[摘要] 目的 識別冠心?。–HD)的差異表達(dá)基因(DEGs),通過分析DEGs參與的生物學(xué)途徑闡明CHD疾病發(fā)生涉及的細(xì)胞內(nèi)通路。
方法 從GEO數(shù)據(jù)庫下載兩個(gè)已發(fā)表的CHD微陣列數(shù)據(jù)集中mRNA表達(dá)芯片的原始數(shù)據(jù)。篩選DEGs并對其進(jìn)行生物信息學(xué)分析,包括Venn分析、基因本體(GO)注釋分析、KEGG(Kyoto Encyclopedia of Genes and Genomes)細(xì)胞通路富集分析、蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)分析。采用實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(RT-qPCR)驗(yàn)證CHD病例外周血中核心DEGs的表達(dá)水平。
結(jié)果 共篩選出122個(gè)CHD的DEGs。GO及KEGG分析顯示,這些DEGs參與了DNA轉(zhuǎn)錄和mRNA剪接調(diào)控。PPI網(wǎng)絡(luò)分析顯示,表達(dá)下調(diào)基因LUC7L3、HNRNPA1、SF3B1、ARGLU1、SRSF5、SRSF11、SREK1、PNISR、DIDO1、ZRSR2和NKTR位于網(wǎng)絡(luò)中心,且這些基因均為DNA轉(zhuǎn)錄和RNA剪接相關(guān)基因。RT-qPCR檢測證實(shí)以上基因在CHD中均表達(dá)下降,與前期芯片結(jié)果一致。
結(jié)論 RNA剪接在CHD的發(fā)生過程中可能發(fā)揮了重要作用。
[關(guān)鍵詞] 冠心病;基因表達(dá);計(jì)算生物學(xué);RNA剪接
[中圖分類號] R541.4
[文獻(xiàn)標(biāo)志碼] A
[文章編號] 2096-5532(2021)06-0852-08
doi:10.11712/jms.2096-5532.2021.57.204
[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.r.20211230.1017.011.html;2021-12-30 14:59:52
IDENTIFICATION AND BIOINFORMATICS ANALYSIS OF DIFFERENTIALLY EXPRESSED GENE IN CORONARY HEART DI-SEASE
LI Zhaoshui, WANG Guangjing, QIAO Youjin, SHENG Wei, HUANG Qiang, CHI Yifan
(Department of Car-diovascular Surgery, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao 266033, China)
[ABSTRACT]Objective To identify the differentially expressed genes (DEGs) in coronary heart disease (CHD), and to clarify the cellular pathways involved in the onset of CHD by analyzing the biological pathways involving such DEGs.
Methods The raw data of two published mRNA expression microarray datasets of CHD were downloaded from the GEO database. DEGs were screened out and a bioinformatics analysis was performed, including Venn analysis, gene ontology (GO) annotation analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. RT-qPCR was used to validate the expression levels of core DEGs in peripheral blood of patients with CHD.
Results A total of 122 DEGs were screened out in CHD. GO and KEGG analyses showed that these DEGs were involved in DNA transcription and mRNA splicing regulation. The PPI network analysis showed the downregulated genes LUC7L3, HNRNPA1, SF3B1, ARGLU1, SRSF5, SRSF11, SREK1, PNISR, DIDO1, ZRSR2, and NKTR were located in the center of the network, and all these genes were associated with DNA transcription and RNA splicing regulation. RT-qPCR confirmed that all the above genes were downregulated in CHD, which was consistent with the previous microarray results.
Conclusion RNA splicing may play an important role in the development of CHD.
[KEY WORDS]coronary disease; gene expression; computational biology; RNA splicing
心血管疾病是目前世界上人類死亡的主要原因之一。冠心?。–HD)是最常見的一種心血管疾病,在全球范圍內(nèi)每年導(dǎo)致超過700萬人死亡[1]。2014年的一項(xiàng)研究顯示,近1/5的男性和1/10的女性死于CHD[2-4]。據(jù)估計(jì),未來20年CHD患病率將增加約10%[5]。CHD已成為威脅人類健康的重要疾病之一,對CHD發(fā)病機(jī)制及有效療法的研究和探索從未停止。CHD的主要危險(xiǎn)因素包括血脂異常、糖尿病、動脈硬化、肥胖、吸煙、久坐的生活方式、壓力、年齡、男性和家族病史等[6],但其具體發(fā)病機(jī)制尚不完全清楚。既往研究顯示,遺傳因素在心血管疾病的發(fā)生過程中發(fā)揮了極大的作用[7]。CHD發(fā)生的生物學(xué)機(jī)制有多種,其中研究較為清楚的為炎癥反應(yīng),炎癥反應(yīng)失調(diào)是CHD發(fā)生的一種潛在的生物學(xué)機(jī)制[8]。相關(guān)研究表明,基因表達(dá)差異,尤其是炎癥調(diào)控相關(guān)基因表達(dá)異常與CHD的發(fā)生緊密關(guān)聯(lián)[9]。除了炎癥異常調(diào)控外,還有其他因素的變化參與CHD的發(fā)生。本研究旨在通過對GEO數(shù)據(jù)庫中CHD發(fā)生的基因表達(dá)譜進(jìn)行生物信息學(xué)分析,揭示與CHD疾病發(fā)生相關(guān)的生物學(xué)過程及信號通路,為進(jìn)一步闡明CHD的發(fā)病機(jī)制提供有價(jià)值的信息,并為CHD的診斷、治療提供新的思路。
1 資料和方法
1.1 基因微陣列數(shù)據(jù)收集
CHD樣本的基因表達(dá)芯片來自GEO數(shù)據(jù)庫(http://www.ncbi.nlm.nih.gov/geo/)[10-12]。以“Coronary Heart Disease”為關(guān)鍵詞在GEO數(shù)據(jù)庫中進(jìn)行檢索,最終在210個(gè)相關(guān)數(shù)據(jù)集中選取2個(gè)來自Affymetrix Human Genome U133 Plus 2.0 Array分析平臺的基因集GSE71226及GSE19339,共包含7個(gè)CHD樣本和7個(gè)正常樣本的表達(dá)矩陣。
1.2 原始數(shù)據(jù)預(yù)處理及差異表達(dá)基因(DEGs)鑒別
下載原始數(shù)據(jù),采用R語言(affy,limma包)對其進(jìn)行噪聲去除、分位數(shù)歸一化等處理,然后篩選CHD組和正常對照組的DEGs。篩選DEGs的閾值設(shè)定為P值<0.05,且|log2(Fold change)|≥1。最后,采用R語言(pheatmap包)對基于mRNA表達(dá)水平的組樣本進(jìn)行可視化層次聚類分析。
1.3 GSE71226和GSE19339中共有差異表達(dá)基因(co-DEGs)的Venn分析
通過Draw Venn Diagram線上數(shù)據(jù)庫(http://bioinformatics.psb.ugent.be/webtools/Venn/)對GSE71226和GSE19339數(shù)據(jù)集中的co-DEGs進(jìn)行分析[13-15]。將待分析基因列表上傳到數(shù)據(jù)庫,即可顯示維恩圖及相關(guān)共有基因列表。
1.4 基因本體(GO)和基因通路富集分析
GO注釋分析通常用于大規(guī)模轉(zhuǎn)錄組數(shù)據(jù)的功能研究。KEGG(Kyoto Encyclopedia of Genes and Genomes)包含了多種生物化學(xué)通路。將待分析基因列表上傳至DAVID生物信息學(xué)資源6.8數(shù)據(jù)庫(https://david.ncifcrf.gov/)[16-17],即可顯示GO及 KEGG分析結(jié)果,將其下載為文本文件。最后,通過R語言(ggplot2包)可視化GO結(jié)果。
1.5 基因集富集分析(GSEA)
將特定規(guī)格的矩陣表格加載到GSEA_4.0.2軟件,通過GSEA online進(jìn)行可視化即可完成GSEA分析[18-19]。DEGs途徑富集的閾值為P值<0.01。
1.6 蛋白質(zhì)調(diào)控網(wǎng)絡(luò)分析
DEGs的蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)分析通過STRING (https://string-db.org/)在線分析軟件完成[19-20]。將基因列表上傳到多個(gè)蛋白質(zhì)分析菜單欄,稍后即可顯示PPI結(jié)果。最后用Cytoscape軟件將具體的網(wǎng)絡(luò)圖可視化。
1.7 實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(RT-qPCR)驗(yàn)證CHD病人核心DEGs的表達(dá)水平
取青島市市立醫(yī)院心臟外科10例50~80歲CHD病人和10例同齡健康人的外周血樣本,使用高效血液總RNA提取試劑盒(天根生化科技(北京)有限公司,Lot#DP443)提取總RNA。用Oligo(dT)引物(Takara, cat#3806,Lot#T2301AA)在65 ℃條件下退火5 min得到mRNA,用RevertAid逆轉(zhuǎn)錄酶(Thermo Scientific,#EP0441)和dNTP混合物(Takara,Cat#4019, Lot#AI11312A)進(jìn)行逆轉(zhuǎn)錄得到cDNA模板。最后使用PowerTrack SYBR Green Master Mix(Thermo Scientific,#4367659)及基因特異性引物進(jìn)行RT-qPCR,檢測目的基因的相對mRNA水平。引物序列見表1。
2 結(jié)果
2.1 CHD DEGs的篩選
從GEO數(shù)據(jù)庫中收集了7例CHD病人和7例正常對照者的mRNA表達(dá)譜。根據(jù)|log2(Foldchange)|≥1、P值<0.05的篩選條件,GSE71226數(shù)據(jù)集中共鑒定出2 262個(gè)DEGs,其中包含上調(diào)基因694個(gè)及下調(diào)基因1 568個(gè)(圖1A);GSE19339數(shù)據(jù)集中共鑒定出537個(gè)DEGs,其中包含上調(diào)基因263個(gè)及下調(diào)基因274個(gè)(圖1B)。對這些DEGs進(jìn)行熱圖聚類分析結(jié)果顯示,CHD組和正常對照組的基因表達(dá)模式差異顯著(圖1C、D)。
由于樣本來源不同(GSE71226數(shù)據(jù)集中樣本來自CHD病人和正常人的外周血;GSE19339數(shù)據(jù)集中樣本分別來自經(jīng)皮冠狀動脈介入治療的CHD病人冠狀動脈閉塞部位的血管和正常人外周血),兩個(gè)數(shù)據(jù)集中分析得到的DEGs具有一定差別。而且,兩個(gè)數(shù)據(jù)集中病人信息極少,故無法分析年齡、性別和病史對CHD DEGs的影響。
2.2 co-DEGs的Venn分析
為了較為精確地研究CHD的DEGs,本研究分析了GSE71226和GSE19339兩個(gè)數(shù)據(jù)集中的co-DEGs。結(jié)果篩選得到兩個(gè)數(shù)據(jù)集中共同上調(diào)基因8個(gè)及共同下調(diào)基因114個(gè),共計(jì)122個(gè)co-DEGs。見圖2。兩個(gè)數(shù)據(jù)集中大部分co-DEGs均為表達(dá)下調(diào)基因,提示這些共同下調(diào)基因可能是CHD發(fā)病的關(guān)鍵基因。
2.3 CHD co-DEGs的GO和KEGG分析
為了闡明DEGs的生物學(xué)功能,對以上122個(gè)co-DEGs進(jìn)行了GO富集分析。結(jié)果顯示,CHD中大多數(shù)的co-DEGs參與的生物學(xué)過程(biological process)為mRNA加工和剪接調(diào)控、細(xì)胞內(nèi)轉(zhuǎn)錄調(diào)控(圖3A);co-DEGs所屬的細(xì)胞成分(cell components)為核質(zhì)、細(xì)胞核和細(xì)胞質(zhì)(圖3B);其分子功能(molecular functions)主要為poly(A)RNA結(jié)合、蛋白結(jié)合、DNA結(jié)合(圖3C)。KEGG富集分析顯示,大多數(shù)co-DEGs顯著富集的信號通路為剪接體(圖3D)。以上分析結(jié)果表明,CHD的發(fā)生與細(xì)胞整體蛋白質(zhì)表達(dá)調(diào)控紊亂或RNA剪接紊亂具有重要關(guān)聯(lián)。
2.4 CHD DEGs的GSEA分析
為了進(jìn)一步分析CHD DEGs可能參與的信號通路,本研究對其進(jìn)行了GSEA分析。結(jié)果顯示,兩個(gè)GEO數(shù)據(jù)集中DEGs共同低表達(dá)的基因富集的信號通路為mRNA過程的調(diào)節(jié)及DNA損傷修復(fù)(DNA damage repair)(圖4)。表明CHD發(fā)生過程中,涉及mRNA調(diào)節(jié)過程及DNA損傷修復(fù)途徑的相關(guān)基因表達(dá)水平下降。GSEA分析結(jié)果與GO分析結(jié)果相一致。
2.5 CHD DEGs的蛋白質(zhì)調(diào)控網(wǎng)絡(luò)分析
為了篩選CHD的關(guān)鍵DEGs,本研究對122個(gè)co-DEGs進(jìn)行了PPI分析。結(jié)果顯示,兩個(gè)數(shù)據(jù)集共同下調(diào)的基因大部分處于PPI網(wǎng)絡(luò)中間,而共同上調(diào)的基因則處于網(wǎng)絡(luò)邊緣。其中,位于PPI網(wǎng)絡(luò)中心的基因分別為LUC7L3、HNRNPA1、SF3B1、ARGLU1、SRSF5、SRSF11、SREK1、PNISR、DIDO1、ZRSR2及NKTR(圖5)。提示這些基因的異常低表達(dá)可能在CHD的發(fā)生過程中發(fā)揮了重要作用。
2.6 CHD關(guān)鍵DEGs分析
篩選出的11個(gè)關(guān)鍵DEGs在CHD中均顯著低表達(dá)(圖6)。GO分析結(jié)果顯示,這些關(guān)鍵DEGs涉及的生物學(xué)過程為DNA轉(zhuǎn)錄和RNA剪接體調(diào)控(表2)。表明CHD的發(fā)生與RNA剪接異常調(diào)控具有重要關(guān)系。
2.7 RT-qPCR驗(yàn)證CHD關(guān)鍵DEGs的表達(dá)
分別收集10例CHD病人及10例正常人的外周血,對篩選出的關(guān)鍵DEGs的表達(dá)水平進(jìn)行了RT-qPCR驗(yàn)證。結(jié)果顯示,CHD病人外周血中這些DEGs的表達(dá)水平均較正常人顯著下調(diào)。見表3。
3 討論
盡管對CHD進(jìn)行了40多年的基礎(chǔ)和臨床研究,但其具體發(fā)病機(jī)制仍不完全清楚。通過分析CHD發(fā)生過程中涉及的生物學(xué)途徑,增加對CHD發(fā)病機(jī)制的了解,可為CHD的臨床治療及預(yù)后判斷提供新思路。
剪接體被證明是一種蛋白質(zhì)定向金屬酶[21]。作為真核細(xì)胞中最復(fù)雜的調(diào)控機(jī)制之一,剪接體從初級轉(zhuǎn)錄本中去除內(nèi)含子序列,生成功能性mRNA和長鏈非編碼RNA(lncRNA)[22],這一過程稱為選擇性剪接。選擇性剪接是一個(gè)動態(tài)且受調(diào)控的生物學(xué)過程,受到一系列變量的影響,如順式調(diào)控序列和反式作用因子、轉(zhuǎn)錄過程和DNA/RNA的甲基化等[23-24]。多項(xiàng)研究表明,異??勺兗艚优c人類疾病有關(guān),它既可能是疾病的發(fā)生原因,也可能是疾病造成的結(jié)果[25]。有研究結(jié)果表明,參與剪接體正常功能的基因突變被認(rèn)為是脊髓性肌萎縮、色素性視網(wǎng)膜炎和普瑞德-威利綜合征等的關(guān)鍵因素[26-28]。然而,剪接因子中導(dǎo)致人類心臟病變的突變并不多見。到目前為止,只有剪接因子RNA結(jié)合基序蛋白20(RBM20)的突變被證實(shí)與心臟病有因果關(guān)系[29-31]。此外,相關(guān)研究結(jié)果表明,與RNA剪接相關(guān)基因在心臟病中異常表達(dá)。例如,剪切因子SF3B1在患病的人和小鼠心臟中均表達(dá)上調(diào)[32],Rbfox1基因在人類和小鼠心臟中表達(dá)下調(diào)[33]。然而,CHD病人中DEGs一直未被明確闡述。
本研究分析了GEO數(shù)據(jù)庫的GSE71226和GSE19339數(shù)據(jù)集中CHD病人的基因表達(dá)數(shù)據(jù),擬篩選與CHD發(fā)生密切相關(guān)的DEGs,探討CHD基因水平的發(fā)病機(jī)制。結(jié)果顯示,1.118%~2.954%(GSE71226:2.954%;GSE19339:1.118%)的基因表達(dá)水平上調(diào),同時(shí)有1.165%~6.667%(GSE71226:6.667%;GSE19339:1.165%)的基因表達(dá)水平下調(diào),表明CHD的發(fā)生與細(xì)胞中基因表達(dá)的變化密切相關(guān)。由于樣本來源和各微陣列平臺研究都存在差別,綜合分析各種微陣列數(shù)據(jù)集可以獲得更為準(zhǔn)確的結(jié)果,故選擇了兩個(gè)數(shù)據(jù)集中8個(gè)共同表達(dá)上調(diào)基因及114個(gè)共同表達(dá)下調(diào)基因進(jìn)行進(jìn)一步分析。GO注釋分析結(jié)果表明,這些DEGs參與了DNA轉(zhuǎn)錄和mRNA剪接調(diào)控,提示CHD的發(fā)生與細(xì)胞中RNA剪接紊亂有關(guān)。選擇性剪接是一種可實(shí)質(zhì)上改變基因表達(dá)模式的轉(zhuǎn)錄后機(jī)制。高達(dá)95%的人類基因具有多外顯子可變剪接形式,表明可變剪接是人類基因組功能復(fù)雜性的最重要組成部分之一。本研究結(jié)果表明,大部分的CHD DEGs是可變剪接相關(guān)的基因,提示可變剪接調(diào)控在心臟病的研究中應(yīng)受到更多的重視。
在DEGs調(diào)控網(wǎng)絡(luò)中,表達(dá)下調(diào)的LUC7L3、HNRNPA1、SF3B1、ARGLU1、SRSF5、SRSF11、SREK1、PNISR、DIDO1、ZRSR2和NKTR位于網(wǎng)絡(luò)控制中心,且均為DNA轉(zhuǎn)錄和RNA剪接調(diào)控相關(guān)基因。既往研究表明,LUC7L3通過RE和RS域參與了剪接體的形成,在心臟鈉通道剪接調(diào)節(jié)人類心力衰竭中發(fā)揮作用[34-35]。HNRNPA1為異質(zhì)性核糖核蛋白(hnRNP)復(fù)合體中含量最豐富的核心蛋白之一,在選擇性剪接的調(diào)控中發(fā)揮關(guān)鍵作用。SF3B1為一種重要的pre-mRNA剪接因子,與癌癥突變相關(guān),并可以作為靶向藥物治療靶點(diǎn)[36-40]。在剪接體裝配的早期階段,SF3B1在pre-mRNA剪接位點(diǎn)的小核核糖核酸蛋白(snRNP)之間促發(fā)了一系列依賴ATP的結(jié)構(gòu)和成分重排,最終完成pre-mRNA剪接的行為[36,41-42],但其在CHD中的作用尚未得到證實(shí)。據(jù)報(bào)道,ARGLU1為一種轉(zhuǎn)錄共激活因子和剪接調(diào)節(jié)因子,對應(yīng)激性激素信號轉(zhuǎn)導(dǎo)和發(fā)育以及多種癌癥調(diào)控非常重要[43-44]。SRSF5是pre-mRNA剪接因子中SR的家族成員,是剪接體的一部分[45]。已有研究結(jié)果表明,SRSF5作為一種新型的致癌剪接因子,在多種癌癥和免疫調(diào)節(jié)中發(fā)揮關(guān)鍵作用[46-51],但其在CHD中的作用未見報(bào)道。SRSF11為一種在可變剪接過程中發(fā)揮作用的剪接因子[52]。SREK1為富含SR剪接蛋白家族的一個(gè)成員[53]。PNISR,又被稱為SFRS18,使用公開交互數(shù)據(jù)庫的數(shù)據(jù)挖掘也支持了LUC7L3和SFRS18在RNA剪接中的相互作用[54]。GARCIA-DOMINGO等[55-56]研究表明,DIDO1通過上調(diào)procaspase 3和9參與細(xì)胞凋亡的激活。此外,F(xiàn) TTERER等[57]觀察到,小鼠中DIDO的缺失與骨髓增生異常綜合征相關(guān)。FLEISCHMAN等[58]的研究則表明,ZRSR2突變病人的常見臨床特征為白細(xì)胞減少、血小板減少或骨髓母細(xì)胞百分比增加的大細(xì)胞性貧血。本研究中篩選到的CHD DEGs大部分都是mRNA剪接相關(guān)基因,這些基因通過RNA剪接功能調(diào)控不同的人類疾病。但是,這些基因與CHD之間的關(guān)系目前尚未被報(bào)道。
綜上所述,本文結(jié)果顯示,CHD病人RNA剪接相關(guān)基因的表達(dá)水平發(fā)生顯著改變,表明RNA剪接調(diào)控在CHD的發(fā)生過程中可能發(fā)揮了重要作用,但其在CHD中的具體作用機(jī)制仍有待進(jìn)一步研究。本研究結(jié)果為CHD的進(jìn)一步研究及高危人群的篩查提供了新的思路。
[參考文獻(xiàn)]
[1]WONG N D. Epidemiological studies of CHD and the evolution of preventive cardiology[J].Nature Reviews Cardiology, 2014,11(5):276-289.
[2]SHEPARD D, VANDERZANDEN A, MORAN A, et al. Ischemic heart disease worldwide, 1990 to 2013: estimates from the global burden of disease study 2013[J].Circulation Cardiovascular Quality and Outcomes, 2015,8(4):455-456.
[3]BENZIGER C P, ROTH G A, MORAN A E. The global burden of disease study and the preventable burden of NCD[J].Global Heart, 2016,11(4):393-397.
[4]FOLEY J R J, PLEIN S, GREENWOOD J P. Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques[J].World Journal of Cardiology, 2017,9(2):92-108.
[5]MADJID M, FATEMI O. Components of the complete blood count as risk predictors for coronary heart disease: in-depth review and update[J].Texas Heart Institute Journal, 2013,40(1):17-29.
[6]NASI OWSKA-BARUD A, ZAPOLSKI T, BARUD M, et al. Overt and covert anxiety as a toxic factor in ischemic heart disease in women: the link between psychological factors and heart disease[J].Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017,23:751-758.
[7]DUCIMETI RE P, CAMBIEN F. Coronary heart disease ae-tiology: associations and causality[J].Comptes Rendus Biologies, 2007,330(4):299-305.
[8]WIRTZ P H, VON KNEL R. Psychological stress, inflammation, and coronary heart disease[J].Current Cardiology Reports, 2017,19(11):1-10.
[9]殷惠軍,馬曉娟,蔣躍絨,等. 冠心病差異基因表達(dá)譜的構(gòu)建及目標(biāo)基因的功能分析[J]. 科學(xué)通報(bào), 2009,54(3):354-359.
[10]LI Z J, DENG X W, LAN Y Q. Identification of a potentially functional circRNA-miRNA-mRNA regulatory network in type 2 diabetes mellitus by integrated microarray analysis[J].Minerva Endocrinology, 2021. doi:10.23736/S2724-6507.21.03370-8.
[11]CHEN X Y, LIANG R, YI Y C, et al. The m6A reader YTHDF1 facilitates the tumorigenesis and metastasis of gastric cancer via USP14 translation in an m6A-dependent manner[J].Frontiers in Cell and Developmental Biology, 2021,9:647702.
[12]SHAO Y, KONG J, XU H Z, et al. OPCML methylation and the risk of ovarian cancer: a meta and bioinformatics analysis[J].Frontiers in Cell and Developmental Biology, 2021,9:570898.
[13]KITTISENACHAI S, ROJPIBULSTIT P, VILAICHONE R K, et al. FBPAII and rpoBC, the two novel secreted proteins identified by the proteomic approach from a comparative study between antibiotic-sensitive and antibiotic-resistant Helicobac-ter pylori-associated gastritis strains[J].Infection and Immunity, 2021,89(6):e00053-e00021.
[14]LIU Q W, WANG Y Y, DUAN M Y, et al. Females and males show differences in early-stage transcriptomic biomar-kers of lung adenocarcinoma and lung squamous cell carcinoma[J].Diagnostics, 2021,11(2):347.
[15]FENG S H, ZHAO B, ZHAN X, et al. Danggui buxue decoction in the treatment of metastatic colon cancer: network pharmacology analysis and experimental validation[J].Drug Design, Development and Therapy, 2021,15:705-720.
[16]HUANG D W, SHERMAN B T, LEMPICKI R A. Systema-tic and integrative analysis of large gene lists using DAVID bioinformatics resources[J].Nature Protocols, 2009,4(1):44-57.
[17]HUANG D W, SHERMAN B T, LEMPICKI R A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists[J].Nucleic Acids Research, 2009,37(1):1-13.
[18]MENG Y L, CAI K, ZHAO J J, et al. Transcriptional profiling reveals kidney neutrophil heterogeneity in both healthy people and ccRCC patients[J].Journal of Immunology Research, 2021,2021:5598627.
[19]HUANG J J, LIU L, QIN L L, et al. Weighted gene coexpression network analysis uncovers critical genes and pathways for multiple brain regions in Parkinson’s disease[J].BioMed Research International, 2021,2021:6616434.
[20]LIU H, QU Y D, ZHOU H, et al. Bioinformatic analysis of potential hub genes in gastric adenocarcinoma[J].Science Progress, 2021,104(1):368504211004260.
[21]SHI Y G. The spliceosome: a protein-directed metalloribozyme[J].Journal of Molecular Biology, 2017,429(17):2640-2653.
[22]PAPASAIKAS P, VALC RCEL J. The spliceosome: the ultimate RNA chaperone and sculptor[J].Trends in Biochemical Sciences, 2016,41(1):33-45.
[23]BARASH Y, CALARCO J A, GAO W J, et al. Deciphering the splicing code[J].Nature, 2010,465(7294):53-59.
[24]VAN DEN HOOGENHOF M M, PINTO Y M, CREEMERS E E. RNA splicing: regulation and dysregulation in the heart[J].Circulation Research, 2016,118(3):454-468.
[25]WANG G S, COOPER T A. Splicing in disease: disruption of the splicing code and the decoding machinery[J].Nature Reviews Genetics, 2007,8(10):749-761.
[26]LEFEBVRE S, B RGLEN L, REBOULLET S, et al. Identification and characterization of a spinal muscular atrophy-determining gene[J].Cell, 1995,80(1):155-165.
[27]LIU M M, ZACK D J. Alternative splicing and retinal dege-neration[J].Clinical Genetics, 2013,84(2):142-149.
[28]KISHORE S, STAMM S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C[J].Science, 2006,311(5758):230-232.
[29]BRAUCH K M, KARST M L, HERRON K J, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy[J].Journal of the American College of Cardiology, 2009,54(10):930-941.
[30]LI D X, MORALES A, GONZALEZ-QUINTANA J, et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy[J].Clinical and Translational Science, 2010,3(3):90-97.
[31]REFAAT M M, LUBITZ S A, MAKINO S, et al. Genetic variation in the alternative splicing regulator RBM20 is asso-ciated with dilated cardiomyopathy[J].Heart Rhythm, 2012,9(3):390-396.
[32]MIRTSCHINK P, KRISHNAN J, GRIMM F, et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease[J].Nature, 2015,522(7557):444-449.
[33]GAO C, REN S X, LEE J H, et al. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure[J].The Journal of Clinical Investigation, 2016,126(1):195-206.
[34]GAO G, DUDLEY S C Jr. RBM25/LUC7L3 function in car-diac sodium channel splicing regulation of human heart failure [J].Trends in Cardiovascular Medicine, 2013,23(1):5-8.
[35]GAO G, XIE A, HUANG S C, et al. Role of RBM25/LUC7L3 in abnormal cardiac sodium channel splicing regulation in human heart failure[J].Circulation, 2011,124(10):1124-1131.
[36]MAJI D, GROSSFIELD A, KIELKOPF C L. Structures of SF3b1 reveal a dynamic Achilles heel of spliceosome assembly: Implications for cancer-associated abnormalities and drug discovery[J].Biochimica et Biophysica Acta Gene Regulatory Mechanisms, 2019,1862(11-12):194440.
[37]JIMNEZ-VACAS J M, HERRERO-AGUAYO V, G MEZ-G MEZ E, et al. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer[J].Translational Research: the Journal of Laboratory and Clinical Medicine, 2019,212:89-103.
[38]DANSET M, MILLEY S, HAROU O, et al. Concomitant GNA11 and SF3B1 mutations in two cases of melanoma asso-
ciated with blue Naevus[J].Clinical and Experimental Dermatology, 2020,45(1):123-126.
[39]BOIOCCHI L, HASSERJIAN R P, POZDNYAKOVA O, et al. Clinicopathological and molecular features of SF3B1-mutated myeloproliferative neoplasms[J].Human Pathology, 2019,86:1-11.
[40]WANG L L, BROOKS A N, FAN J, et al. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia[J].Cancer Cell, 2016,30(5):750-763.
[41]EFFENBERGER K A, URABE V K, PRICHARD B E, et al. Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages[J].RNA (New York, N Y), 2016,22(3):350-359.
[42]KFIR N, LEV-MAOR G, GLAICH O, et al. SF3B1 association with chromatin determines splicing outcomes[J].Cell Reports, 2015,11(4):618-629.
[43]MAGOMEDOVA L, TIEFENBACH J, ZILBERMAN E, et al. ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development[J].Nucleic Acids Research, 2019,47(6):2856-2870.
[44]ZHANG D X, JIANG P P, XU Q Q, et al. Arginine and glutamate-rich 1 (ARGLU1) interacts with mediator subunit 1 (MED1) and is required for estrogen receptor-mediated gene transcription and breast cancer cell growth[J].The Journal of Biological Chemistry, 2011,286(20):17746-17754.
[45]SEBBAG-SZNAJDER N, RAITSKIN O, ANGENITZKI M, et al. Regulation of alternative splicing within the supraspliceosome[J].Journal of Structural Biology, 2012,177(1):152-159.
[46]YANG S S, JIA R, BIAN Z. SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma[J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2018,1865(9):1161-1172.
[47]VAUTROT V, AIGUEPERSE C, OILLO-BLANLOEIL F, et al. Enhanced SRSF5 protein expression reinforces lamin A mRNA production in HeLa cells and fibroblasts of progeria patients[J].Human Mutation, 2016,37(3):280-291.
[48]KIM H R, LEE G O, CHOI K H, et al. SRSF5: a novel marker for small-cell lung cancer and pleural metastatic cancer[J].Lung Cancer, 2016,99:57-65.
[49]CHEN Y H, HUANG Q Y, LIU W, et al. Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth[J].Nature Communications, 2018,9:2464.
[50]LUO Z, GE M L, CHEN J B, et al. HRS plays an important role for TLR7 signaling to orchestrate inflammation and innate immunity upon EV71 infection[J].PLoS Pathogens, 2017,13(8):e1006585.
[51]ELINAV H, WU Y F, COSKUN A, et al. Human CRM1 augments production of infectious human and feline immuno-
deficiency viruses from murine cells[J].Journal of Virology, 2012,86(22):12053-12068.
[52]WANG H Y, WEN J G, CHANG C C, et al. Discovering transcription and splicing networks in myelodysplastic syndromes[J].PLoS One, 2013,8(11):e79118.
[53]ZHANG D L, SUN X J, LING L J, et al. Molecular cloning, characterization, chromosomal assignment, genomic organization and verification of SFRS12(SRrp508), a novel member of human SR protein superfamily and a human homolog of rat SRrp86[J].Yi Chuan Xue Bao, 2002,29(5):377-383.
[54]SZLAVICZ E, SZABO K, GROMA G, et al. Splicing factors differentially expressed in psoriasis alter mRNA maturation of disease-associated EDA+ fibronectin[J].Molecular and Cellular Biochemistry, 2017,436(1-2):189-199.
[55]GARC A-DOMINGO D, LEONARDO E, GRANDIEN A, et al. DIO-1 is a gene involved in onset of apoptosis in vitro, whose misexpression disrupts limb development[J].Procee-
dings of the National Academy of Sciences of the United States of America, 1999,96(14):7992-7997.
[56]GARC A-DOMINGO D, RAM REZ D, GONZ LEZ DE BUITRAGO G, et al. Death inducer-obliterator 1 triggers apoptosis after nuclear translocation and caspase upregulation[J].Molecular and Cellular Biology, 2003,23(9):3216-3225.
[57]F TTERER A, CAMPANERO M R, LEONARDO E, et al. Dido gene expression alterations are implicated in the induction of hematological myeloid neoplasms[J].The Journal of Clinical Investigation, 2005,115(9):2351-2362.
[58]FLEISCHMAN R A, STOCKTON S S, COGLE C R. Refractory macrocytic anemias in patients with clonal hematopoietic disorders and isolated mutations of the spliceosome gene ZRSR2[J].Leukemia Research, 2017,61:104-107.
(本文編輯 馬偉平)