• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parametric Transformation of Timed Weighted Marked Graphs: Applications in Optimal Resource Allocation

    2021-04-14 06:55:06ZhouHeMemberIEEEZiyueMaMemberIEEEZhiwuLiFellowIEEEandAlessandroGiuaFellowIEEE
    IEEE/CAA Journal of Automatica Sinica 2021年1期

    Zhou He, Member, IEEE, Ziyue Ma, Member, IEEE, Zhiwu Li, Fellow, IEEE, and Alessandro Giua, Fellow, IEEE

    Abstract—Timed weighted marked graphs are a subclass of timed Petri nets that have wide applications in the control and performance analysis of flexible manufacturing systems. Due to the existence of multiplicities (i.e., weights) on edges, the performance analysis and resource optimization of such graphs represent a challenging problem. In this paper, we develop an approach to transform a timed weighted marked graph whose initial marking is not given, into an equivalent parametric timed marked graph where the edges have unitary weights. In order to explore an optimal resource allocation policy for a system, an analytical method is developed for the resource optimization of timed weighted marked graphs by studying an equivalent net.Finally, we apply the proposed method to a flexible manufacturing system and compare the results with a previous heuristic approach. Simulation analysis shows that the developed approach is superior to the heuristic approach.

    I. INTRODUCTION

    MANY artificial systems that consist of a limited quantity of resources shared by different tasks can be classified as resource allocation systems [1]; among them include flexible manufacturing systems, traffic transportation systems,and logistics systems [2]-[7]. Performance of flexible manufacturing systems is usually affected by timing specifications and resource allocation. For the sake of improving productivity and saving cost considerations, the resources of a flexible manufacturing system must be well allocated. The resource optimization of manufacturing systems with operation delay, assembly, disassembly, and batch processing, is a challenging problem for manufacturing engineers.

    Timed Petri nets (TPNs) are a model of discrete event systems that are widely applied to control, performance evaluation, and fault diagnosis in timed systems, e.g., flexible manufacturing systems [8]-[11]. As an important subclass of TPNs, timed marked graphs (TMGs) are suitable to model and analyze synchronization appearing in discrete event systems[12], [13].

    The performance of a system modeled with TMGs was usually characterized by the cycle time. When the initial marking of a TMG is given, a linear programming is developed to estimate the cycle time [14]. The properties of cyclic TMGs were explored in [15] and it was shown that the evolution of cyclic TMGs is periodic. Therefore, it is possible to estimate the cycle time by analyzing its periodical behaviors. In addition, the linear algebraic approaches can also be applied to model and analyze the dynamic behavior of TMGs [16], [17].

    To make a trade-off between the throughput of manufacturing systems and the resource cost, two main resource optimization problems were investigated in the literature: marking optimization [18] and cycle time optimization [19], [20]. The marking optimization problem finds a minimal cost marking such that the system's cycle time does not fall short of a predefined upper bound and the cycle time optimization problem investigated in [20] explores a minimal cycle time marking such that the cost of the machines/resources does not exceed an upper bound.Deadlock control of flexible manufacturing systems is another important problem that has been extensively investigated in a class of Petri nets (PNs) [21]-[23].

    For modelling, analyzing, and controlling flexible manufacturing systems with batch processing, a possible method is to use timed weighted marked graphs (TWMGs)[24]. TWMGs have been proven to be adequate for performance evaluation and resource optimization of jobshops, kanban systems, and flexible manufacturing systems that are decision free [14], [15]. In such nets, each place has a unique output transition and a unique input transition but the weights on edges may be greater than one, to represent multiple edges. The behaviors and properties of TWMGs were investigated in [25]. Due to the existence of multiplicities(weights) on edges, the analysis of TWMGs is a challenging problem. When the initial marking of a TWMG is given, its cycle time could be analyzed by converting to an equivalent TMG [26], [27] using the well-known linear programming approach in [14]. However, when the initial marking becomes a decision variable to be determined for an optimization problem, the approaches developed in [26], [27] cannot be directly used. Heuristic methods were developed in [28], [29]for the marking optimization problem of TWMGs to obtain a sub-optimal solution.

    By transforming a TWMG whose initial marking is unknown into a finite number of equivalent TMG classes, an optimal initial marking can be obtained by solving a mixed integer linear programming problem for each equivalent TMG class [30], [31]. However, these approaches have high computational cost since the number of equivalent TMG classes increases exponentially w.r.t. the number of places of the original TWMG. In practice it is inefficient to solve a resource optimization problem by exploring all the equivalent TMGs1Although several techniques that may help to speed up the approaches in[30], [31] are developed, these procedures are still subject to high computational complexity..

    To this end, this paper proposes a method to convert a TWMG whose initial marking is unknown to an equivalent parametric TMG system that fully describes the finite family of TMGs equivalent to the original TWMG. Using this transformation, a resource optimization problem for the original TWMG can be reduced to an optimization problem for the equivalent parametric TMG, which, as shown later, can be solved more efficiently. Particularly, this approach is used to handle the marking optimization of TWMGs by solving a mixed integer quadratically constrained programming problem for the equivalent parametric TMG system. To the best of our knowledge, the existing results for the marking optimization problem of TWMGs are all based on heuristic strategies.

    The main contributions of this work are as follows:

    1) We develop an approach to transform a TWMG, whose initial marking is not given, into an equivalent parametric TMG system that fully describes the finite family of TMGs equivalent to the original TWMG.

    2) We propose a mixed integer quadratically constrained programming problem for the marking optimization problem of TWMGs.

    3) We test the proposed approach on different cases and compare its performance with a previous heuristic approach.

    This paper is organized in six sections. The basics of PNs is given in Section II. A method developed in [26] to transform a TWMG whose initial marking is given into an equivalent TMG is introduced in Section III. In Section IV, an approach to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system is presented. In Section V,an analytical approach for the resource optimization problem is developed based on the equivalent parametric TMG system.In Section VI, we give the conclusions.

    II. BACKGROUND

    A. Petri Nets

    A Petri net (PN) is a four-tuple N=(P,T,Pre,Post), where P={p1,...,pn} is a set of n places, T ={t1,...,tm} is a set ofm transitions with P∪T ≠? and P∩T =?, Pre:P×T →N and Post:P×T →Nare the pre-incidence and post-incidence

    Fig. 1. A place pi with an input transition t in(p) and an output transitiontout(p).

    B. Cycle Time of TWMGs

    There mainly exist three ways of introducing the timing parameters in PN models, i.e., a delay can be associated with transitions, places, or arcs [32]. In this paper, we consider TPNs, in which each transition is associated with a deterministic firing delay. A timed PN is a pair (N,δ), where Nis a PN, and δ :T →N is a firing delay function that assigns to each transition a non-negative integer [30]. The single server semantic is considered in this paper, which means that at each time an enabled transition cannot fire more than once.More details can be found in [32].

    For a TWMG system 〈N,M〉, the cycle time is defined as the average period to fire one time the minimal T-semiflow as soon as possible, denoted by χ(M). In [14], a linear programming was developed to obtain a cycle time lower bound as follows:

    where β ∈R+is the throughput (inverse of the cycle time, i.e.,β=1/χ(M)) and α ∈ Rmare the decision variables. Note that LPP (1) provides an exact value for the cycle time of a TMG system 〈N,M〉. In addition, by simulating the dynamic behavior of a TWMG system [29], the cycle time can also be obtained.

    III. TRANSFORMATION OF A TWMG SYSTEM

    For a TWMG system, an analytical approach to evaluate the cycle time is to transform it into an equivalent TMG system that has the same cycle time. In [26], Munier proposed a method to convert a TWMG system 〈 N,M〉 (with n places and m transitions) to an equivalent TMG system 〈N?, M?〉 (withn? places and m? transitions) whose cycle time is identical. This procedure is shown in Algorithm 1.

    As discussed in [30], for a TWMG system the structure of its equivalent TMG depends on the initial marking. In addition, the number of equivalent TMG systems of a TWMG, whose initial marking is not given, increases exponentially with the size of place set, which makes the resource optimization problem where the initial marking is unknown quite difficult to solve2The solutions developed in [30] and [31] for the cycle time optimization have high computational cost since they require one to solve a mixed integer linear programming for each possible equivalent TMG system..

    Example 1: Consider a TWMG N in Fig. 2 whose minimal T-semiflow is x = (2, 1)T. We assume that the initial marking is M=(2,0)T. According to Algorithm 1, an equivalent TMG system 〈 N?, M?〉 is obtained as follows.

    Fig. 2. A TWMG N considered in Examples 1, 2 and 3.

    Fig. 3. The equivalent subsystem 〈 N?t, M?t〉 of transitions.

    Algorithm 1 [26] Transformation of a TWMG System into an Equivalent TMG System Under Single Server Semantics Input: A TWMG system with a minimal T-semiflow〈N,M〉x=(x1,...,xm)T〈?N, ?M〉〈N,M〉Output: An equivalent TMG system whose cycle time is identical to〈?Nt, ?Mt〉ti ∈T xi t1it2i... txi i 1: (Equivalent subsystem of transitions) Replace each transition by transitions, , , , , with delay time ?δ(tj i)=δ(ti), j=1,...,xi. (2)xi q1i ... qxi i qai a=1,...,xi-1 tai ta+1i qxi i Add places , , , where ( ) is a place connecting to with unitary weights and is a place connecting to with unitary weights.txi i t1i■■■■■■■■■?M(qai)=0, i=1,...,m, a=1,...,xi-1 ?M(qxi i )=1.(3)〈?Np, ?Mp〉pi ∈P w(pi)>v(pi) ni=xin(pi) psi s=1,...,ni 2: (Equivalent subsystem of places: Case 1) Replace each place such that by places , where for:■■■■■■■■■■■■■■■?as·xout(pi)+bs=?M(pi)+w(pi)·(s-1)+1 bs ∈{1,...,xout(pi)}as ∈N.v(pi)(4)n(pi) tbsout(pi) as Place connects transition to transition and contains ps i tsi tokens, i.e.,■■■■■■■■■■■■■■■in(pi), or equivalently Post(psi,tsin(pi))=1 tout(psi)=tbsout(pi), or equivalently Pre(psi,tbsout(pi))=1 μ(ps tin(psi)=ts(5)i)= ?M(psi)=as.〈?Np, ?Mp〉pi ∈P w(pi)≤v(pi) ni=xout(pi) psi s=1,...,ni 3: (Equivalent subsystem of places: Case 2) Replace each place such that by places , where for:■■■■■■■■■■■■■■■?cs·xin(pi)+ds=?s·v(pi)-M(pi)w(pi)ds ∈{1,...,xin(pi)}cs ∈Z≤0.(6)psi tdsin(pi) tsout(pi)-cs Place connects transition to transition and contains tokens, i.e.,■■■■■■■■■■■■■■■tin(psi)=tds in(pi)or equivalently Post(psi,tds in(pi))=1 tout(psi)=tsout(pi) or equivalently Pre(psi,tsout(pi))=1 μ(psi)= ?M(psi)=-cs.(7)〈?N, ?M〉4: (Equivalent TMG system ) The TMG system is equivalent to the union of the subsystems of transitions and places, i.e.,〈?N, ?M〉=〈?Nt, ?Mt〉∪〈?Np, ?Mp〉. (8)

    Fig. 4. The equivalent subsystem 〈 N?p, M?p〉 of places.

    Finally, we obtain the equivalent TMG system 〈N?, M?〉 by combining the equivalent subsystems of transitions and places as shown in Fig. 5.

    IV. PARAMETRIC TRANSFORMATION OF TWMGS

    Since the equivalent structure of the TMG depends on the initial marking of the TWMG, the number of equivalent TMG systems of a TWMG whose initial marking is unknown could increase exponentially with the size of place set. Therefore, it is practically inefficient to solve a resource optimization problem by exploring all the equivalent TMG systems. This section proposes a method to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system. First, we discuss the logic constraints of the possible equivalent subsystems in Section IV-A. Then, some techniques are introduced to convert a TWMG to an equivalent parametric TMG in Section IV-B.

    Fig. 5. The equivalent TMG system of the TWMG N depicted in Fig. 2 with M=[2,0]T.

    A. Logic Constraints of the Equivalent Subsystems

    B. Parametric Transformation

    For each place p ∈P, the logic constraints of its possible equivalent subsystems are logic or constraints. In particular,all the constraints are equality constraints. In this subsection,some transformation rules to convert logic or constraints into linear constraints are adopted to synthesize all equivalent subsystems into one.

    Consider the following equality constraints:

    The work in [33]-[35] showed that the above equality constraints can be transformed into following linear constraints:

    V. APPLICATION TO THE RESOURCE OPTIMIZATION PROBLEM

    A. An Optimal Solution for Marking Optimization

    This section demonstrates that the transformation approach discussed in Section IV can be further used to handle the marking optimization of TWMGs [28], [29]. Then, an optimal solution based on mixed integer quadratically constrained programming is developed.

    The mathematical model of the marking optimization of a TWMG can be summarized as follows [29]:

    It is worth mentioning that a mixed integer quadratically constrained programming is a non-convex optimization problem and thus a local optimal solution, which is easy to find, cannot guarantee global optimality [36].

    This subsection is concluded with some discussion on its application to the cycle time optimization of TWMGs.Optimal approaches have been developed for TWMGs [30],[31]. However, theses approaches rely on solving mixed integer linear programming for a finite family of equivalent TMGs whose number could increase exponentially w.r.t. that of places. The transformation method proposed in this paper could also be used to the cycle time optimization of TWMGs with a similar technique as Proposition 2.

    B. Illustrative Examples

    This section applies the proposed approach to the marking optimization of a flexible manufacturing system (FMS) and the obtained results are compared with a previous approach in[29] that is based on the heuristic strategy.

    Consider the TWMG of an FMS [28] depicted in Fig. 6. It consists of three machines U1, U2and U3and can manufacture two products, namely R1and R2. The production ratio for R1and R2is 60% and 40%, respectively. The manufacturing processes are as follows:R1:U1, U2, U3(denoted by transitions t1, t2, and t3, respectively) and R2: U2, U1(denoted by transitions t4and t5, respectively).Transitions t6, t7, t8, and t9are used to represent the cyclic manufacturing process.

    Fig. 6. The TWMG model of a flexible manufacturing system.

    In Table I, the proposed approach is compared with the heuristic approach developed in [29] that is implemented by the PN tool HYPENS [38]. All cases run on a computer running Windows 10 with CPU Intel Core i7 at 3.60 GHz and 8 GB RAM. Case 1 is the flexible manufacturing system discussed above, Case 2 is an example taken from Fig. 6 in[29], Case 3 is a flexible manufacturing system studied in[27], and Case 4 is a real assembly line studied in [39] that consists of 41 places and 25 transitions. For each case, the tested approach, the upper bound on the cycle time, the objective function, and the CPU time are shown. Note that the first proposed approach is tested by using LINGO without the global optimal solver option which means that the obtained solution cannot guarantee the optimality, and the second proposed approach is tested by using LINGO with the global optimal solver option. In Table I, “o.o.t” (out of time) means that the solution cannot be found within 12 hours.

    The results in Table I show that the locally optimal solutions obtained by the proposed approach (Loc. Opt.) and the heuristic approach in [29] for Cases 1 and 2 are also global optimal. The solution obtained by the heuristic approach in[29] is better than the locally optimal solution for Case 3,while only a locally optimal solution is found for Case 4. It should be noticed that the computational cost for finding an optimal solution is very high with the increase of the net size.Therefore, a locally optimal solution is also useful.

    TABLE I SIMULATIONS RESULTS OF THE APPROACH IN [29] AND THE PROPOSED APPROACH

    VI. CONCLUSIONS

    This work aims to present an approach to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system where the arcs have unitary weights.Using this transformation, a resource optimization problem for the original TWMG can be reduced to an optimization problem for the equivalent parametric TMG, which can be solved more efficiently. Particularly, this approach is used to handle the marking optimization problem of TWMGs and a mixed integer quadratically constrained programming method is developed for the equivalent parametric TMG system. To the best of our knowledge, the existing results for the marking optimization problem of TWMGs are all based on heuristic strategies. Future work aims to extend the developed approach to a general model where shared resources (i.e., conflicts)exist.

    亚洲成人免费av在线播放| 免费少妇av软件| 黄色视频不卡| tocl精华| 法律面前人人平等表现在哪些方面| 日韩免费高清中文字幕av| 亚洲精品在线美女| 少妇粗大呻吟视频| www日本在线高清视频| 午夜福利影视在线免费观看| www.自偷自拍.com| 长腿黑丝高跟| 中文字幕人妻熟女乱码| av国产精品久久久久影院| 亚洲中文字幕日韩| 岛国视频午夜一区免费看| 亚洲国产欧美一区二区综合| 色尼玛亚洲综合影院| 99国产精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产午夜精品久久久久久| 两性夫妻黄色片| 欧洲精品卡2卡3卡4卡5卡区| 国产精品1区2区在线观看.| 在线观看一区二区三区激情| 久久久久久久精品吃奶| 国产单亲对白刺激| 一本大道久久a久久精品| 一边摸一边抽搐一进一出视频| 丝袜在线中文字幕| 亚洲精品美女久久av网站| 大香蕉久久成人网| 一级毛片精品| 亚洲伊人色综图| 99在线人妻在线中文字幕| 桃红色精品国产亚洲av| 国产日韩一区二区三区精品不卡| 亚洲精品国产区一区二| 国产一区二区在线av高清观看| 欧美乱妇无乱码| 久久人妻av系列| 亚洲人成网站在线播放欧美日韩| 亚洲激情在线av| 午夜福利在线观看吧| 午夜久久久在线观看| 日韩精品中文字幕看吧| 国产高清激情床上av| 满18在线观看网站| 高清av免费在线| 国产精品乱码一区二三区的特点 | 日本精品一区二区三区蜜桃| 亚洲人成电影免费在线| 在线观看免费高清a一片| 国产精品综合久久久久久久免费 | 少妇裸体淫交视频免费看高清 | 黄色 视频免费看| 亚洲男人天堂网一区| 一区二区三区精品91| 级片在线观看| 国产成人欧美| 午夜福利在线免费观看网站| 久久精品国产99精品国产亚洲性色 | av欧美777| 一级片免费观看大全| 亚洲男人的天堂狠狠| 又黄又爽又免费观看的视频| 欧美黄色片欧美黄色片| 免费在线观看黄色视频的| 久久 成人 亚洲| 大型黄色视频在线免费观看| 51午夜福利影视在线观看| 成年女人毛片免费观看观看9| 成人永久免费在线观看视频| 在线观看一区二区三区| 久久精品91无色码中文字幕| xxxhd国产人妻xxx| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 99香蕉大伊视频| 久久国产精品人妻蜜桃| 水蜜桃什么品种好| 免费看a级黄色片| 国产野战对白在线观看| 午夜免费成人在线视频| 少妇被粗大的猛进出69影院| 久久中文字幕人妻熟女| 久久中文看片网| 88av欧美| 国产一区二区激情短视频| 长腿黑丝高跟| 18禁裸乳无遮挡免费网站照片 | av电影中文网址| 亚洲三区欧美一区| 欧美一区二区精品小视频在线| 丝袜美足系列| 嫁个100分男人电影在线观看| av福利片在线| 欧美日韩一级在线毛片| 久久久久久久久久久久大奶| av在线天堂中文字幕 | a级片在线免费高清观看视频| 亚洲成av片中文字幕在线观看| 热re99久久国产66热| 又黄又粗又硬又大视频| 老司机亚洲免费影院| 在线观看www视频免费| 国产精品影院久久| 国产一区二区三区视频了| 国产亚洲精品第一综合不卡| 亚洲第一青青草原| 99精国产麻豆久久婷婷| 亚洲一区二区三区欧美精品| 视频区图区小说| 制服人妻中文乱码| 黄色毛片三级朝国网站| 一二三四在线观看免费中文在| 男人舔女人的私密视频| 他把我摸到了高潮在线观看| 99国产精品免费福利视频| 久久久精品欧美日韩精品| 国产精品久久视频播放| 亚洲成a人片在线一区二区| 亚洲精品久久午夜乱码| www日本在线高清视频| 亚洲 国产 在线| 天堂动漫精品| 国产一区二区在线av高清观看| cao死你这个sao货| 无人区码免费观看不卡| 后天国语完整版免费观看| 欧美成人免费av一区二区三区| 在线观看日韩欧美| 免费av中文字幕在线| 亚洲国产欧美网| 久久精品91蜜桃| 天天影视国产精品| 久久久国产精品麻豆| 国产精品 国内视频| 色综合欧美亚洲国产小说| 黄片播放在线免费| 欧美 亚洲 国产 日韩一| 身体一侧抽搐| 一区福利在线观看| 99热只有精品国产| av在线天堂中文字幕 | 国产三级黄色录像| 日韩大码丰满熟妇| 69精品国产乱码久久久| 亚洲欧美精品综合久久99| 久久久久久久久中文| 色哟哟哟哟哟哟| 色在线成人网| 久久精品国产清高在天天线| 交换朋友夫妻互换小说| 一级作爱视频免费观看| 成人影院久久| 亚洲国产精品合色在线| 亚洲熟妇中文字幕五十中出 | 啪啪无遮挡十八禁网站| 久99久视频精品免费| 怎么达到女性高潮| 欧美性长视频在线观看| 999久久久国产精品视频| 国产99白浆流出| 欧美日韩黄片免| 久久人人97超碰香蕉20202| 久久久国产欧美日韩av| 日本黄色日本黄色录像| 亚洲五月天丁香| 18禁黄网站禁片午夜丰满| 国产日韩一区二区三区精品不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 免费一级毛片在线播放高清视频 | 精品第一国产精品| 中文字幕av电影在线播放| 国产精品1区2区在线观看.| 精品一区二区三卡| 久久中文字幕一级| 亚洲人成电影观看| 别揉我奶头~嗯~啊~动态视频| bbb黄色大片| 精品第一国产精品| 国产精品99久久99久久久不卡| 亚洲午夜精品一区,二区,三区| 热re99久久精品国产66热6| 久久久久久免费高清国产稀缺| 亚洲欧美日韩无卡精品| 村上凉子中文字幕在线| www.999成人在线观看| 老汉色av国产亚洲站长工具| 中亚洲国语对白在线视频| 欧美一级毛片孕妇| 日韩免费高清中文字幕av| av天堂在线播放| 久久久久久大精品| a级毛片在线看网站| 老司机午夜福利在线观看视频| 丝袜美足系列| 三上悠亚av全集在线观看| 亚洲成av片中文字幕在线观看| 99国产精品一区二区蜜桃av| 日本撒尿小便嘘嘘汇集6| 亚洲欧洲精品一区二区精品久久久| 欧美人与性动交α欧美软件| 精品人妻1区二区| 美女高潮到喷水免费观看| 欧美精品一区二区免费开放| www.熟女人妻精品国产| 超碰成人久久| 大型黄色视频在线免费观看| 男女床上黄色一级片免费看| a在线观看视频网站| 日韩欧美在线二视频| 在线十欧美十亚洲十日本专区| 国产男靠女视频免费网站| 琪琪午夜伦伦电影理论片6080| 国产精品成人在线| 丰满人妻熟妇乱又伦精品不卡| 一二三四在线观看免费中文在| 在线观看一区二区三区| 精品国产乱码久久久久久男人| 久久这里只有精品19| 91精品国产国语对白视频| 999久久久精品免费观看国产| 1024香蕉在线观看| 免费人成视频x8x8入口观看| 精品久久蜜臀av无| 久久精品亚洲熟妇少妇任你| 搡老岳熟女国产| 日本免费a在线| 欧美中文日本在线观看视频| 老司机深夜福利视频在线观看| 日韩 欧美 亚洲 中文字幕| 国产三级黄色录像| 久久久精品国产亚洲av高清涩受| 天堂影院成人在线观看| 丝袜在线中文字幕| 俄罗斯特黄特色一大片| 精品熟女少妇八av免费久了| 脱女人内裤的视频| 日本免费一区二区三区高清不卡 | 成在线人永久免费视频| 操美女的视频在线观看| 久久久久国产精品人妻aⅴ院| 亚洲,欧美精品.| 精品熟女少妇八av免费久了| 99国产精品99久久久久| 巨乳人妻的诱惑在线观看| 亚洲五月天丁香| 国产99久久九九免费精品| 黄色 视频免费看| 一二三四社区在线视频社区8| 欧美乱妇无乱码| 亚洲国产中文字幕在线视频| 日韩国内少妇激情av| 日本五十路高清| 成在线人永久免费视频| 亚洲免费av在线视频| 欧美日韩国产mv在线观看视频| 久久久久亚洲av毛片大全| 99国产综合亚洲精品| 美女扒开内裤让男人捅视频| 久久久久国产精品人妻aⅴ院| 伊人久久大香线蕉亚洲五| 色综合站精品国产| 日本撒尿小便嘘嘘汇集6| 成人精品一区二区免费| 国产欧美日韩一区二区三区在线| 五月开心婷婷网| 极品人妻少妇av视频| 国产亚洲精品综合一区在线观看 | 欧美午夜高清在线| 一区二区三区精品91| 国产日韩一区二区三区精品不卡| 又紧又爽又黄一区二区| 一进一出抽搐gif免费好疼 | www.熟女人妻精品国产| 又紧又爽又黄一区二区| 男女下面进入的视频免费午夜 | 一区在线观看完整版| xxx96com| 少妇粗大呻吟视频| 18禁国产床啪视频网站| tocl精华| 精品日产1卡2卡| 岛国在线观看网站| 丰满的人妻完整版| 黄频高清免费视频| 亚洲欧美精品综合久久99| 老司机在亚洲福利影院| 国产一卡二卡三卡精品| 久久久久国内视频| 中文字幕最新亚洲高清| 亚洲成a人片在线一区二区| 午夜福利影视在线免费观看| 国产不卡一卡二| 亚洲人成电影观看| xxxhd国产人妻xxx| 97碰自拍视频| 极品教师在线免费播放| 久久草成人影院| 亚洲 欧美 日韩 在线 免费| 深夜精品福利| 人人妻人人澡人人看| 麻豆一二三区av精品| 日本五十路高清| 性色av乱码一区二区三区2| 午夜成年电影在线免费观看| 日韩中文字幕欧美一区二区| www.999成人在线观看| 国产麻豆69| 欧美不卡视频在线免费观看 | 天天添夜夜摸| 无人区码免费观看不卡| 老司机亚洲免费影院| 亚洲,欧美精品.| 亚洲人成电影免费在线| 又黄又粗又硬又大视频| 色在线成人网| 亚洲激情在线av| 99国产精品免费福利视频| 91av网站免费观看| 亚洲五月婷婷丁香| 精品国产乱码久久久久久男人| 性色av乱码一区二区三区2| 久久天躁狠狠躁夜夜2o2o| av在线天堂中文字幕 | 人人澡人人妻人| 成人亚洲精品av一区二区 | 动漫黄色视频在线观看| 村上凉子中文字幕在线| 19禁男女啪啪无遮挡网站| 亚洲欧美激情综合另类| 97人妻天天添夜夜摸| 十八禁网站免费在线| 两人在一起打扑克的视频| 97人妻天天添夜夜摸| a级片在线免费高清观看视频| 美女 人体艺术 gogo| 久久热在线av| 嫩草影视91久久| 日本免费a在线| 国产av一区在线观看免费| 久久人人97超碰香蕉20202| 亚洲aⅴ乱码一区二区在线播放 | 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区三| 最近最新中文字幕大全免费视频| 性欧美人与动物交配| 一区二区三区激情视频| 俄罗斯特黄特色一大片| 级片在线观看| 日韩精品青青久久久久久| 亚洲黑人精品在线| 亚洲精品久久午夜乱码| 巨乳人妻的诱惑在线观看| 久久天躁狠狠躁夜夜2o2o| 搡老熟女国产l中国老女人| 日韩欧美一区二区三区在线观看| 操出白浆在线播放| 激情在线观看视频在线高清| 亚洲精品粉嫩美女一区| av网站在线播放免费| 亚洲全国av大片| 精品福利永久在线观看| 搡老乐熟女国产| av天堂在线播放| 交换朋友夫妻互换小说| 99精品在免费线老司机午夜| 波多野结衣av一区二区av| 一区二区三区精品91| 老司机深夜福利视频在线观看| 国产成年人精品一区二区 | 国产又爽黄色视频| 中文字幕人妻熟女乱码| 国产精品98久久久久久宅男小说| av有码第一页| 黄色丝袜av网址大全| 女人高潮潮喷娇喘18禁视频| 1024视频免费在线观看| 好看av亚洲va欧美ⅴa在| 长腿黑丝高跟| 国产成人啪精品午夜网站| 欧美一区二区精品小视频在线| 丝袜人妻中文字幕| 精品久久久精品久久久| 一二三四社区在线视频社区8| 法律面前人人平等表现在哪些方面| 99久久人妻综合| 大香蕉久久成人网| 9热在线视频观看99| 午夜福利免费观看在线| 久久人妻av系列| 精品一区二区三卡| 午夜老司机福利片| 97人妻天天添夜夜摸| 国产精品爽爽va在线观看网站 | 久久精品国产亚洲av香蕉五月| 夜夜夜夜夜久久久久| 精品国产亚洲在线| 嫩草影院精品99| 国产成人av激情在线播放| 99re在线观看精品视频| 无人区码免费观看不卡| 午夜两性在线视频| 18禁美女被吸乳视频| av国产精品久久久久影院| 亚洲精品久久成人aⅴ小说| 亚洲人成伊人成综合网2020| 少妇 在线观看| 国产精品九九99| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 久久性视频一级片| 757午夜福利合集在线观看| 国产精品一区二区三区四区久久 | 热re99久久国产66热| 精品一品国产午夜福利视频| 无人区码免费观看不卡| 精品国产亚洲在线| 亚洲一码二码三码区别大吗| 99久久99久久久精品蜜桃| 深夜精品福利| 午夜成年电影在线免费观看| 久久久国产欧美日韩av| 国产色视频综合| 国产精品一区二区精品视频观看| 国产精品爽爽va在线观看网站 | 神马国产精品三级电影在线观看 | 多毛熟女@视频| 人人妻,人人澡人人爽秒播| 黄片大片在线免费观看| 欧美乱码精品一区二区三区| 日韩免费av在线播放| 日本a在线网址| 成年女人毛片免费观看观看9| 欧美乱色亚洲激情| 久久香蕉国产精品| 国产成人啪精品午夜网站| 新久久久久国产一级毛片| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 露出奶头的视频| 午夜免费鲁丝| 80岁老熟妇乱子伦牲交| 老司机午夜福利在线观看视频| 久久久久亚洲av毛片大全| tocl精华| 在线观看免费视频日本深夜| 51午夜福利影视在线观看| 免费一级毛片在线播放高清视频 | 日韩欧美一区二区三区在线观看| 日本vs欧美在线观看视频| 丝袜在线中文字幕| 中国美女看黄片| 久久精品国产综合久久久| 久久久国产精品麻豆| 免费观看精品视频网站| 午夜免费观看网址| 人妻久久中文字幕网| 国产亚洲精品第一综合不卡| 两性夫妻黄色片| 国产乱人伦免费视频| 亚洲中文av在线| 黑人巨大精品欧美一区二区蜜桃| 人妻久久中文字幕网| 三上悠亚av全集在线观看| 十八禁人妻一区二区| 不卡av一区二区三区| 91av网站免费观看| 亚洲中文日韩欧美视频| 免费在线观看完整版高清| 欧美成人免费av一区二区三区| 村上凉子中文字幕在线| 午夜老司机福利片| 成人av一区二区三区在线看| 国产黄色免费在线视频| 757午夜福利合集在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产av在哪里看| 99精品久久久久人妻精品| 精品一区二区三区视频在线观看免费 | 亚洲七黄色美女视频| 午夜福利影视在线免费观看| 国产一区二区激情短视频| 免费av中文字幕在线| 午夜福利欧美成人| 在线av久久热| 神马国产精品三级电影在线观看 | 十八禁人妻一区二区| 欧美日韩av久久| 亚洲黑人精品在线| 两性午夜刺激爽爽歪歪视频在线观看 | 免费av毛片视频| 成年女人毛片免费观看观看9| 国产亚洲精品第一综合不卡| 美女 人体艺术 gogo| 午夜视频精品福利| tocl精华| 丝袜在线中文字幕| 一区在线观看完整版| 麻豆久久精品国产亚洲av | 久久国产精品影院| 免费搜索国产男女视频| 两性午夜刺激爽爽歪歪视频在线观看 | 日本黄色日本黄色录像| 欧美久久黑人一区二区| 99精品欧美一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 美女大奶头视频| 久久久国产成人精品二区 | 亚洲成国产人片在线观看| www.自偷自拍.com| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 制服诱惑二区| 老司机靠b影院| 免费在线观看黄色视频的| 欧美日韩亚洲高清精品| 后天国语完整版免费观看| 在线观看www视频免费| 午夜福利在线观看吧| 超碰成人久久| 叶爱在线成人免费视频播放| 亚洲自偷自拍图片 自拍| 久久99一区二区三区| 亚洲一区中文字幕在线| 亚洲黑人精品在线| 黄色成人免费大全| av超薄肉色丝袜交足视频| 在线观看66精品国产| 国产成人影院久久av| 日本黄色视频三级网站网址| 国产精华一区二区三区| 久久香蕉精品热| 亚洲五月婷婷丁香| 国产成人欧美| av福利片在线| 91字幕亚洲| 日本wwww免费看| 最好的美女福利视频网| 亚洲欧美精品综合久久99| 国产免费av片在线观看野外av| 法律面前人人平等表现在哪些方面| 激情视频va一区二区三区| 后天国语完整版免费观看| 亚洲精品中文字幕在线视频| 91成年电影在线观看| 91成年电影在线观看| 国产成人精品久久二区二区免费| 亚洲七黄色美女视频| 中文亚洲av片在线观看爽| 久99久视频精品免费| 亚洲成人精品中文字幕电影 | 久久精品国产99精品国产亚洲性色 | 黄色a级毛片大全视频| 国产黄a三级三级三级人| 咕卡用的链子| 18禁美女被吸乳视频| av免费在线观看网站| 久久久久国内视频| 校园春色视频在线观看| 日韩免费av在线播放| bbb黄色大片| 亚洲伊人色综图| 老司机福利观看| 1024香蕉在线观看| 脱女人内裤的视频| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区不卡视频| 最近最新中文字幕大全免费视频| 国产精品一区二区精品视频观看| 桃红色精品国产亚洲av| 亚洲成人久久性| 极品人妻少妇av视频| 美女午夜性视频免费| 搡老乐熟女国产| 99国产精品免费福利视频| 中文字幕高清在线视频| 精品国产乱码久久久久久男人| www日本在线高清视频| 十八禁人妻一区二区| 午夜视频精品福利| 在线av久久热| 久热这里只有精品99| 中文字幕色久视频| 精品国产美女av久久久久小说| 日韩大尺度精品在线看网址 | 久久精品影院6| 国产免费男女视频| 国产免费现黄频在线看| 在线观看免费高清a一片| 中文字幕人妻丝袜制服| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 久久人人97超碰香蕉20202| av网站免费在线观看视频| 亚洲熟女毛片儿| 欧美人与性动交α欧美精品济南到| 国产av在哪里看| 欧美中文综合在线视频| 欧美激情 高清一区二区三区| 日日摸夜夜添夜夜添小说| 大陆偷拍与自拍| 亚洲色图av天堂| 国产精品偷伦视频观看了| 黄色 视频免费看| 桃色一区二区三区在线观看| 在线观看免费视频网站a站| 欧美大码av| 午夜福利在线免费观看网站| 女性被躁到高潮视频| 中文欧美无线码| 最好的美女福利视频网| √禁漫天堂资源中文www|