吳宏濤,胡金麗,徐 鵬,周香君,馬 嘯,胡榮桂
不同水分條件下添加白云石對酸性水稻土有機(jī)碳礦化的影響
吳宏濤1,2,胡金麗3,徐 鵬3,周香君2,馬 嘯2,胡榮桂3※
(1. 湖北師范大學(xué)污染物分析與資源化技術(shù)湖北省重點(diǎn)實(shí)驗(yàn)室,黃石 435002; 2. 湖北師范大學(xué)城市與環(huán)境學(xué)院,黃石 435002;3. 華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,武漢 430070)
施用石灰改良酸性土壤是常用的農(nóng)藝措施之一。施用石灰影響土壤理化性質(zhì),進(jìn)而影響土壤有機(jī)碳(Soil Organic Carbon,SOC)礦化。而SOC礦化與土壤肥力保持和有機(jī)碳庫的大小存在緊密聯(lián)系。因此,明晰施用石灰對酸性土壤有機(jī)碳礦化的影響具有重要的理論和現(xiàn)實(shí)意義。該研究以2種母質(zhì)的酸性水稻土為對象,在50%、90%和130%土壤最大田間持水量(Water Holding Capacity,WHC)條件下添加和不添加白云石,再進(jìn)行為期45 d的室內(nèi)培養(yǎng)試驗(yàn),探討白云石和水分對SOC礦化的影響。研究結(jié)果表明,添加白云石顯著影響2種土壤有機(jī)碳礦化速率,但白云石添加和水分的交互作用不顯著。土壤含水量較低時(shí)(50% WHC),2種土壤有機(jī)碳礦化均受到抑制。在較高土壤含水量情況下(90%~130% WHC),白云石添加和水分的共同作用對SOC礦化的影響因土壤質(zhì)地不同而異,淹水條件下(130% WHC)棕紅壤有機(jī)碳礦化量高于濕潤條件(90% WHC),而紅壤中的情況正好相反。白云石添加和水分均顯著影響SOC累計(jì)礦化量,但二者交互作用僅在棕紅壤中顯著。添加白云石后,2種土壤pH值隨著水分含量的增加而提高;土壤含水量較低時(shí)(50% WHC),土壤pH值即可達(dá)到或接近目標(biāo)值(pH值6.5)。這些結(jié)果表明,在評估施用白云石對SOC礦化的影響時(shí),需要考慮土壤含水量和土壤本身的性質(zhì),以便為農(nóng)業(yè)生產(chǎn)實(shí)踐中合理施用白云石提供指導(dǎo)和建議。
土壤水分;有機(jī)碳;水稻土;礦化;白云石;酸性土壤
中國稻田種植面積廣,約占全國耕地面積的25.8%[1]。長期集約耕作、大量氮肥施用以及酸沉降導(dǎo)致中國大部分稻田酸化嚴(yán)重[2],對生態(tài)環(huán)境、糧食安全和人體健康構(gòu)成嚴(yán)重威脅。土壤酸化已成為中國農(nóng)業(yè)環(huán)境領(lǐng)域面臨的突出問題之一。
施用石灰(如石灰石、熟石灰或生石灰等)是一種廣泛應(yīng)用的、改善土壤酸度和防控土壤重金屬污染的農(nóng)藝措施[3-5]。近來年,因白云石具有同時(shí)補(bǔ)充Ca和Mg的優(yōu)勢,其在酸性土壤改良方面越來越受到重視和關(guān)注[6]。施用石灰除了可以改良土壤外,還會影響其他土壤過程,如土壤有機(jī)碳(Soil Organic Carbon, SOC)礦化[7],從而對土壤肥力保持、碳庫大小、大氣CO2濃度和全球氣候變化等產(chǎn)生強(qiáng)烈影響[8-9]。然而,關(guān)于施用石灰對SOC礦化影響的研究結(jié)論往往相互矛盾。Haynes等[10]指出,施用石灰通過改變土壤結(jié)構(gòu)對SOC起到保護(hù)作用,從而抑制SOC礦化;此外,土壤微生物對碳的需求可能隨著pH值的升高而降低,從而減少SOC礦化量[11]。相反,Marcelo等[12]和Ahmad等[13]研究表明,施用石灰可促進(jìn)SOC礦化。Page等[14]指出當(dāng)向微生物呼吸未受酸度影響的土壤施用石灰后,SOC礦化未受到明顯影響。以上這些相互矛盾的結(jié)果可能是由場地條件,土壤質(zhì)地、初始pH值和水分含量,氮素有效性以及石灰用量等差異造成的[15]。
土壤水分是調(diào)控SOC礦化的主要因素之一。土壤水分通過影響有機(jī)碳生物有效性和氧的遷移來控制SOC礦化。通常,SOC礦化速率隨著土壤含水量的增加而增加,直至水分含量達(dá)到85%充水孔隙度,并隨著土壤含水量進(jìn)一步增加而降低[16]。土壤水分的提高有助于SOC的溶出和團(tuán)聚體的分散,進(jìn)而提高土壤溶解性有機(jī)碳(Dissolved Organic Carbon, DOC)的含量[17]。但是,當(dāng)土壤水分飽和后,隨著水分的進(jìn)一步提高,O2逐漸成為SOC礦化的主要限制性因素[18]。施用石灰提高土壤的pH值,從而提高有機(jī)質(zhì)的親水性并促進(jìn)其脫附,也可使DOC含量增加[12];這部分增加的DOC可能影響有機(jī)碳生物有效性和O2對SOC礦化的限制性關(guān)系。但是,目前對于不同水分條件下施用石灰會對SOC礦化產(chǎn)生何種影響尚不明確。
綜上所述,施用石灰和土壤水分變化均對SOC礦化產(chǎn)生影響,但土壤水分變化是否影響石灰對SOC礦化的效應(yīng)尚不清楚。國內(nèi)大面積的酸性稻田將來可能通過施用石灰來改良[2],這可能對SOC礦化和氣候變化產(chǎn)生深遠(yuǎn)影響。另外,中國稻田水分含量在水稻種植前后存在較大變化[19],對SOC礦化也會產(chǎn)生影響。通常,不同母質(zhì)的土壤其物化和生化性質(zhì)也存在差異,不同母質(zhì)的土壤對外源添加物的響應(yīng)可能也存在差異。因此,弄清土壤在不同水分含量時(shí)施用石灰對SOC礦化的影響具有重要的科學(xué)意義。為此,本研究選取了中國熱帶和亞熱帶地區(qū)較為常見的2種母質(zhì)的酸性水稻土,通過室內(nèi)培養(yǎng)試驗(yàn),設(shè)置不同土壤水分條件,分析白云石添加對SOC礦化的影響,以期為白云石在酸性土壤改良中的應(yīng)用提供依據(jù)和指導(dǎo)。
供試土壤分別采自湖北省蘄春縣(30°09′26.3″N,115°22′55.4″E)和赤壁市(29°50′00″N,114°09′37″E)稻田。由于兩地水稻土翻耕深度接近20 cm,采樣取表層0~20 cm范圍內(nèi)的土壤。兩處稻田的作物栽培方式分別為中稻-再生稻、油菜-中稻輪作。采自蘄春縣的土壤母質(zhì)為花崗片麻巖,土壤類型為棕紅壤,采自赤壁市的土壤母質(zhì)為第四紀(jì)紅土,土壤類型為紅壤。在土壤進(jìn)行均質(zhì)化前,先剔除土壤中植物的葉和根、石頭等。隨后,將采集的土壤風(fēng)干并磨細(xì)過2 mm篩、備用。土壤的理化性質(zhì)見表1所示。2種土壤均呈酸性,其中棕紅壤的酸度(pH值5.2)顯著高于紅壤(pH值5.5)。此外,棕紅壤的SOC和總氮(Total Nitrogen,TN)含量均顯著高于紅壤。紅壤黏粒含量顯著高于棕紅壤。根據(jù)中國土壤質(zhì)地分類,2種土壤分別為粉土和粉黏土。
表1 土壤基本理化性質(zhì)
注:數(shù)據(jù)表示為均值±標(biāo)準(zhǔn)差(=3)。同一列數(shù)字后不同字母表示不同土壤之間存在顯著差異(‐檢驗(yàn),<0.05)。
Note: Data are presented as mean ± standard deviation (=3). Different letters in a column indicate significant differences between soils (-test,<0.05).
試驗(yàn)所用的白云石采購自河北省行唐縣某礦粉加工廠,粒徑<0.15 mm。白云石的無機(jī)碳、CaO和MgO含量分別為(9.55±0.30)%、(30.5±0.5)%和(22.0±0.5)%,pH值(1:2.5水)為10.0±0.1。
添加去離子水將2種風(fēng)干土水分含量調(diào)節(jié)為40%土壤最大田間持水量(Water Holding Capacity,WHC),土壤于25 ℃、避光預(yù)培養(yǎng)7 d,以激活土壤微生物活性。隨后,分別取200和100 g土壤(干基,分別用于土壤和氣體取樣)至1 L培養(yǎng)瓶中作進(jìn)一步處理。試驗(yàn)對2種土壤均設(shè)置添加和不添加白云石的2組處理,根據(jù)預(yù)試驗(yàn)結(jié)果,白云石的添加量設(shè)置為3 g/kg(分別相當(dāng)于5.7、7.2×103kg/hm2),每組處理均設(shè)3個土壤水分水平,即50%、90%和130% WHC(分別記為L、M和H),分別與稻田干燥、濕潤和淹水時(shí)的土壤水分狀態(tài)相對應(yīng)。通過添加去離子水達(dá)到預(yù)設(shè)的土壤水分水平(對于H處理,土壤以上水層厚度約4 mm)。處理后的土壤于25 ℃、避光培養(yǎng)45 d。每個處理設(shè)置3個重復(fù)。培養(yǎng)期間,培養(yǎng)瓶瓶口均采用帶小孔的保鮮膜覆蓋,保證既可進(jìn)行氣體交換,又減少水分損失。
供氣體取樣的處理與上述處理方法相同。培養(yǎng)期間,每2 d通過稱取培養(yǎng)瓶的質(zhì)量、補(bǔ)加去離子水的方法對土壤含水量進(jìn)行質(zhì)量調(diào)整,以保持土壤水分穩(wěn)定。
培養(yǎng)期間,前10 d每天采集一次氣樣,第11~14天每2 d采集一次氣樣,第15~35天每3~4 d采樣一次氣樣,第36~45天每5 d采集一次氣樣。采樣時(shí),先將瓶口保鮮膜移除,保持瓶內(nèi)外氣體交換20 min;隨后用橡膠塞封住瓶口,采用Shaaban等[20]的采樣方法分別于密閉后0和1 h采用注射器采集培養(yǎng)瓶頂空部位氣體30 mL各一份。
氣樣及時(shí)采用安裝有火焰離子化檢測器的氣相色譜儀(Agilent 7890A)進(jìn)行濃度測定。CO2排放通量按照杜麗君等[21]的方法進(jìn)行計(jì)算。CO2累計(jì)排放量為其每天排放量的累加。
土壤樣品采集于培養(yǎng)的第1、3、10、17、24和45天。土壤樣品主要用于分析pH值、NH4+-N、NO3?-N、DOC和微生物生物量碳(Microbial Biomass Carbon,MBC)等指標(biāo)。土壤pH值采用玻璃電極法測定(土水比1:2.5)。土壤礦質(zhì)氮由 1 mol/L KCl浸提,浸提液中的NH4+-N和NO3?-N濃度分別采用苯酚次氯酸鹽法[22]和雙波長法[23](220 nm 和275 nm)測定。土壤DOC采用去離子水提取(土水比1:5),隨后用0.45m濾膜過濾,濾液采用TOC分析儀(Elementar,Vario TOC,德國)測定有機(jī)碳含量。土壤MBC采用氯仿熏蒸法測定[24](換算系數(shù)取k=0.45)。
采用兩因素方差分析評價(jià)至培養(yǎng)結(jié)束時(shí)白云石添加、水分及二者交互作用對CO2累計(jì)排放量影響的顯著性。利用皮爾遜相關(guān)分析評價(jià)土壤變量與CO2通量之間的關(guān)系。采用路徑分析進(jìn)一步揭示CO2通量和土壤pH值、DOC、MBC等變量間的關(guān)系。采用線性混合模型評價(jià)白云石添加、水分、培養(yǎng)時(shí)間及彼此間交互作用對培養(yǎng)期間土壤pH值、NH4+-N、NO3?-N、DOC、MBC和CO2通量影響的顯著性,白云石添加、水分和培養(yǎng)時(shí)間均設(shè)定為固定因子。統(tǒng)計(jì)分析均采用IBM SPSS Statistic 20.0進(jìn)行,顯著性水平為=0.05。圖片均采用Origin Pro 2017繪制。
本研究在培養(yǎng)期間對土壤CO2和CH4排放均進(jìn)行了檢測,但在所有處理中均未發(fā)現(xiàn)明顯的CH4排放或吸收。
由表2可知,添加白云石顯著影響2種土壤有機(jī)碳礦化速率。與未添加白云石的土壤相比,添加白云石顯著增加了2種土壤有機(jī)碳礦化速率,且SOC礦化速率在培養(yǎng)初期達(dá)到峰值,而后逐漸降低(圖1a,1b)。無論是否添加白云石,M和H處理的SOC礦化速率都高于L處理。兩因素方差分析結(jié)果表明,添加白云石和水分均對SOC礦化量有顯著影響,但二者交互作用僅在棕紅壤中顯著(表3),且添加白云石對2種土壤有機(jī)碳礦化量的影響各異(圖1c,1d)。添加白云石僅顯著增加了棕紅壤H處理的SOC礦化量;而添加白云石顯著增加了紅壤各處理的SOC礦化量。此外,在未添加白云石時(shí),2種土壤M和H處理的SOC礦化速率在培養(yǎng)期間經(jīng)歷了先增加后降低過程。
表2 棕紅壤和紅壤中被測變量固定效應(yīng)檢驗(yàn)結(jié)果
注:D, W,分別表示添加白云石、水分處理,培養(yǎng)時(shí)間。ns表示效應(yīng)不顯著(>0.05)。下同。
Note: D, Wandrepresent dolomite addition, water content treatment, and incubation time, respectively. ns represents that the effect is not significant. Same as below.
表3 白云石和水分及其交互作用對SOC礦化量影響的顯著性分析
在3種水分條件下,SOC礦化量變化顯著。棕紅壤SOC礦化量隨著水分提高而增加(圖1c);未添加白云石時(shí),M和H處理間SOC礦化量無顯著性差異,M處理SOC礦化量比L處理高57%,比H處理低3%;添加白云石后,各處理間SOC礦化量存在顯著性差異,M處理SOC礦化量比L處理高55%,比H處理低11%。隨著水分的增加,紅壤SOC礦化量先增加后降低(圖1d);未添加白云石時(shí),M處理的SOC礦化量顯著高于L處理,但與H處理間無顯著差異,且比L處理高184%;添加白云石后,M處理的SOC礦化量顯著高于L和H處理(分別高167%和11%)。
此外,經(jīng)計(jì)算得知,棕紅壤各處理的SOC平均礦化速率比紅壤相應(yīng)處理高34%~44%,累計(jì)礦化量比紅壤高23%~46%。
由表2可知,添加白云石、水分和二者交互作用均顯著影響2種土壤pH值。添加白云石提高了各水分條件下2種土壤的pH值(圖2a,2b)。添加白云石的土壤pH值基本在培養(yǎng)的前1~3 d達(dá)到峰值,棕紅壤L、M和H處理的pH變動范圍分別為5.8~6.7、6.2~7.0和6.6~6.8,平均值分別為6.4、6.6和6.8;紅壤L、M和H處理的pH值變動范圍分別為6.3~6.9、6.6~7.2和6.9~7.1,平均值分別為6.6、6.9和7.0。此外,土壤pH值也隨著水分的提高而增加,但在不添加白云石的情況下,總體上各處理pH值在培養(yǎng)期間逐漸降低。
由表2可知,添加白云石和水分均對棕紅壤DOC含量有顯著影響,但二者交互作用不顯著;僅水分對紅壤DOC含量有顯著影響。添加白云石增加了棕紅壤DOC含量,尤其是在培養(yǎng)的前17 d;不管是否加入白云石,DOC含量均隨著土壤水分的提高而增加(圖3a)。添加白云石對紅壤DOC含量無顯著影響,但其在培養(yǎng)的前10 d仍在一定程度上增加了DOC含量;不管是否加入白云石,DOC含量均隨著土壤水分的提高而增加(圖3b)。此外,棕紅壤各處理DOC含量高于紅壤相應(yīng)處理。
由圖4可知,2種土壤的MBC含量隨著水分含量的提高而顯著增加,添加白云石及其與水分的交互作用對2種土壤MBC含量均無顯著影響(表2)。培養(yǎng)后的第24天各處理MBC含量達(dá)到峰值。
由表2可知,水分對2種土壤NH4+-N和NO3?-N含量有顯著影響,但添加白云石及其與水分的交互作用均不顯著。在不添加白云石時(shí),2種土壤L和M處理的NH4+-N含量要高于H處理(圖5a,b)。在添加白云石后,棕紅壤L處理后期的NH4+-N含量要高于M和H處理,而紅壤H和M處理后期的NH4+-N含量要高于L處理;L和M處理中的NO3?-N含量均增加,而H處理中的NO3?-N含量無顯著變化(圖5c,d)。不管是否加入白云石,各水分條件下土壤中NO3?-N含量大小關(guān)系為:L>M>H,且L處理中NO3?-N含量顯著高于另外兩個處理。另外,棕紅壤各處理NH4+-N含量總體上高于紅壤相應(yīng)處理。
2.3.1相關(guān)性分析
由表4可知,2種土壤DOC含量均與pH值顯著正相關(guān),CO2通量均與DOC含量顯著正相關(guān)。紅壤NH4+-N含量與CO2通量顯著正相關(guān)。
2.3.2路徑分析
由圖6可知,路徑分析采用的模型表現(xiàn)出較好的擬合效果,并分別解釋了棕紅壤和紅壤中79%和78%的CO2通量的總方差。路徑分析結(jié)果還表明,pH值對2種土壤DOC含量有顯著的、直接影響,但對MBC含量無影響。DOC含量對土壤CO2通量有顯著的、直接影響。pH值對土壤CO2通量無直接影響。MBC含量對土壤CO2通量無影響。
表4 變量間的皮爾遜相關(guān)系數(shù)
注:*,< 0.05;**< 0.01。
Note: *,< 0.05; **< 0.01.
在本研究中,CO2的釋放可能來源于微生物對SOC的礦化作用和白云石的化學(xué)溶解過程,其中,白云石化學(xué)溶解過程釋放CO2主要受土壤pH值(土壤酸度)的影響。由路徑分析結(jié)果可知,DOC含量對2種土壤CO2通量有顯著的、直接影響,但pH值對土壤CO2通量無直接影響,表明微生物作用在土壤CO2排放中起主導(dǎo)作用,非生物作用(白云石自身溶解)對CO2排放的貢獻(xiàn)可以忽略不計(jì)。
添加白云石對SOC礦化有顯著影響。3種水分狀況下添加白云石均導(dǎo)致2種土壤有機(jī)碳礦化量增加,說明添加白云石促進(jìn)SOC礦化。白云石添加對SOC礦化的促進(jìn)作用主要?dú)w因于土壤pH值的提升,從而增加了土壤DOC含量。底物含量的增多對SOC礦化速率有促進(jìn)作用[25]。pH值、DOC和CO2通量三者間彼此的顯著正相關(guān)關(guān)系進(jìn)一步證實(shí)了這一點(diǎn)。相反,也有文獻(xiàn)報(bào)道,施用石灰對SOC礦化無影響或有抑制作用[26-27]。這些相互矛盾的結(jié)論可能與石灰施用量有關(guān)[28]。Guo等[29]研究表明,較高的CaCO3添加量(7.5 t/hm2)導(dǎo)致土壤呼吸速率降低了8%,而較低的添加量(2.25 t/hm2)未顯著影響土壤呼吸速率。
水分對2種土壤有機(jī)碳礦化的影響存在差異。水分是SOC礦化最為關(guān)鍵的調(diào)控因子之一[30-31]。通常,當(dāng)土壤含水量較低時(shí),土壤孔隙水連通性較差,有機(jī)碳傳遞受阻,SOC生物有效性和礦化度隨之降低[32];土壤未達(dá)飽和時(shí),土壤含水量增加有利于可溶性基質(zhì)(如有機(jī)碳和營養(yǎng)元素)向微生物細(xì)胞擴(kuò)散,從而提高微生物活性,并促進(jìn)SOC礦化[33],這可能是本研究中2種土壤濕潤狀態(tài)下SOC礦化量顯著高于干燥狀態(tài)下的原因。在淹水或厭氧條件下,溶解氧可能成為限制有氧呼吸的主要因素[18],導(dǎo)致SOC礦化速率降低。這可能是紅壤在130% WHC含水量下(淹水狀態(tài))的有機(jī)碳礦化量低于90% WHC含水量下(濕潤狀態(tài))的原因。然而,此時(shí)棕紅壤中的情形卻剛好相反。研究結(jié)果表明,淹水條件下棕紅壤有機(jī)碳礦化量高于濕潤條件。李忠佩等[34]也發(fā)現(xiàn)了類似的結(jié)果。導(dǎo)致這種現(xiàn)象的原因可能與淹水增加了棕紅壤DOC含量有關(guān)。淹水促進(jìn)土壤團(tuán)聚體分散和SOC釋放,增加DOC含量,從而增加SOC礦化速率[35]。另一個可能的原因是在淹水條件下,棕紅壤中的微生物為了獲取必需的能量需要比濕潤狀態(tài)分解更多的有機(jī)物,導(dǎo)致更高的SOC礦化速率[36]。
研究結(jié)果還表明,在未添加白云石時(shí),2種土壤在濕潤和淹水狀態(tài)下有機(jī)碳礦化速率在培養(yǎng)的0~5 d內(nèi)逐漸增加。導(dǎo)致這一結(jié)果的原因可能是:土壤水分的大幅增加(由40% WHC分別增至90%、130% WHC)有助于SOC的溶出,增加了DOC含量(圖3),但土壤pH值在此階段仍較低且逐漸增加(圖2),微生物活性也隨著pH值的增加而逐漸增強(qiáng),從而加速了SOC的礦化。
培養(yǎng)期間,棕紅壤各處理的有機(jī)碳礦化量均高于紅壤相應(yīng)處理,這可能與2種土壤本身的理化性質(zhì)差異有關(guān)。棕紅壤有機(jī)碳含量顯著高于紅壤,且培養(yǎng)期間前者DOC含量也高于后者,表明棕紅壤可以提供更多的碳底物供微生物利用,從而產(chǎn)生更高的有機(jī)碳礦化量。此外,相關(guān)分析結(jié)果表明,紅壤中CO2通量與NH4+-N顯著正相關(guān),但在棕紅壤中呈負(fù)相關(guān)且不顯著。該結(jié)果也可能與2種土壤本身的性質(zhì)差異有關(guān)。紅壤TN含量顯著低于棕紅壤,導(dǎo)致其氮礦化產(chǎn)生的NH4+-N含量低于棕紅壤;另外,紅壤黏粒含量顯著高于棕紅壤,黏粒含量高的土壤對NH4+-N吸附能力更強(qiáng),從而降低了土壤NH4+-N的生物有效性。??傻萚37]對紅壤吸附NH4+-N的研究表明,土壤粒度越小,其對NH4+-N的吸附作用越強(qiáng)。以上兩個方面可能導(dǎo)致紅壤NH4+-N含量相對缺乏,對SOC礦化產(chǎn)生限制作用。
相較于濕潤條件,2種土壤有機(jī)碳礦化對淹水條件的響應(yīng)各異,這可能與2種土壤質(zhì)地差異有關(guān)。紅壤黏粒含量顯著高于棕紅壤,黏粒含量高的土壤具有更大的表面積與電荷密度,對有機(jī)質(zhì)的吸附能力更強(qiáng),且可與土壤中大分子有機(jī)物質(zhì)(如腐殖質(zhì))形成結(jié)構(gòu)較穩(wěn)固的無機(jī)-有機(jī)復(fù)合體[38],從而降低其微生物活性和底物含量,導(dǎo)致淹水條件下紅壤有機(jī)碳礦化量低于濕潤條件。
綜上所述,淹水增加了土壤DOC含量,提高了土壤微生物可利用碳含量。然而淹水條件是否導(dǎo)致SOC礦化量高于濕潤條件依賴于土壤質(zhì)地。在田間條件下,影響SOC礦化的因素多而復(fù)雜。因此,有必要深入研究淹水條件下SOC礦化量高于濕潤條件這一現(xiàn)象。中國南方稻田面積大,由于長期耕作和培肥,形成了大面積具有較高肥力的土壤[34]。如果淹水條件下SOC礦化量高于濕潤條件的現(xiàn)象在實(shí)際中得到證實(shí),這將從根本上轉(zhuǎn)變?nèi)藗儗駶櫤脱退畻l件下SOC礦化速率和礦化量的認(rèn)識,并影響到人們對稻田土壤中元素循環(huán)和溫室氣體排放的正確評價(jià)。因此,對這種現(xiàn)象的研究具有十分重要的理論和現(xiàn)實(shí)意義。
本研究從土壤pH值提升效果和SOC礦化量(土壤碳損失量)兩個方面綜合評價(jià)白云石改良酸性土壤的效果。在土壤pH值6.5左右時(shí)植物必需的大多數(shù)養(yǎng)分具有最高的有效性[39],因此,本研究及以往的其它研究將pH值6.5作為石灰改良酸性土壤的目標(biāo)值[29]。研究結(jié)果表明,在50%、90%和130% WHC條件下添加白云石,培養(yǎng)期間棕紅壤的平均pH值分別為6.4、6.6和6.8,而紅壤的平均pH值分別為6.6、6.9和7.0??梢姡谳^低水分條件下(50% WHC)添加白云石即可使土壤pH值達(dá)到或接近目標(biāo)值。SOC的固持有利于保持土壤肥力,并對緩解全球變暖具有重要意義[40]。因此,酸性土壤改良過程中還應(yīng)關(guān)注SOC損失問題,盡量減少土壤碳損失量。本研究結(jié)果表明,在較高土壤水分條件下(90%和130% WHC)添加白云石,2種土壤碳損失量比低水分條件下(50% WHC)高127%~167%,即在較低水分條件下(50% WHC)添加白云石所帶來的土壤碳損失最低。根據(jù)上述綜合評價(jià)可知,當(dāng)酸性土壤的水分含量較低時(shí)(50% WHC)添加白云石較適宜。
添加白云石提高酸性水稻土pH值并增加有機(jī)碳庫有效性,從而促進(jìn)SOC礦化。低水分條件下(50% 田間持水量WHC),SOC礦化受到抑制;在較高含水量情況下,水分對SOC礦化的影響因土壤質(zhì)地不同而異,以花崗片麻巖為母質(zhì)的棕紅壤,黏粒含量較低,其淹水條件下(130% WHC)有機(jī)碳礦化量要高于濕潤條件(90% WHC),而以第四紀(jì)紅土為母質(zhì)的紅壤,情況正好相反。在較低水分條件下(50% WHC)添加白云石即可使土壤pH值達(dá)到或接近目標(biāo)值pH值6.5,且此時(shí)土壤碳損失最低。因此,在土壤較低水分條件下加入白云石較適宜。本研究結(jié)果表明,在施用白云石改良土壤酸性時(shí),既要注意其對SOC礦化的影響,也需要考慮土壤含水量和土壤本身的性質(zhì)對SOC礦化的影響,從而為農(nóng)業(yè)生產(chǎn)實(shí)踐中合理施用白云石提供指導(dǎo)和建議。
[1] 中國國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒2018[EB/OL]. 2018-10-24. http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm.
[2] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
[3] Fageria N K, Baligar V C. Enhancing nitrogen use efficiency in crop plants[J]. Advances in Agronomy, 2005, 88: 97-185.
[4] 焦常鋒,常會慶,王啟震,等. 碳酸鈣和殼聚糖聯(lián)用對高pH值石灰性土壤砷污染的鈍化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(11):234-240.
Jiao Changfeng, Chang Huiqing, Wang Qizhen, et al. Passivation effects of calcium carbonate and chitosan on arsenic pollution in high pH calcareous soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(11): 234-240. (in Chinese with English abstract)
[5] 史磊,郭朝暉,彭馳,等. 石灰組配土壤改良劑抑制污染農(nóng)田水稻鎘吸收[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(11):209-216.
Shi Lei, Guo Zhaohui, Peng Chi, et al. Lime based amendments inhibiting uptake of cadmium in rice planted in contaminated soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 209-216. (in Chinese with English abstract)
[6] Shaaban M, Peng Q A, Hu R G, et al. Dolomite application to acidic soils: A promising option for mitigating N2O emissions[J]. Environmental Science and Pollution Research, 2015, 22(24): 19961-19970.
[7] Holland J E, Bennett A E, Newton A C, et al. Liming impacts on soils, crops and biodiversity in the UK: A review[J]. Science of the Total Environment, 2018(610/611): 316-332.
[8] 張娟,徐寧彤,孟慶峰,等. 有機(jī)肥施用年限對土壤有機(jī)碳組分及其來源與玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):107-113.
Zhang Juan, Xu Ningtong, Meng Qingfeng, et al. Effect of years of manure fertilizer application on soil organic carbon component, its source and corn yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 107-113. (in Chinese with English abstract)
[9] Zamanian K, Zarebanadkouki M, Kuzyakov Y. Nitrogen fertilization raises CO2efflux from inorganic carbon: A global assessment[J]. Global Change Biology, 2018, 24(7): 2810-2817.
[10] Haynes R J, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review[J]. Nutrient Cycling in Agroecosystems, 1998, 51(2): 123-137.
[11] Manzoni S, Taylor P, Richter A, et al. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils[J]. New Phytologist, 2012, 196(1): 79-91.
[12] Marcelo A, Eduardo Corá J, La Scala Jr N. Influence of liming on residual soil respiration and chemical properties in a tropical no-tillage system[J]. Revista Brasileira de Ciência do Solo, 2012, 36(1): 45-50.
[13] Ahmad W, Singh B, Dijkstra F A, et al. Temperature sensitivity and carbon release in an acidic soil amended with lime and mulch[J]. Geoderma, 2014(214/215): 168-176.
[14] Page K L, Allen D E, Dalal R C, et al. Processes and magnitude of CO2, CH4, and N2O fluxes from liming of Australian acidic soils: A review[J]. Soil Research, 2009, 47(8): 747-762.
[15] Kunhikrishnan A, Thangarajan R, Bolan NS, et al. Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas Flux[M]// Sparks DL ed., Advances in Agronomy. Elsevier Inc.: Amsterdam, The Netherlands, 2016: 1-71.
[16] Rey A, Petsikos C, Jarvis P G, et al. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions[J]. European Journal of Soil Science, 2010, 56(5): 589-599.
[17] Wang F L, Bettany J R. Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil[J]. Journal of Environmental Quality, 1993, 22: 709-714.
[18] Blagodatskaya Е, Zheng X, Blagodatsky S, et al. Oxygen and substrate availability interactively control the temperature sensitivity of CO2and N2O emission from soil[J]. Biology and Fertility of Soils, 2014, 50(5): 775-783.
[19] Yan X, Yagi K, Akiyama H, et al. Statistical analysis of major variables controlling methane emission from rice fields[J]. Global Change Biology, 2005, 11(7): 1131-1141.
[20] Shaaban M, Wu L, Peng Q A, et al. Influence of ameliorating soil acidity with dolomite on the priming of soil C content and CO2emission[J]. Environmental Science and Pollution Research, 2015, 24: 9241-9250.
[21] 杜麗君,金濤,阮雷雷,等. 鄂南4種典型土地利用方式紅壤CO2排放及其影響因素[J]. 環(huán)境科學(xué),2007,28(7):1607-1613.
Du Lijun, Jin Tao, Ruan Leilei, et al. CO2fluxes from red soil under four land use types in mid-Subtropical, China[J]. Environmental Science, 2007, 28(7): 1607-1613. (in Chinese with English abstract)
[22] Scheiner D. Determination of ammonia and Kjeldahl nitrogen by indophenol method[J]. Water Research, 1976, 10(1): 31-36.
[23] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2000:156-163.
[24] Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169.
[25] Ahmad W, Singh B, Dijkstra F A, et al. Inorganic and organic carbon dynamics in a limed acid soil are mediated by plants[J]. Soil Biology and Biochemistry, 2013, 57: 549-555.
[26] Valzano F P, Murphy B W, Greene R S B. The long-term effects of lime (CaCO3), gypsum (CaSO4.2H2O), and tillage on the physical and chemical properties of a sodic red-brown earth[J]. Australian Journal of Soil Research, 2001, 39(6): 855-865.
[27] Keller J K, Bridgham S D, Chapin C T, et al. Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen[J]. Soil Biology and Biochemistry, 2005, 37(6): 1197-1204.
[28] Grover S P, Butterly C R, Wang X, et al. The short-term effects of liming on organic carbon mineralisation in two acidic soils as affected by different rates and application depths of lime[J]. Biology and Fertility of Soils, 2017, 53(4): 431-443.
[29] Guo A, Ding L, Tang Z, et al. Microbial response to CaCO3application in an acid soil in Southern China[J]. Journal of Environmental Sciences, 2019, 31(5): 321-329.
[30] Falloon P, Jones C D, Ades M, et al. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty[J]. Global Biogeochemical Cycles, 2011, 25: GB3010.
[31] Moyano F E, Manzoni S, Chenu C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models[J]. Soil Biology and Biochemistry, 2013, 59: 72-85.
[32] Davidson E A, Samanta S, Caramori S S, et al. The Dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales[J]. Global Change Biology, 2012, 18(1): 371-384.
[33] Das S, Richards B K, Hanley K L, et al. Lower mineralizability of soil carbon with higher legacy soil moisture[J]. Soil Biology and Biochemistry, 2019, 130: 94-104.
[34] 李忠佩,張?zhí)伊郑惐淘? 可溶性有機(jī)碳的含量動態(tài)及其與土壤有機(jī)碳礦化的關(guān)系[J]. 土壤學(xué)報(bào),2004,41(4):544-552.
Li Zhongpei, Zhang Taolin, Chen Biyun. Dynamincs of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedologica Sinica, 2004, 41(4): 544-552. (in Chinese with English abstract)
[35] Ellert B H, Gregorich E G. Management-induced Changes in the Actively Cycling Fractions of Soil Organic Matter[M]// Mcfee WW, Kelly JM eds., Carbon forms and functions in forest soils. Madison: Soil Science Society of America, 1995: 119-138.
[36] 黃東邁,朱培立,王志明,等. 旱地和水田有機(jī)碳分解速率的探討與質(zhì)疑[J]. 土壤學(xué)報(bào),1998,35(4):482-492.
Huang Dongmai, Zhu Peili, Wang Zhiming, et al. A study and question on the decomposition rate of organic carbon under upland and submerged soil conditions[J]. Acta Pedologica Sinica, 1998, 35(4): 482-492. (in Chinese with English abstract)
[37] ???,孫世群,殷福才. 廈門市紅壤對氨氮的吸附研究[J]. 安徽農(nóng)業(yè)科學(xué),2014,42(3):728-728,745.
Chang Ke, Sun Shiqun, Yin Fucai. Adsorption study of ammonia nitrogen in red soil, Xiamen city[J]. Journal of Anhui Agricultural Sciences, 2014, 42(3): 728-728, 745. (in Chinese with English abstract)
[38] 孫中林,吳金水,葛體達(dá),等. 土壤質(zhì)地和水分對水稻土有機(jī)碳礦化的影響[J]. 環(huán)境科學(xué),2009,30(1):214-220.
Sun Zhonglin, Wu Jinshui, Ge Tida, et al. Effects of soil texture and water content on the mineralization of soil organic carbon in paddy soils[J]. Environmental Science, 2009, 30(1): 214-220. (in Chinese with English abstract)
[39] 黃昌勇,徐建明. 土壤學(xué)[M]. 第三版. 北京:中國農(nóng)業(yè)出版社,2011:87-89.
[40] Fang Y, Singh B P, Farrell M, et al. Balanced nutrient stoichiometry of organic amendments enhances carbon priming in a poorly structured sodic subsoil[J]. Soil Biology and Biochemistry, 2020, 145: 107800.
Effects of dolomite addition on organic carbon mineralization in acidic paddy soils under different moisture contents
Wu Hongtao1,2, Hu Jinli3, Xu Peng3, Zhou Xiangjun2, Ma Xiao2, Hu Ronggui3※
(1.435002,; 2.,435002,; 3.430070)
Liming is the most widely used for the soil acidity, further to maintain soil pH that is optimal for crop growth. The variation in the soil pH is closely related to the soil organic carbon (SOC) mineralization, thereby to the global climate change. In addition, the moisture is also one of the most crucial environmental factors influencing the SOC mineralization via changing the SOC bioavailability and oxygen transport. In response to exogenous additives, the physicochemical and biochemical properties of soils are normally different with distinct parent materials. It is necessary to clarify the effects of liming and moisture on organic carbon mineralization of acidic soils. In the present study, the acidic paddy soils with two parent materials were used to evaluate the effects of dolomite addition and moisture on the SOC mineralization. Two types of soils were treated with and without dolomite addition under different soil moisture conditions, including 50%, 90%, and 130% of water holding capacity (WHC), and further incubated for 45 days. The results showed that the SOC mineralization rates of two soils were significantly affected by the dolomite addition. Nevertheless, there was no remarkable interaction effect between dolomite addition and moisture. The organic carbon mineralization of two soils was inhibited under a low soil moisture of 50% WHC, whereas, the combined effects of dolomite addition and moisture on the SOC mineralization varied with soil texture under a high soil moisture of 90% to 130% WHC. The amount of organic carbon mineralization from the soil with granite gneiss as parent material (brown red soil) under flooding condition (130% WHC) was higher than that under the moisture of 90% WHC, while the scenario was the opposite from the soil with the Quaternary red earth as parent material (red soil). Furthermore, only the former soil demonstrated a significant interaction effect of dolomite addition and moisture on the amount of SOC mineralization. The effects of dolomite addition, moisture, and their interaction were significant on the pH of two soils. After dolomite addition, the pH value of two soils increased with the increase in moisture content, where a target value (pH value 6.5) was achieved under a low soil moisture condition (50% WHC). The effects of dolomite addition and moisture were significant on the DOC content of brown red soil, but their interaction was not significant. Moreover, only the effect of moisture on the DOC content of red soil was significant. The MBC contents of two soils increased significantly with the increase of moisture content, but the effects of dolomite addition and its interaction with moisture were not significant. In the path analysis, the DOC rather than MBC content of two soils was directly affected by the soil pH value. In addition, the fluxes of CO2emission in the two soils were directly affected by the DOC rather than MBC content. The soil pH had no direct effect on the fluxes of CO2emission in the two soils, indicating that the microbes played a major role in CO2emissions. Therefore, both soil moisture and natural properties can be considered to evaluate the effect of dolomite application on SOC mineralization. The finding can provide a potential promising guidance and proposals for the rational application of dolomite additives in the agricultural production.
soil moisture; organic carbon; paddy soil; mineralization; dolomite; acidic soil
吳宏濤,胡金麗,徐鵬,等. 不同水分條件下添加白云石對酸性水稻土有機(jī)碳礦化的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):148-157.doi:10.11975/j.issn.1002-6819.2021.01.019 http://www.tcsae.org
Wu Hongtao, Hu Jinli, Xu Peng, et al. Effects of dolomite addition on organic carbon mineralization in acidic paddy soils under different moisture contents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 148-157. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.019 http://www.tcsae.org
2020-09-18
2020-12-20
國家重點(diǎn)研究發(fā)展計(jì)劃項(xiàng)目(2017YFD0800102);國家自然科學(xué)基金項(xiàng)目(41907124);湖北省自然科學(xué)基金項(xiàng)目(2020CFB465);湖北省教育廳科學(xué)技術(shù)研究項(xiàng)目(D20202503);污染物分析與資源化技術(shù)湖北省重點(diǎn)實(shí)驗(yàn)室(湖北師范大學(xué))資助項(xiàng)目(PA200207)
吳宏濤,博士,主要研究方向?yàn)橥寥捞嫉h(huán)、溫室氣體排放和酸性土壤改良。Email: hongtao.wu@hbnu.edu.cn
,胡榮桂,教授,博導(dǎo),研究方向?yàn)橥寥捞嫉h(huán)、農(nóng)業(yè)面源污染、土壤過程與環(huán)境效應(yīng)。Email:rghu@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2021.01.019
X144
A
1002-6819(2021)-01-0148-10