特黄特色一大片| 窝窝影院91人妻| www日本黄色视频网| 午夜精品久久久久久毛片777| 国产综合懂色| 国产激情欧美一区二区| 草草在线视频免费看| 日韩有码中文字幕| 欧美三级亚洲精品| 色播亚洲综合网| 日日夜夜操网爽| eeuss影院久久| 亚洲成人久久爱视频| 精品福利观看| 51午夜福利影视在线观看| 亚洲欧美激情综合另类| 一区二区三区国产精品乱码| 12—13女人毛片做爰片一| 久久久久久久午夜电影| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲成a人片在线一区二区| 最近最新免费中文字幕在线| 亚洲成a人片在线一区二区| 色综合婷婷激情| 国产高潮美女av| 久久久成人免费电影| 日日干狠狠操夜夜爽| 黄色片一级片一级黄色片| 高清在线国产一区| 亚洲av五月六月丁香网| 亚洲乱码一区二区免费版| 亚洲精品粉嫩美女一区| 青草久久国产| 日韩欧美国产在线观看| 久久精品国产亚洲av涩爱 | 嫩草影院入口| 国产精品 欧美亚洲| 变态另类成人亚洲欧美熟女| 在线观看舔阴道视频| 热99re8久久精品国产| 午夜日韩欧美国产| 人人妻人人澡欧美一区二区| 免费看美女性在线毛片视频| 久久精品国产99精品国产亚洲性色| 白带黄色成豆腐渣| 五月玫瑰六月丁香| 精品熟女少妇八av免费久了| 免费av观看视频| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩高清专用| 亚洲成人免费电影在线观看| 国产精品久久视频播放| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站| 国产在视频线在精品| 久久国产乱子伦精品免费另类| av女优亚洲男人天堂| 手机成人av网站| 天天添夜夜摸| 人人妻人人看人人澡| 99热只有精品国产| 国产高清videossex| 亚洲国产精品sss在线观看| 可以在线观看的亚洲视频| 亚洲成av人片在线播放无| 亚洲18禁久久av| 日本在线视频免费播放| 久久亚洲精品不卡| 色综合欧美亚洲国产小说| 午夜福利高清视频| 一级作爱视频免费观看| 午夜福利在线观看免费完整高清在 | 午夜亚洲福利在线播放| 亚洲无线观看免费| 亚洲性夜色夜夜综合| 午夜精品一区二区三区免费看| 国产伦精品一区二区三区视频9 | 久久久久亚洲av毛片大全| 青草久久国产| 动漫黄色视频在线观看| 99riav亚洲国产免费| 欧美精品啪啪一区二区三区| 亚洲av第一区精品v没综合| 欧美高清成人免费视频www| 久久精品影院6| 亚洲av不卡在线观看| 亚洲av二区三区四区| 国产一区二区激情短视频| 国产成人欧美在线观看| 身体一侧抽搐| 亚洲aⅴ乱码一区二区在线播放| 久久久精品大字幕| 在线视频色国产色| 毛片女人毛片| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 色av中文字幕| 好男人电影高清在线观看| 日韩欧美精品免费久久 | 日韩国内少妇激情av| 波多野结衣高清作品| 亚洲av不卡在线观看| 欧美日韩黄片免| 乱人视频在线观看| 内地一区二区视频在线| 不卡一级毛片| 欧美xxxx黑人xx丫x性爽| 亚洲最大成人中文| 99国产精品一区二区蜜桃av| 在线十欧美十亚洲十日本专区| 亚洲av电影在线进入| 美女被艹到高潮喷水动态| 亚洲18禁久久av| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av香蕉五月| 老司机福利观看| 色在线成人网| 亚洲一区高清亚洲精品| 午夜免费成人在线视频| 午夜激情欧美在线| 又粗又爽又猛毛片免费看| 国产欧美日韩一区二区精品| 91久久精品电影网| 国产麻豆成人av免费视频| 成人av一区二区三区在线看| 在线观看免费午夜福利视频| 色哟哟哟哟哟哟| 亚洲五月婷婷丁香| 全区人妻精品视频| 欧美乱妇无乱码| 精品国产亚洲在线| 1024手机看黄色片| 国内少妇人妻偷人精品xxx网站| 毛片女人毛片| 一区二区三区高清视频在线| 亚洲国产色片| 此物有八面人人有两片| 很黄的视频免费| 91字幕亚洲| 在线观看日韩欧美| 此物有八面人人有两片| 桃色一区二区三区在线观看| 午夜福利18| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| 在线观看免费午夜福利视频| 日韩欧美国产一区二区入口| 亚洲欧美激情综合另类| 日韩成人在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 一a级毛片在线观看| 精品日产1卡2卡| 中文字幕人成人乱码亚洲影| 一卡2卡三卡四卡精品乱码亚洲| 欧美在线黄色| 国内久久婷婷六月综合欲色啪| 日本 av在线| 欧美另类亚洲清纯唯美| 亚洲美女视频黄频| 最新美女视频免费是黄的| 91麻豆精品激情在线观看国产| 天堂影院成人在线观看| 国产高清视频在线观看网站| 丁香六月欧美| 露出奶头的视频| 小蜜桃在线观看免费完整版高清| 俄罗斯特黄特色一大片| 在线观看午夜福利视频| 在线天堂最新版资源| 俺也久久电影网| 久久精品91蜜桃| 午夜精品在线福利| 我的老师免费观看完整版| 欧美成狂野欧美在线观看| 亚洲一区二区三区色噜噜| 欧美成狂野欧美在线观看| 人妻夜夜爽99麻豆av| 一级作爱视频免费观看| av天堂在线播放| 美女高潮的动态| 亚洲精品日韩av片在线观看 | 神马国产精品三级电影在线观看| 欧美丝袜亚洲另类 | 国产一级毛片七仙女欲春2| 久久九九热精品免费| 色哟哟哟哟哟哟| 操出白浆在线播放| 久久人人精品亚洲av| 蜜桃亚洲精品一区二区三区| 黄色女人牲交| 精品一区二区三区av网在线观看| 国产精品日韩av在线免费观看| 小蜜桃在线观看免费完整版高清| 欧美日韩乱码在线| 国语自产精品视频在线第100页| 免费看十八禁软件| 欧美日韩黄片免| 精品熟女少妇八av免费久了| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色| www日本黄色视频网| 国产精品 欧美亚洲| 18禁国产床啪视频网站| 国内精品久久久久精免费| 亚洲国产欧美人成| 中文资源天堂在线| 免费人成视频x8x8入口观看| 在线观看免费视频日本深夜| 别揉我奶头~嗯~啊~动态视频| 欧美一区二区精品小视频在线| 在线免费观看不下载黄p国产 | 成人国产一区最新在线观看| 首页视频小说图片口味搜索| 国产精品av视频在线免费观看| 欧美大码av| 哪里可以看免费的av片| 好看av亚洲va欧美ⅴa在| 两个人视频免费观看高清| 国产精品1区2区在线观看.| 嫁个100分男人电影在线观看| 国产免费一级a男人的天堂| 午夜激情欧美在线| 亚洲精品成人久久久久久| 成人18禁在线播放| 国产精品一区二区三区四区久久| 国产亚洲精品综合一区在线观看| 69人妻影院| 国产精品1区2区在线观看.| 免费观看的影片在线观看| 悠悠久久av| 99久久精品国产亚洲精品| 国产一区在线观看成人免费| 久久人妻av系列| 久久香蕉国产精品| 欧美乱色亚洲激情| 18美女黄网站色大片免费观看| 亚洲成人免费电影在线观看| 久久久国产成人免费| 嫩草影视91久久| 97超级碰碰碰精品色视频在线观看| 美女免费视频网站| 丰满人妻熟妇乱又伦精品不卡| 国产91精品成人一区二区三区| 男女那种视频在线观看| 国产成人福利小说| netflix在线观看网站| 男女之事视频高清在线观看| 网址你懂的国产日韩在线| 亚洲五月婷婷丁香| 伊人久久大香线蕉亚洲五| 日本免费a在线| 久久精品国产亚洲av涩爱 | 久久精品91无色码中文字幕| 欧美日韩黄片免| 狂野欧美白嫩少妇大欣赏| 亚洲精品在线观看二区| 成熟少妇高潮喷水视频| 91麻豆精品激情在线观看国产| 国产高清三级在线| 亚洲精品粉嫩美女一区| 久久久久免费精品人妻一区二区| 欧美激情在线99| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩高清专用| 亚洲真实伦在线观看| 国产单亲对白刺激| 他把我摸到了高潮在线观看| 看免费av毛片| 黄色视频,在线免费观看| 免费看光身美女| www.www免费av| 国内少妇人妻偷人精品xxx网站| 又爽又黄无遮挡网站| 精品国产美女av久久久久小说| 成人欧美大片| 久久6这里有精品| 国产一级毛片七仙女欲春2| 欧美色欧美亚洲另类二区| 搡女人真爽免费视频火全软件 | 国产私拍福利视频在线观看| 人人妻人人看人人澡| 亚洲黑人精品在线| 欧美一区二区精品小视频在线| 少妇的丰满在线观看| 免费电影在线观看免费观看| 国产精品野战在线观看| 91久久精品国产一区二区成人 | 免费看十八禁软件| 97碰自拍视频| 日本在线视频免费播放| 久久精品综合一区二区三区| 亚洲av五月六月丁香网| 成人性生交大片免费视频hd| 午夜福利欧美成人| 99精品在免费线老司机午夜| 亚洲av熟女| 三级国产精品欧美在线观看| 国产单亲对白刺激| 中文字幕人妻丝袜一区二区| 国产午夜精品论理片| www.www免费av| 午夜福利在线在线| 级片在线观看| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| 在线观看日韩欧美| 床上黄色一级片| 天天一区二区日本电影三级| 国产精品嫩草影院av在线观看 | 岛国在线观看网站| 别揉我奶头~嗯~啊~动态视频| 精华霜和精华液先用哪个| 亚洲av成人精品一区久久| 香蕉丝袜av| 成年女人看的毛片在线观看| 国产成人欧美在线观看| 国产精品一区二区三区四区久久| 免费看光身美女| tocl精华| 中文字幕人成人乱码亚洲影| 日日夜夜操网爽| 亚洲aⅴ乱码一区二区在线播放| 国产高潮美女av| 熟女少妇亚洲综合色aaa.| 国产av不卡久久| 在线十欧美十亚洲十日本专区| 真人一进一出gif抽搐免费| 91av网一区二区| 一级毛片女人18水好多| 亚洲av第一区精品v没综合| 色哟哟哟哟哟哟| 精品午夜福利视频在线观看一区| 床上黄色一级片| 白带黄色成豆腐渣| 非洲黑人性xxxx精品又粗又长| 色综合亚洲欧美另类图片| 一级毛片高清免费大全| 一区二区三区免费毛片| 免费看a级黄色片| 真实男女啪啪啪动态图| 制服丝袜大香蕉在线| 午夜福利在线观看免费完整高清在 | 国产精品 欧美亚洲| a级毛片a级免费在线| 在线观看66精品国产| 97超级碰碰碰精品色视频在线观看| 丰满人妻一区二区三区视频av | 久久久久久大精品| 亚洲专区国产一区二区| 精品无人区乱码1区二区| 91麻豆精品激情在线观看国产| 国产午夜精品论理片| 一本一本综合久久| 男女下面进入的视频免费午夜| 成人精品一区二区免费| www.www免费av| 日韩成人在线观看一区二区三区| 怎么达到女性高潮| 啪啪无遮挡十八禁网站| 日韩欧美国产一区二区入口| 久久久久久久亚洲中文字幕 | 亚洲男人的天堂狠狠| 90打野战视频偷拍视频| 熟女电影av网| 亚洲欧美精品综合久久99| 哪里可以看免费的av片| 黄色日韩在线| 国产97色在线日韩免费| 老汉色av国产亚洲站长工具| 亚洲av二区三区四区| 两人在一起打扑克的视频| 中文字幕人妻丝袜一区二区| 白带黄色成豆腐渣| 日本撒尿小便嘘嘘汇集6| 亚洲18禁久久av| 国产乱人伦免费视频| av片东京热男人的天堂| 日本精品一区二区三区蜜桃| 白带黄色成豆腐渣| av片东京热男人的天堂| 老汉色av国产亚洲站长工具| 国产精品98久久久久久宅男小说| 两人在一起打扑克的视频| 一二三四社区在线视频社区8| 网址你懂的国产日韩在线| av片东京热男人的天堂| 老汉色av国产亚洲站长工具| 免费av不卡在线播放| 性欧美人与动物交配| 床上黄色一级片| 欧美区成人在线视频| 精品午夜福利视频在线观看一区| 亚洲无线在线观看| 午夜福利在线观看免费完整高清在 | 亚洲在线自拍视频| 久久久久久久精品吃奶| 嫩草影视91久久| 九色国产91popny在线| 欧美在线一区亚洲| 国产三级在线视频| 日日夜夜操网爽| 一本久久中文字幕| 午夜a级毛片|