• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-Time Convergence Disturbance Rejection Control for a Flexible Timoshenko Manipulator

    2021-04-14 06:55:04ZhijiaZhaoMemberIEEEandZhijieLiuMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2021年1期

    Zhijia Zhao, Member, IEEE and Zhijie Liu, Member, IEEE

    Abstract—This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances. To suppress the shear deformation and elastic oscillation, position the manipulator in a desired angle, and ensure the finitetime convergence of disturbances, we develop three disturbance observers (DOs) and boundary controllers. Under the derived DOs-based control schemes, the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time. In the end, numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.

    I. INTRODUCTION

    MANIPULATORS are generally applied in a variety of different fields, such as industry, national defense,agriculture, and healthcare [1]-[3]. Flexible manipulators described by partial differential equations (PDEs) have recently received more attention than rigid ones modelled as ordinary differential equations (ODEs) due to their advantages of lower energy consumption, light weight, large operating space, and high-speed operation [4], [5]. Facing the complex and various environments, vibration and deformation generally exist in flexible manipulators, giving rise to system performance deterioration or even production accuracy decline [6]. Thus, the development of efficient control methods for suppressing the oscillation in flexible manipulators is of great interest.

    To dampen vibration and improve performance of flexible manipulator systems, several researchers have concentrated on exploring diverse control techniques, such as mode order reduction (MOR) method [7]-[9] and boundary control [10].By applying the MOR method, an infinite-dimensional system is turned into a finite-dimensional system [11]-[13]. It may weaken the characteristics and cause spillover effects, thus affecting the stability and robustness of the system. Boundary control has been perceived as an effective and practical solution, owing to the circumvention of the spillover effect generated from the MOR method [14]-[20]. Over the past 20 years, advances in the study of boundary controller design for weakening the vibrational offset of flexible manipulators have been significantly made. For example, in [10], disturbance observers (DOs) and boundary controllers were constructed to stabilize the oscillation and eliminate the disturbances in flexible manipulators. In [21], the vibration and angle of flexible manipulators were restrained and positioned by devising a hyperbolic function-based boundary control law. In[22], the nonlinear coupled oscillation of a flexible manipulator in 3-dimensional (3D) space was weakened by exploiting boundary controllers. A boundary barrier-based control was employed for flexible manipulators to achieve the vibration abatement and ensure no violation of output constraints in [23]. In [24], vibration damping and angle positioning in flexible manipulators were accomplished by proposing an iterative learning control strategy. In [25],exploiting the developed boundary control and the Lyapunov stability theory, the angle positioning, vibration abatement,and closed-loop stability of two-link flexible manipulators were realized. In [26], flexible manipulator systems were globally stabilized by using boundary feedback control schemes, and an adaptive inverse technique was employed for tackling the backlash nonlinearity. In the aforementioned literatures, only the elastic oscillation of the flexible link was taken into account, and the shear deformation was neglected to simplify the system analysis. The nonlinear coupling of angle position, shear deformation, and elastic deflection may pose increased challenges for the design and analysis. In recent years, significant development of boundary control for flexible Timoshenko manipulators has been achieved in[27]-[30]. In [27], [28], cooperative control methodologies were devised to guarantee the exponential stabilization of flexible Timoshenko manipulators. In [29], an antisaturation boundary control was established for vibration elimination and saturation removing of Timoshenko manipulators. The literature of [30] constructed an adaptive barrier-based controller and a “disturbance-like” term to dampen the oscillation and eliminate the output constraint and backlash nonlinearity for uncertain Timoshenko manipulators.

    Unknown disturbances are extensively found in various engineering control systems, the existence of which has great side effects on the control performance of practical engineering systems [31], [32]. Consequently, disturbance rejection has become one of the key control objectives during the design process. Due to the significance of disturbance attenuation, many disturbance rejection control methods have been proposed to handle the undesirable effects caused by unknown disturbances in recent years [31], [33]-[36]. The authors in [31] explored disturbance estimation approaches including linear and nonlinear DOs for industrial control systems. In [33], a nonlinearity estimator-based robust control was devised to stabilize nonlinear systems influenced by nonlinear uncertainties, control gain uncertainty, and external disturbances. In [34], an adaptive neural control with DOs was constructed for the flapping wing aerial vehicle to address the attitude and position control and neutralize the adverse influence of disturbances. In [35], by treating wind effects as unknown disturbances, a nonlinear DO-based control (DOBC)with neural approximations was developed for hypersonic flight vehicles. In [36], a disturbance interval estimation-based antidisturbance control scheme was employed to approximate the time-varying boundaries for disturbances. It is noteworthy that the above-mentioned approaches were only effective for ODE systems and are invalid for PDE systems. Recently,wide concern has been aroused in the DOBC for flexible manipulator systems [37], [38]. In [37], the authors proposed a boundary DOBC for estimating the first-order time differentiation of disturbances. In [38], the modeling and DOBC design were addressed for flexible Timoshenko manipulators possessing extraneous disturbances. However,the DOBC design presented in [37], [38] was confined to eliminating the oscillation and tracking the boundary disturbances and their first-order time differentiations in flexible manipulator systems. To the best of our knowledge,although great progress has been made in DOBC boundary control for flexible manipulators, little research has been reported on the development of finite-time convergence disturbance rejection control for simultaneously suppressing the vibration and handling external disturbances for flexible Timoshenko manipulators, which motivates this research.

    In this study, we intend to present a finite-time convergence disturbance rejection control design for stabilizing and controlling a flexible Timoshenko manipulator subject to extraneous disturbances. The main contributions are: 1) Three DOs and boundary controllers are constructed to suppress the shear deformation and elastic oscillation, position the manipulator in a desired angle, and guarantee the finite-time convergence of disturbances; 2) The derived finite-time convergence DOs can make disturbance estimation errors converge to zero in a finite time; and 3) The proposed control schemes ensure the uniformly bounded stability in the controlled system without simplification of infinitedimensional system dynamics.

    The rest of this paper is organized as follows. The dynamics of the Timoshenko manipulator system are presented in Section II. The design of finite-time convergence disturbance rejection control scheme is presented in Section III. Numerical examples are simulated and discussed in Section IV. The conclusion is finally drawn in Section V.

    II. PROBLEM STATEMENT

    A vibrating flexible Timoshenko manipulator system is illustrated in Fig. 1. Let t and q be independent time and space variables, ω(q,t) describes the elastic deflection of the manipulator with length s, inertia per unit length Iρ, mass of unit length ρ, cross-sectional area A, and bending stiffness EI,χ(q,t), θ(t), and θdrepresent the rotation of the manipulator's cross-section, the hub's angle position, and a desired angle position, respectively, the displacement z(q,t) is formulated as z(q,t)=qθ(t)+ω(q,t), γ1(t) denotes the control input torque on the hub with inertia Ih, u(t) and γ2(t) represent the control input and control torque acting on the tip payload with inertia Jand mass M, respectively, and di(t), i=1,2,3 represent external disturbances.

    Fig. 1. Flexible Timoshenko manipulator.

    Remark 1: For simplification, we define notations as(?)=(?)(q,t) , (?)′=?(?)/?q, (?˙)=?(?)/?t,(?)′′=?2(?)/?q2, and ( ?¨)=?2(?)/?t2.

    The dynamics of the Timoshenko manipulator system under consideration in this study is given as [39]

    III. CONTROL DESIGN

    A. Preliminaries

    We first put forward the following lemmas and assumptions:

    Lemma 1 [40]-[42]: Let ν1(q,t),ν2(q,t)∈R with(q,t)∈[0,s]×[0,+∞) . The following inequality is derived for ψ >0:

    B. Disturbance Observers Design

    C. Boundary Control

    Then, the following boundary controllers are designed as

    IV. SIMULATIONS

    Case 1: d1(t)=d2(t)=(sin(10πt)+cos(3πt))/4 andd3(t)=cos(3πt).

    Case 2: d1(t)=d2(t)=(sin(0.1πt)+cos(0.2πt))/4 andd3(t)=0.1cos(0.3t).

    When the manipulator system is simulated in Case 1, the responses are presented in Figs. 2-12. In Case 2, the responses of the manipulator system are portrayed in Figs. 13-21. Figs. 2 and 3 display the spatiotemporal response of the vibrating manipulator system in the free case, namely,u(t)=γ1(t)=γ2(t)=0. Under the action of the presented schemes with the setting of design parameters as: k1=45, k2=20, k3=250,k4=1, k5=6 , κ1=κ4=κ7=1, κ2=κ6=κ8=18, κ3=κ6=κ9=10, a1=b1=c1=5, and a2=b2=c2=7, Figs. 4, 5, 13,and 14 depict the 3D representation of the manipulator system in Cases 1 and 2. Figs. 6 and 15 show the time history of the angle position in Cases 1 and 2. The DE errors in Cases 1 and 2 are described in Figs. 7-9 and 16-18. The responses of the presented control u(t) and control torques γ1(t) and γ2(t) in Cases 1 and 2 are respectively portrayed in Figs 10-12 and 19-21.

    Fig. 2. Deflection of flexible link without control.

    Fig. 3. Rotation of flexible link without control.

    To further validate the performance of the derived controllers and DOs, we also provide a simulation with the nonlinear DOBC (40)-(48) formulated as

    Fig. 4. Deflection of flexible link with proposed control in Case 1.

    Fig. 5. Rotation of flexible link with proposed control in Case 1.

    Fig. 6. Angle position of flexible link with proposed control in Case 1.

    Fig. 7. Disturbance estimation error d ~1(t) in Case 1.

    Fig. 8. Disturbance estimation error d ~2(t) in Case 1.

    Fig. 9. Disturbance estimation error d ~3(t) in Case 1.

    Fig. 10. Control input force u (t) in Case 1.

    Fig. 11. Control input torque γ 1(t) in Case 1.

    Fig. 12. Control input torque γ 2(t) in Case 1.

    Fig. 13. Deflection of flexible link with proposed control in Case 2.

    Fig. 14. Rotation of flexible link with proposed control in Case 2.

    Fig. 15. Angle position of flexible link with proposed control in Case 2.

    Fig. 16. Disturbance estimation error d ~1(t) in Case 2.

    Fig. 17. Disturbance estimation error d ~2(t) in Case 2.

    Fig. 18. Disturbance estimation error d ~3(t) in Case 2.

    Fig. 19. Control input force u (t) in Case 2.

    Fig. 20. Control input torque γ 1(t) in Case 2.

    The simulation results Figs. 2-30 show that the devised control can effectively dampen the manipulator's vibration and shear deformation and put the manipulator in the expected angle, achieving a better control performance than the DOBC(40)-(48); and the DE errors under the derived control can converge to zero in a finite time while the DE errors under the DOBC (40)-(48) fluctuate around the equilibrium position. In brief, we draw conclusions that the obtained control can better stabilize the manipulator system as well as ensure the finite time convergence of the DE errors no matter whether high or low frequency disturbances are acted on the system.

    Fig. 21. Control input torque γ 2(t) in Case 2.

    Fig. 22. Deflection of flexible link with DOBC (40)-(48) in Case 1.

    Fig. 23. Rotation of flexible link with DOBC (40)-(48) in Case 1.

    Fig. 24. Angle position of flexible link with DOBC (40)-(48) in Case 1.

    Fig. 25. Disturbance estimation error d ~1(t) with DOBC (40)-(48) in Case 1.Fig. 28. Control input force u (t) with DOBC (40)-(48) in Case 1.

    Fig. 26. Disturbance estimation error d ~2(t) with DOBC (40)-(48) in Case 1.Fig. 29. Control input torque γ 1(t) with DOBC (40)-(48) in Case 1.

    Fig. 27. Disturbance estimation error d ~3(t) with DOBC (40)-(48) in Case 1.Fig. 30. Control input torque γ 2(t) with DOBC (40)-(48) in Case 1.

    V. CONCLUSIONS

    We have explored the vibration attenuation, angle orientation, and disturbance rejection issues for flexible Timoshenko manipulator systems subject to external disturbances in this study. Novel finite-time convergence disturbance rejection control schemes were developed for weakening external disturbances, achieving angle tracking,and restraining vibration and shear deformation. With the constructed controllers and DOs, the controlled system was demonstrated to be uniformly bounded and the finite time convergence of DE errors was guaranteed. Ultimately,simulation comparison results manifested the control performance of the suggested schemes. Future research directions include intelligent control approaches [58], [59] for manipulator systems.

    APPENDIX A PROOF OF PROPERTY 1

    Proof: Differentiating E1(t) and invoking (12) and (13), we have

    APPENDIX B PROOF OF LEMMA 4

    Employing Lemmas 1 and 2 on (66) yields

    APPENDIX C PROOF OF LEMMA 5

    APPENDIX D PROOF OF THEOREM 1

    欧美久久黑人一区二区| 一本久久中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产综合久久久| 国产视频一区二区在线看| 五月伊人婷婷丁香| 欧美日韩乱码在线| 午夜福利视频1000在线观看| 丝袜人妻中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| a在线观看视频网站| 精品久久久久久久末码| 国产亚洲精品一区二区www| 精品久久久久久成人av| 两人在一起打扑克的视频| 欧美乱妇无乱码| 国产精华一区二区三区| 69av精品久久久久久| 香蕉国产在线看| www.精华液| 成人永久免费在线观看视频| 日本五十路高清| av有码第一页| av片东京热男人的天堂| 欧美一级a爱片免费观看看 | 97人妻精品一区二区三区麻豆| 亚洲国产看品久久| 国产精品一及| 亚洲激情在线av| 19禁男女啪啪无遮挡网站| 国产亚洲欧美在线一区二区| 婷婷六月久久综合丁香| 69av精品久久久久久| 久久久久九九精品影院| 成人国语在线视频| 曰老女人黄片| 他把我摸到了高潮在线观看| 好男人在线观看高清免费视频| 男女那种视频在线观看| 国产高清视频在线播放一区| 极品教师在线免费播放| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区免费观看 | 熟女少妇亚洲综合色aaa.| 天天一区二区日本电影三级| 国产一区在线观看成人免费| 日日干狠狠操夜夜爽| 久久草成人影院| 一本综合久久免费| 久久亚洲精品不卡| 成人手机av| 精品一区二区三区av网在线观看| 亚洲 国产 在线| 久久精品综合一区二区三区| 国产97色在线日韩免费| 欧美激情久久久久久爽电影| 久久精品国产亚洲av香蕉五月| 人成视频在线观看免费观看| 国产精品久久电影中文字幕| 精品一区二区三区视频在线观看免费| 国产精品一区二区三区四区久久| 99久久国产精品久久久| 不卡av一区二区三区| 一级a爱片免费观看的视频| 91av网站免费观看| 在线播放国产精品三级| 日韩欧美 国产精品| 黄色视频不卡| 欧美中文日本在线观看视频| 亚洲欧美精品综合一区二区三区| 亚洲男人天堂网一区| 桃红色精品国产亚洲av| 一区二区三区国产精品乱码| 97人妻精品一区二区三区麻豆| 日本三级黄在线观看| 久久久久国产精品人妻aⅴ院| 日韩欧美精品v在线| 在线观看美女被高潮喷水网站 | 麻豆国产av国片精品| 在线看三级毛片| 在线播放国产精品三级| 国产探花在线观看一区二区| 啦啦啦韩国在线观看视频| 精品高清国产在线一区| 国产精品野战在线观看| 一区二区三区国产精品乱码| 亚洲中文日韩欧美视频| 国产免费男女视频| 国产亚洲精品久久久久久毛片| 亚洲最大成人中文| 麻豆成人av在线观看| 国产精品久久久久久久电影 | 在线观看舔阴道视频| 亚洲乱码一区二区免费版| 国产高清有码在线观看视频 | 亚洲真实伦在线观看| 精品国产乱码久久久久久男人| 国产97色在线日韩免费| 日本成人三级电影网站| 亚洲国产欧美人成| 午夜福利成人在线免费观看| 亚洲电影在线观看av| 哪里可以看免费的av片| 国产v大片淫在线免费观看| 国产精品一区二区精品视频观看| 久久久水蜜桃国产精品网| 久久久精品国产亚洲av高清涩受| 欧美激情久久久久久爽电影| 十八禁网站免费在线| 成人av在线播放网站| 一区二区三区国产精品乱码| 婷婷六月久久综合丁香| 亚洲人与动物交配视频| 亚洲色图av天堂| 久久天堂一区二区三区四区| 久久这里只有精品19| 国产成+人综合+亚洲专区| 国产精品香港三级国产av潘金莲| 久久香蕉激情| 免费在线观看视频国产中文字幕亚洲| 国产成年人精品一区二区| 女警被强在线播放| 亚洲国产精品合色在线| 国产av不卡久久| 午夜老司机福利片| 白带黄色成豆腐渣| 国产精品日韩av在线免费观看| 免费在线观看成人毛片| 久热爱精品视频在线9| 波多野结衣高清作品| 精品一区二区三区四区五区乱码| 欧美不卡视频在线免费观看 | 亚洲成av人片在线播放无| 成人三级黄色视频| 给我免费播放毛片高清在线观看| 熟妇人妻久久中文字幕3abv| 亚洲熟妇中文字幕五十中出| 欧美成人免费av一区二区三区| 精品不卡国产一区二区三区| 最近视频中文字幕2019在线8| 老司机福利观看| 一级黄色大片毛片| 听说在线观看完整版免费高清| 欧美日韩亚洲国产一区二区在线观看| 悠悠久久av| 国产精品爽爽va在线观看网站| 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 亚洲熟妇熟女久久| 国产日本99.免费观看| 成人高潮视频无遮挡免费网站| 黄色女人牲交| av片东京热男人的天堂| 动漫黄色视频在线观看| 我要搜黄色片| 天堂影院成人在线观看| 亚洲欧美日韩无卡精品| 国产亚洲av嫩草精品影院| 日韩欧美在线乱码| 久久精品国产清高在天天线| 两人在一起打扑克的视频| 国产乱人伦免费视频| 在线免费观看的www视频| 热99re8久久精品国产| 老司机深夜福利视频在线观看| 色综合亚洲欧美另类图片| 久久香蕉激情| 国产精品99久久99久久久不卡| 99精品欧美一区二区三区四区| 狂野欧美白嫩少妇大欣赏| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 首页视频小说图片口味搜索| 老汉色∧v一级毛片| 久久人妻福利社区极品人妻图片| 日本一本二区三区精品| 亚洲国产精品999在线| 久久精品成人免费网站| 香蕉久久夜色| 国产欧美日韩一区二区三| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 亚洲一码二码三码区别大吗| 黄色毛片三级朝国网站| 精品国产美女av久久久久小说| av福利片在线| 精品少妇一区二区三区视频日本电影| 19禁男女啪啪无遮挡网站| 婷婷丁香在线五月| 此物有八面人人有两片| 成年人黄色毛片网站| 国产伦一二天堂av在线观看| www.999成人在线观看| 国产视频内射| 一区二区三区高清视频在线| 久久久久久久精品吃奶| 91九色精品人成在线观看| 国产精品久久久人人做人人爽| 三级毛片av免费| 国产黄片美女视频| 国产午夜精品久久久久久| 精品午夜福利视频在线观看一区| 色哟哟哟哟哟哟| 亚洲欧美一区二区三区黑人| 中文字幕av在线有码专区| 久久99热这里只有精品18| 美女 人体艺术 gogo| av福利片在线观看| 琪琪午夜伦伦电影理论片6080| 一卡2卡三卡四卡精品乱码亚洲| 成人av一区二区三区在线看| 69av精品久久久久久| 成人欧美大片| 久久天堂一区二区三区四区| 色av中文字幕| 2021天堂中文幕一二区在线观| 俺也久久电影网| 97超级碰碰碰精品色视频在线观看| 在线观看免费视频日本深夜| 18禁美女被吸乳视频| 国产成人av激情在线播放| 2021天堂中文幕一二区在线观| 一本久久中文字幕| 亚洲欧美日韩东京热| 天堂动漫精品| 级片在线观看| 巨乳人妻的诱惑在线观看| 欧美人与性动交α欧美精品济南到| 久久久久国产精品人妻aⅴ院| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| 久久久国产欧美日韩av| bbb黄色大片| 777久久人妻少妇嫩草av网站| 老汉色av国产亚洲站长工具| 欧美大码av| 欧美av亚洲av综合av国产av| 狂野欧美白嫩少妇大欣赏| 精品不卡国产一区二区三区| 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 九色成人免费人妻av| 亚洲av电影不卡..在线观看| 日韩欧美精品v在线| 最近在线观看免费完整版| 曰老女人黄片| 精品免费久久久久久久清纯| 国产亚洲精品综合一区在线观看 | 麻豆一二三区av精品| 久久99热这里只有精品18| 99久久精品国产亚洲精品| 国产午夜福利久久久久久| 日日干狠狠操夜夜爽| 亚洲中文日韩欧美视频| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 亚洲自拍偷在线| 午夜精品久久久久久毛片777| 激情在线观看视频在线高清| 精品免费久久久久久久清纯| 国产熟女xx| 中文字幕人妻丝袜一区二区| 国产精品永久免费网站| 亚洲国产看品久久| 97超级碰碰碰精品色视频在线观看| 妹子高潮喷水视频| 十八禁人妻一区二区| 熟妇人妻久久中文字幕3abv| av在线天堂中文字幕| 啦啦啦观看免费观看视频高清| 亚洲片人在线观看| 性欧美人与动物交配| 国产高清视频在线播放一区| 一本一本综合久久| 日本黄色视频三级网站网址| 亚洲五月天丁香| 香蕉久久夜色| 亚洲性夜色夜夜综合| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 黑人欧美特级aaaaaa片| 久久天堂一区二区三区四区| 成人18禁在线播放| av欧美777| 欧美丝袜亚洲另类 | 亚洲精品美女久久av网站| 国产片内射在线| 无遮挡黄片免费观看| 日本一区二区免费在线视频| 日本黄大片高清| a级毛片在线看网站| 欧美绝顶高潮抽搐喷水| 少妇裸体淫交视频免费看高清 | 1024香蕉在线观看| 精品久久久久久久久久久久久| 午夜福利18| 无人区码免费观看不卡| 婷婷亚洲欧美| 精品乱码久久久久久99久播| 两性夫妻黄色片| 真人做人爱边吃奶动态| 日韩欧美三级三区| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 久久精品国产99精品国产亚洲性色| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 精品不卡国产一区二区三区| 一边摸一边抽搐一进一小说| av免费在线观看网站| 日本免费a在线| 男男h啪啪无遮挡| 88av欧美| 欧美一级a爱片免费观看看 | 国产伦在线观看视频一区| 久久精品综合一区二区三区| 麻豆一二三区av精品| 亚洲av成人av| 久久久精品大字幕| 亚洲精品色激情综合| 日韩欧美国产在线观看| 免费电影在线观看免费观看| 久久热在线av| 中文字幕人妻丝袜一区二区| 午夜精品一区二区三区免费看| 国产精品一及| 精品第一国产精品| 久久久久久久久久黄片| 黄色a级毛片大全视频| 在线永久观看黄色视频| 亚洲avbb在线观看| 色噜噜av男人的天堂激情| 国产单亲对白刺激| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 亚洲国产精品999在线| 国产亚洲欧美98| 久久久久亚洲av毛片大全| 18禁黄网站禁片午夜丰满| 亚洲精品中文字幕在线视频| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 国产av又大| 精品国产超薄肉色丝袜足j| 高清毛片免费观看视频网站| 国产午夜福利久久久久久| 桃红色精品国产亚洲av| 国产一区二区三区视频了| 毛片女人毛片| 少妇粗大呻吟视频| 国产成人av教育| 91字幕亚洲| 亚洲成人久久爱视频| 99久久久亚洲精品蜜臀av| 日本一二三区视频观看| 三级国产精品欧美在线观看 | 国产在线精品亚洲第一网站| 国产成年人精品一区二区| 两个人看的免费小视频| 欧美午夜高清在线| 精品一区二区三区av网在线观看| 亚洲精品美女久久av网站| 中文字幕久久专区| 国产精品日韩av在线免费观看| 亚洲精品av麻豆狂野| 床上黄色一级片| 日日夜夜操网爽| 亚洲精品美女久久久久99蜜臀| 高潮久久久久久久久久久不卡| 在线免费观看的www视频| 久久热在线av| 99在线人妻在线中文字幕| 啦啦啦韩国在线观看视频| 亚洲熟妇熟女久久| 人人妻人人看人人澡| 亚洲av日韩精品久久久久久密| 丁香六月欧美| videosex国产| 久久久久免费精品人妻一区二区| 51午夜福利影视在线观看| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕一二三四区| 亚洲最大成人中文| 亚洲精华国产精华精| 老司机在亚洲福利影院| 一本久久中文字幕| 悠悠久久av| 可以在线观看的亚洲视频| www.自偷自拍.com| 国产日本99.免费观看| 国产三级在线视频| 欧美极品一区二区三区四区| 婷婷六月久久综合丁香| 国产在线精品亚洲第一网站| 久久香蕉国产精品| 中文字幕高清在线视频| av在线天堂中文字幕| 国产成+人综合+亚洲专区| 男女之事视频高清在线观看| 熟女少妇亚洲综合色aaa.| 国产真人三级小视频在线观看| 精品日产1卡2卡| 99re在线观看精品视频| 久久久久精品国产欧美久久久| 日韩精品免费视频一区二区三区| 日本在线视频免费播放| 欧美黑人欧美精品刺激| 中文字幕久久专区| 亚洲人成77777在线视频| 国产亚洲精品av在线| 欧美日韩乱码在线| 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看 | 88av欧美| 精品高清国产在线一区| 男女之事视频高清在线观看| 变态另类成人亚洲欧美熟女| 精品欧美国产一区二区三| 午夜两性在线视频| 免费在线观看黄色视频的| av天堂在线播放| 可以免费在线观看a视频的电影网站| 99re在线观看精品视频| 91大片在线观看| 老汉色av国产亚洲站长工具| 91在线观看av| 亚洲国产精品成人综合色| 国产亚洲av高清不卡| 制服诱惑二区| 婷婷精品国产亚洲av在线| 成年女人毛片免费观看观看9| av国产免费在线观看| 色尼玛亚洲综合影院| 国产精品免费一区二区三区在线| 免费在线观看日本一区| 久久久精品欧美日韩精品| 亚洲va日本ⅴa欧美va伊人久久| 日韩av在线大香蕉| 妹子高潮喷水视频| 精品一区二区三区四区五区乱码| www日本黄色视频网| 国产亚洲精品一区二区www| а√天堂www在线а√下载| 亚洲av五月六月丁香网| 香蕉国产在线看| 嫩草影视91久久| 两人在一起打扑克的视频| 国产又色又爽无遮挡免费看| 国产在线精品亚洲第一网站| or卡值多少钱| 亚洲色图av天堂| 在线观看免费日韩欧美大片| 日韩欧美国产一区二区入口| 熟女少妇亚洲综合色aaa.| 丰满人妻一区二区三区视频av | 在线观看免费午夜福利视频| 日韩成人在线观看一区二区三区| 国产片内射在线| 久久精品影院6| 韩国av一区二区三区四区| 欧美成人性av电影在线观看| 在线观看免费视频日本深夜| 亚洲人与动物交配视频| 99re在线观看精品视频| 国产在线精品亚洲第一网站| 国产精品自产拍在线观看55亚洲| 国产精品国产高清国产av| 又大又爽又粗| 天天躁夜夜躁狠狠躁躁| 免费看日本二区| 精品国产美女av久久久久小说| 国产探花在线观看一区二区| 一个人免费在线观看电影 | 国产私拍福利视频在线观看| 亚洲精品av麻豆狂野| 少妇裸体淫交视频免费看高清 | 男女之事视频高清在线观看| 午夜两性在线视频| 老司机午夜十八禁免费视频| 久久这里只有精品中国| 欧美一级a爱片免费观看看 | 久久香蕉精品热| 精品熟女少妇八av免费久了| 啦啦啦免费观看视频1| 国产又黄又爽又无遮挡在线| 国产一区二区三区在线臀色熟女| 午夜激情av网站| 后天国语完整版免费观看| 免费看a级黄色片| 熟女少妇亚洲综合色aaa.| 欧美黑人欧美精品刺激| 国产午夜精品论理片| 中国美女看黄片| 成人av一区二区三区在线看| 精品欧美一区二区三区在线| 深夜精品福利| 在线观看舔阴道视频| 色精品久久人妻99蜜桃| 好男人电影高清在线观看| 成人三级做爰电影| 国产成年人精品一区二区| 韩国av一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 国内少妇人妻偷人精品xxx网站 | 久久久久国产精品人妻aⅴ院| 国产亚洲av嫩草精品影院| 女人高潮潮喷娇喘18禁视频| 亚洲欧洲精品一区二区精品久久久| 国产三级黄色录像| www日本在线高清视频| 欧美乱妇无乱码| 色在线成人网| 两个人看的免费小视频| 香蕉丝袜av| 小说图片视频综合网站| 亚洲人成伊人成综合网2020| 国产精品久久久人人做人人爽| 亚洲av中文字字幕乱码综合| 老鸭窝网址在线观看| 午夜福利高清视频| 蜜桃久久精品国产亚洲av| 黄色视频不卡| 曰老女人黄片| 国产成人aa在线观看| avwww免费| 国产av麻豆久久久久久久| 99国产精品一区二区蜜桃av| 欧美一区二区精品小视频在线| 人妻久久中文字幕网| АⅤ资源中文在线天堂| 色老头精品视频在线观看| 香蕉国产在线看| 国产成人系列免费观看| 亚洲欧美日韩高清在线视频| 午夜亚洲福利在线播放| 999精品在线视频| 女人被狂操c到高潮| 欧美黑人欧美精品刺激| 亚洲最大成人中文| 成人av在线播放网站| 日韩精品免费视频一区二区三区| 丁香六月欧美| 日本 欧美在线| 波多野结衣高清无吗| 国产精品永久免费网站| 天天添夜夜摸| 一区二区三区激情视频| 免费看日本二区| 免费高清视频大片| 曰老女人黄片| 三级毛片av免费| 一进一出好大好爽视频| 欧美日韩国产亚洲二区| 日本一二三区视频观看| 国产在线观看jvid| 可以在线观看毛片的网站| 欧美黑人巨大hd| 91字幕亚洲| 高清在线国产一区| 丝袜美腿诱惑在线| 亚洲精品中文字幕在线视频| 欧美日韩亚洲国产一区二区在线观看| av有码第一页| 精品少妇一区二区三区视频日本电影| 两人在一起打扑克的视频| 88av欧美| 欧美激情久久久久久爽电影| 国产成人av教育| 久久精品国产清高在天天线| 一本大道久久a久久精品| 99在线视频只有这里精品首页| 男女下面进入的视频免费午夜| 成人精品一区二区免费| 99riav亚洲国产免费| 久久久国产欧美日韩av| 脱女人内裤的视频| 男女视频在线观看网站免费 | 国产精品永久免费网站| 丝袜美腿诱惑在线| 久久婷婷成人综合色麻豆| 精品久久久久久成人av| 国产一区二区三区在线臀色熟女| 久久精品91蜜桃| 人妻久久中文字幕网| 久久久国产精品麻豆| 国产精品久久久久久久电影 | 精品一区二区三区四区五区乱码| 美女黄网站色视频| 亚洲国产精品合色在线| 热99re8久久精品国产| 国产精品免费一区二区三区在线| 两性午夜刺激爽爽歪歪视频在线观看 | 在线十欧美十亚洲十日本专区| 在线观看免费午夜福利视频| 香蕉av资源在线| 99国产精品一区二区三区| 久99久视频精品免费| 色综合亚洲欧美另类图片| 精品国内亚洲2022精品成人| 国产精品爽爽va在线观看网站| 亚洲一区中文字幕在线| 男人的好看免费观看在线视频 | 99久久国产精品久久久| 18禁国产床啪视频网站| 亚洲国产精品合色在线| 免费在线观看成人毛片| 中文字幕人妻丝袜一区二区| 国产精品一区二区精品视频观看| 国产区一区二久久| 日韩三级视频一区二区三区| 女同久久另类99精品国产91| 91麻豆av在线| 琪琪午夜伦伦电影理论片6080| 亚洲国产高清在线一区二区三| 久久草成人影院|