鄭 威,周 紅,楊航波,黃 磊,2,陳玉成,2,彭 莉,楊志敏,2
海泡石添加對豬糞堆肥腐熟和水溶性有機(jī)質(zhì)的影響
鄭 威1,周 紅1,楊航波1,黃 磊1,2,陳玉成1,2,彭 莉3,楊志敏1,2※
(1. 西南大學(xué)資源環(huán)境學(xué)院,重慶 400716;2. 農(nóng)村清潔工程重慶市工程研究中心,重慶市生態(tài)環(huán)境農(nóng)用地土壤污染風(fēng)險管控重點實驗室,重慶 400716;3. 重慶市市政環(huán)衛(wèi)監(jiān)測中心,重慶 401121)
為明確黏土礦物的投加對畜禽糞便堆肥腐熟和穩(wěn)定化的影響,該研究以豬糞和楊木木屑為原料,探究添加海泡石對堆肥基本理化性質(zhì)、不同成分有機(jī)質(zhì)含量以及溶解性有機(jī)質(zhì)(Dissolved Organic Matter,DOM)結(jié)構(gòu)的影響。結(jié)果表明,添加海泡石后堆體最高溫度比對照有所下降且電導(dǎo)率上升9.69%,而C/N則降低2.81%,同時種子發(fā)芽指數(shù)提高11.96%,顯示腐熟狀況更好;DOM含量降低7.84%而胡敏酸占比提高9.71%,使得堆體有機(jī)質(zhì)更加穩(wěn)定。熒光光譜分析表明,添加海泡石堆體DOM的熒光譜圖中,長波長的峰強(qiáng)在較短時間內(nèi)出現(xiàn)了明顯增加;三維熒光光譜-平行因子分析顯示,添加海泡石增加了堆體中高芳香性組分的占比。相關(guān)性分析結(jié)果表明,添加海泡石后,高芳香性組分與總有機(jī)碳之間相關(guān)性更為顯著,說明海泡石在碳素分解的同時促進(jìn)了其聚合,從而出現(xiàn)了胡敏酸與高芳香性熒光組分的增長。添加海泡石既能促進(jìn)堆體腐熟,又可轉(zhuǎn)化調(diào)控碳素進(jìn)而提高堆體穩(wěn)定性,有利于堆肥的后續(xù)農(nóng)田施用。
堆肥;糞;海泡石;堆肥穩(wěn)定性;DOM;三維熒光-平行因子分析
畜禽糞便治理與資源化是大多數(shù)畜禽養(yǎng)殖場健康養(yǎng)殖的瓶頸之一。鑒于畜禽糞便中含有大量的植物生長所需要的營養(yǎng)成分,通過堆肥利用植物養(yǎng)分成為目前畜禽糞便資源化的主流技術(shù)[1]。好氧堆肥以其占地面積小、過程可控制、易操作、降解快、資源化效果好而備受青睞。傳統(tǒng)的好氧堆肥腐熟不穩(wěn)定、氮素?fù)p失重,施入農(nóng)田土壤容易造成作物根系局部缺氧并誘發(fā)氮素?fù)p失,甚至出現(xiàn)作物厭氧中毒[2],而添加劑的投加成為解決傳統(tǒng)好氧堆肥問題的重要途徑[3]。
常用的堆肥添加劑有:pH調(diào)節(jié)物(木灰、石灰、尿酸、木醋和竹醋等)[4-8]、化學(xué)試劑(鎂鹽和磷酸鹽等)[9-10]、菌劑[11]、生物炭[12]以及天然礦物[13-16]等。其中許多黏土礦物以其比表面積大和高離子交換量等優(yōu)良的性能,在堆肥體系中已經(jīng)得到應(yīng)用,如膨潤土可以促進(jìn)堆體腐熟和重金屬鈍化[13-14];坡縷石既能減少堆肥過程中溫室氣體排放,還具有明顯的保氮作用[15];硅藻土可減少堆體植物毒性[16]。同時,黏土礦物還與有機(jī)物之間關(guān)系密切,其通過表面羥基和內(nèi)部離子交換吸附有機(jī)質(zhì)到礦物內(nèi)外,此過程不僅能抑制微生物對有機(jī)質(zhì)的分解,還可促進(jìn)有機(jī)物之間的凝聚,從而有效改變有機(jī)質(zhì)的成分結(jié)構(gòu)[17-18]。但黏土礦物與有機(jī)質(zhì)關(guān)系雖在土壤體系中研究廣泛卻在堆肥體系中關(guān)注較少,而其中作為一種具有更高比表面積且廉價易得的黏土礦物[19]——海泡石在堆肥體系中亦鮮有研究。
在堆肥進(jìn)程中有機(jī)質(zhì)轉(zhuǎn)化更加活躍,水溶態(tài)作為微生物利用和轉(zhuǎn)化固相有機(jī)質(zhì)的重要反應(yīng)界面[20],使得溶解性有機(jī)質(zhì)(Dissolve Organic Matter,DOM)成為堆肥各成分有機(jī)質(zhì)中多變的中間組分。DOM的結(jié)構(gòu)特征變化反應(yīng)了堆肥穩(wěn)定化進(jìn)程,同時DOM的含量成為判斷堆肥腐熟的重要指標(biāo)之一[21]。因此黏土礦物作為堆肥添加劑所引起的DOM變化值得進(jìn)一步研究。
綜上,本研究擬采用海泡石(Mg8Si12O30(OH)4(H2O)4·8H2O)作為添加劑,在觀測海泡石改變堆體基本腐熟指標(biāo)的基礎(chǔ)上,研究海泡石對堆肥產(chǎn)品的影響;采用激發(fā)-發(fā)散熒光光譜(Excitation-Emission Matrix Fluorescence Spectra,EEM)探討海泡石對堆體DOM結(jié)構(gòu)的變化,從而明確海泡石添加對堆肥穩(wěn)定化過程的影響機(jī)制。
新鮮豬糞取于重慶合川區(qū)某養(yǎng)豬場,楊木木屑購于江蘇連云港尚兮木質(zhì)品商行公司,海泡石購于石家莊雨馨建筑材料有限公司(SiO2∶65%,MgO∶24%,Al2O3∶<5%,F(xiàn)e2O3<0.15%,粒徑0.075 mm),堆肥原料的具體性質(zhì)見表1。小白菜(L.)種子購于渝澳農(nóng)業(yè)開發(fā)有限公司。
堆肥裝置有效體積為90 L,裝置外包裹橡塑海綿進(jìn)行保溫,在反應(yīng)器底部鋪設(shè)曝氣管,空氣從底部泵入(圖1),經(jīng)布?xì)獍迤骄鶜饬?,曝氣設(shè)置為曝氣5 min,間隔55 min,其平均流量為1 L/min,堆肥整體周期為45 d。堆體以豬糞和木屑作為主要基質(zhì),豬糞與木屑按照質(zhì)量比5∶3(w/w)的比例均勻混合,并用純水調(diào)節(jié)含水率至60%、每個堆體總質(zhì)量26 kg。
試驗設(shè)2個處理,其中一個均勻添加9%(以干質(zhì)量計)海泡石(記為T),另一個不添加作為對照(記為CK),重復(fù)2次。每周人工翻堆1次,每天9:00、15:00、21:00記錄堆體平均溫度。分別在第0、3、7、14、21、30、45 天采集堆體樣品,并分為兩部分:一部分作為鮮樣,存放在4 ℃中;另一部分作為風(fēng)干樣,自然風(fēng)干后粉碎,過0.15 mm篩。
1.3.1 堆肥理化性質(zhì)測定
電導(dǎo)率(Electrical Conductivity,EC):用去離子水1∶10(w/v)浸提鮮樣后,用梅特勒-托利多的FE38電導(dǎo)率儀測定。
種子發(fā)芽指數(shù)(Seed Germination Index,GI):用去離子水1∶10(w/v)浸提鮮樣后,將8 mL浸提液加入到無菌培養(yǎng)皿(9 cm)的兩層濾紙上,并選取小白菜種子20粒均勻鋪在培養(yǎng)皿中,于恒溫培養(yǎng)箱中培養(yǎng)(溫度25 ℃,濕度80%,避光)96 h后測量發(fā)芽數(shù)和根長,按公式(1)計算GI[22]:
總有機(jī)碳(Total Organic Carbon,TOC)、總凱氏氮(Total Kjeldahl Nitrogen,TKN)、腐殖質(zhì)(Humic Substance,HS)、胡敏酸(Humic Acid,HA)等使用風(fēng)干樣測定,其中TOC用高溫外熱重鉻酸鉀氧化法,TKN用凱氏定氮法[23](C/N=TOC/TKN),HS、HA提取和測定采用焦磷酸鈉/氫氧化鈉浸提-TOC儀測定方法[22],胡敏酸百分比(Percentage of Humic Acid,PHA)(PHA=HA/HS)。
1.3.2 DOM測定與表征
按1∶10(w/v)浸提堆肥鮮樣,25℃下200 r/min震蕩24 h,上清液過0.45m濾膜,濾液中有機(jī)物即為DOM[24]。DOM采用GE InnovOx? Laboratory TOC分析儀測定(以有機(jī)碳計,mg/L)。
用0.1 mol/L的HCl或NaOH調(diào)節(jié)濾液pH值到7.0±0.2,為減少內(nèi)濾效應(yīng),將DOM濃度稀釋到3 mg/L,使用Horiba 公司Aqualog?熒光光譜儀進(jìn)行EEM熒光表征,其條件為:激發(fā)波長Ex范圍為230~450 nm,掃描間隔5 nm,發(fā)射波長Em范圍為230~550 nm,激發(fā)光源為 150 W 無臭氧氙弧燈,掃描信號積分時間為3 s,以超純水(18.2 MΩ·cm)作為空白,樣品分析中Aqualog系統(tǒng)自動扣除瑞利和拉曼散射[25]。
數(shù)據(jù)通過Origin 9.1作圖;采用MATLAB 2020a軟件對熒光數(shù)據(jù)矩陣進(jìn)行平行因子分析;并由SPSS 22進(jìn)行數(shù)據(jù)分析,對象之間相互關(guān)系采用相關(guān)性分析,并經(jīng)Pearson檢驗,而對象之間的差異性分析采用One-way ANOVA(<0.05或<0.01)。
不同處理的堆體變化如圖2a所示,各個處理堆體溫度變化曲線都呈現(xiàn)出典型的3個時期:升溫期、高溫期和降溫期。因堆體基質(zhì)中微生物活性和易分解有機(jī)物含量較高,使得在堆肥開始1~2 d內(nèi),T處理和CK堆體都分別達(dá)到最高溫62.7、67.5 ℃;隨著堆肥的繼續(xù)進(jìn)行,易分解有機(jī)質(zhì)消耗殆盡,微生物活性下降[26],在堆肥第14天左右堆肥進(jìn)入降溫期(<50 ℃);為了減少病原菌,滿足有機(jī)肥衛(wèi)生需要,一般要求堆體在55 ℃以上保持3 d[27],各處理達(dá)到了6~7 d,滿足衛(wèi)生要求。雖然處理與對照的高溫期時長均為13 d,但處理高溫期溫度低于對照,可能是海泡石對碳素轉(zhuǎn)化的影響所致,這與Wang等[28]研究膨潤土對堆肥的影響結(jié)果相似。
由圖2b可見,T處理和CK的EC值整體呈現(xiàn)先降再升過程,而T處理的初始EC值并沒有因海泡石加入而出現(xiàn)明顯差異(T處理的EC值為3.68 mS/cm、CK為3.59 mS/cm);堆肥第3天,氨氮揮發(fā)和活性有機(jī)質(zhì)降解導(dǎo)致各處理EC值明顯下降[29],而T處理EC值顯著高于CK(<0.05),其EC值下降較緩(T處理為3.36 mS/cm,CK為2.50 mS/cm),可能是海泡石的吸附作用緩解活性有機(jī)質(zhì)分解所致;堆肥后期,有機(jī)物的礦化使得可溶性鹽濃縮,從而導(dǎo)致各處理的EC值上升[29]。堆肥結(jié)束后,T處理EC值(4.53 mS/cm)要顯著高于CK值(4.13 mS/cm)(<0.05),電導(dǎo)率上升9.69%,證明礦物的添加會增加堆體的EC值,Pan等[15]研究硅藻土對堆肥的影響中,也發(fā)現(xiàn)礦物的加入會提高堆體的EC值。
C/N綜合反應(yīng)了碳素和氮素在堆肥過程中的變化,常用于判斷堆肥的穩(wěn)定和腐熟[29]。海泡石稀釋作用雖使得海泡石處理的初始C、N含量有所下降(CK的C、N質(zhì)量分?jǐn)?shù)分別為45.49%和2.36%,而T處理的C、N質(zhì)量分?jǐn)?shù)分別為43.28%和2.26%),但各處理C/N并無明顯區(qū)別(>0.05);從整體來看,堆體C/N呈現(xiàn)先上升后下降的變化(圖2c);堆肥第3天,由于堆肥高溫期氮素?fù)p失大于碳素分解,使得C/N上升,而T處理的C/N為22.91,但與CK的23.22無顯著性差異(>0.05);隨著堆肥時間的延長,氮素上升且趨于穩(wěn)定而碳素進(jìn)一步分解,從而導(dǎo)致C/N下降;堆肥結(jié)束后,CK的TOC和TKN質(zhì)量分?jǐn)?shù)分別為42.05%和2.38%,T處理的TOC和TKN質(zhì)量分?jǐn)?shù)分別為35.76%和2.11%,CK的C、N含量皆顯著高于處理(<0.05),而其C/N(16.96)亦低于CK(17.45),降低2.81%,因此海泡石的加入對堆體的穩(wěn)定有促進(jìn)作用。
GI值可作為綜合評價堆體腐熟和毒性最直觀的指標(biāo)[27]。圖2d可見,堆肥前期,各處理GI值均較低,且堆肥第3天出現(xiàn)小幅下降(T處理為24.5%,CK為12.8%),原因在于堆肥初期堆體中堆肥有機(jī)質(zhì)不穩(wěn)定,對種子發(fā)芽影響較大[15];而隨著堆肥的繼續(xù)進(jìn)行,堆體有機(jī)物進(jìn)一步的穩(wěn)定,使得GI值穩(wěn)定上升;堆肥結(jié)束后,T處理和CK的GI值分別為0.87和0.76,都達(dá)到了堆肥腐熟以及作物可接受程度(GI>0.5)[30],而對比CK,T處理的GI值上升11.96%,顯著提高了堆體的GI值(<0.05)。整體來說,海泡石的投加雖然增加了EC值,但也促進(jìn)堆體有機(jī)質(zhì)的穩(wěn)定,并在一定程度上稀釋了堆體毒性,因此通過GI值可見,海泡石加入有利于減少堆肥最終產(chǎn)物的生物毒性。
DOM含量的變化和堆體的穩(wěn)定性以及生物毒性有密切聯(lián)系[19]。從圖3a可見,T處理和CK的DOM含量(以碳計)在高溫期出現(xiàn)了短暫的上升,這是由于前期微生物活性強(qiáng),易分解且不溶水的有機(jī)物降解所致;而高溫期后,易被微生物利用的碳源不足,從而DOM含量逐漸下降[31]。與CK相比,T處理的DOM含量變化要更平緩,雖然兩者DOM值都在第3 天分別達(dá)到最高值(T處理為11.36 g/kg,CK為13.78 g/kg),但T處理的DOM值要更低,且下降趨勢更加緩慢。有機(jī)質(zhì)的極性官能團(tuán)可以先通過配體交換和黏土礦物表面羥基進(jìn)行簡單結(jié)合,并在礦物表面形成較為穩(wěn)定的內(nèi)層絡(luò)合物,從而保護(hù)有機(jī)質(zhì)不被分解[32]。海泡石的加入可能通過其吸附作用保護(hù)了DOM不被分解,使得DOM的分解更加緩慢,而也可能是海泡石處理的溫度略低的原因(圖2a)。堆肥結(jié)束后,T處理和CK的DOM值分別為6.00、6.51 g/kg,海泡石加入顯著降低DOM含量(<0.05),相比CK下降了7.84%,增強(qiáng)了堆體的穩(wěn)定性,這與Wang等[28]研究膨潤土對堆肥的影響結(jié)果相似。
胡敏酸作為腐殖質(zhì)的組成成分之一,由于具有更大的分子量和芳香性結(jié)構(gòu),使得胡敏酸與腐殖質(zhì)的比例(PHA)的改變不僅代表腐殖質(zhì)組成的變化,也反應(yīng)了堆體的腐熟情況[33]。PHA總體呈現(xiàn)逐漸上升的趨勢(圖3b),堿提取腐殖質(zhì)中胡敏酸占比逐步提升,證明了堆體有機(jī)質(zhì)腐殖化程度的增強(qiáng),而堆體有機(jī)質(zhì)的穩(wěn)定性也隨之提高。堆肥結(jié)束后,相比CK,T處理的PHA值(60%)要高于CK(55%)(<0.05),增長9.71%,具有高分子量的胡敏酸占比的提高說明了海泡石處理中有機(jī)質(zhì)穩(wěn)定性的提升。同樣,Ren等[16]發(fā)現(xiàn)不同比例硅藻土加入堆體,可改善堆體結(jié)構(gòu),增加微生物活性,從而出現(xiàn)胡敏酸含量提高22.87%情況。
2.3.1 堆肥過程中的熒光峰變化
從圖4堆肥過程的三維熒光光譜可以看出,海泡石處理和CK均存在4個熒光峰,其激發(fā)波長(Ex)/發(fā)射波長(Em)分別為:275 nm/335 nm(峰A,與微生物有關(guān)的蛋白類物質(zhì))、285 nm/420 nm(峰B,類腐殖酸物質(zhì))、335 nm/420 nm(峰C,類腐殖酸物質(zhì))以及230 nm/400~450 nm(峰D,類富里酸物質(zhì))[34-36]。
堆肥開始,CK和T處理熒光圖中,均只存在明顯的峰A,其余峰并不明顯;在堆肥第7天,T處理熒光圖中峰B、峰C和峰D均出現(xiàn)并具有較高的熒光峰強(qiáng),而CK僅峰D較為明顯;隨著堆肥繼續(xù)進(jìn)行,各處理的峰A的熒光強(qiáng)度逐漸下降,更長波長峰B、峰C和峰D更加明顯;研究表明,由于更長波長的熒光峰與結(jié)構(gòu)聚合度更高的有機(jī)質(zhì)密切相關(guān),由此峰A下降而其他峰的上升,熒光圖的變化說明堆肥過程中DOM的組成成分從易降解、低芳香性結(jié)構(gòu)向著難降解、高芳香性的結(jié)構(gòu)轉(zhuǎn)化[37],而此過程和堆體腐熟過程和腐殖化過程一致。另外,海泡石的加入對第7天的DOM的熒光峰影響顯著的原因可能在于其對小分子有機(jī)質(zhì)的凝聚作用,使得水溶性的易降解的有機(jī)物在堆肥初期能快速的向難生物降解的物質(zhì)轉(zhuǎn)化[38]。而還需指出的是,由于單純的熒光譜圖不能反應(yīng)DOM中所有成分,對比圖4d可見,在同等尺度以及相同熒光峰的情況下,總的熒光強(qiáng)度有所差異,還需對DOM的熒光基團(tuán)的具體情況進(jìn)行更深入分析。
2.3.2 堆肥過程中3D-EEM的平行因子分析
根據(jù)平行因子分析將DOM分成3個組分(圖5):組分1(component 1,C1)Ex/Em為240(325) nm/410~425 nm,與富里酸物質(zhì)類似[39];組分2(component 2,C2)Ex/Em為<230(275) nm/330 nm,與蛋白質(zhì)物質(zhì)類似[40];組分3(component 3,C3)Ex/Em為260(350) nm/460~475 nm,與腐殖酸物質(zhì)類似[41]。同時,根據(jù)組分熒光峰的位置可知,DOM中各個組分的腐殖化程度順序為[42]:C3>C1>C2。
DOM樣品EEM的每個組分的最大熒光強(qiáng)度(maximum fluorescence intensity,max)值作為熒光組分的信號強(qiáng)度的得分值,其值反應(yīng)堆肥不同階段樣品中組分的相對濃度。從圖6可知,3個組分總的max值大小存在差異,對比第21天的處理與CK,發(fā)現(xiàn)T處理的總max值(9 220)要遠(yuǎn)低于CK(15 099),從而導(dǎo)致圖4d在同尺度下存在差異。因此,在固定了DOM濃度為3 mg/L后,對比各組分max值的占比情況,更能反映DOM腐殖化程度。堆肥第0天,T處理和CK主要以C2為主,C3和C1占比較低,與圖4a的出峰情況一致;隨著堆肥過程進(jìn)行,C2的max值以及占比下降明顯,同時伴隨著C1和C3的上升,證明了在堆肥腐熟化進(jìn)程中易降解有機(jī)物在被分解利用的同時,也存在著向難分解有機(jī)物轉(zhuǎn)化的過程;堆肥第7天,T處理的C2占比(33.18%)要明顯低于CK(39.05%),而處理的C3占比相應(yīng)的提升,與圖4b的熒光強(qiáng)度變化相符;總體上,DOM的成分變化和堆體的穩(wěn)定性相關(guān),而海泡石的加入對DOM作用不僅在于促進(jìn)了不穩(wěn)定的C2含量的快速下降,同時也加速更穩(wěn)定的C3含量增加,從而加速了堆體解毒,而上文中反應(yīng)堆體植物毒性的GI值(圖2d)也進(jìn)一步驗證了此過程。
堆肥過程中的基本參數(shù)的相關(guān)性的正負(fù)關(guān)系較為固定,海泡石的加入對堆肥的相關(guān)性影響主要在其值大小的變化。如表2表3所示,從GI來看,CK中GI值與DOM(=?0.890,<0.01)和TOC(=?0.961,<0.01)均呈極顯著負(fù)相關(guān);而與HA(=0.859,<0.05)和熒光組分C1(=0.784,<0.05)均呈顯著正相關(guān),這再一次證明了易降解有機(jī)質(zhì)的分解和穩(wěn)定有機(jī)質(zhì)的生成是堆肥解毒的重要因素。同時,DOM中熒光C3組分作為芳香性更高的成分與堆肥理化指標(biāo)中的HA以及TOC具有較強(qiáng)相關(guān)性。海泡石處理中HA與C3呈顯著正相關(guān)(=0.836,<0.05),與TOC則呈顯著負(fù)相關(guān)(=?0.963,<0.01),而CK的TOC與C3之間相關(guān)性并沒有達(dá)到顯著(?0.653,>0.05)。從而說明海泡石加入使得TOC分解與HA產(chǎn)生具有更強(qiáng)的關(guān)聯(lián)性。
注:*,**分別表示相關(guān)性系數(shù)的顯著性,<0.05,<0.01
Note: * and ** represent significant correlation coefficients at<0.05,<0.01 levels
表3 T處理熒光組分和堆肥理化指標(biāo)之間的相關(guān)性分析
注:*,**分別表示相關(guān)性系數(shù)的顯著性,<0.05,<0.01
Note: * and ** represent significant correlation coefficients at<0.05,<0.01 levels
結(jié)合DOM含量、熒光成分以及相關(guān)性變化可知,海泡石的加入改變了碳素轉(zhuǎn)化過程,其變化與微生物對有機(jī)質(zhì)的降解以及易降解有機(jī)物的聚合密不可分。海泡石加入在一定程度上抵御了微生物對小分子有機(jī)物的分解,從而出現(xiàn)DOM含量下降變緩(圖3a),同時由于高比表面的海泡石對有機(jī)質(zhì)的吸附以及凝聚作用使得DOM中復(fù)雜結(jié)構(gòu)的熒光組分含量得以提高(圖6)。海泡石在堆肥過程對易降解有機(jī)物的綜合作用,減少了堆體的生物毒性,提高堆體作為有機(jī)肥的利用價值。
1)海泡石添加的堆體出現(xiàn)了電導(dǎo)率提高和溫度降低的情況,但同時卻使得C/N降低2.81%,種子發(fā)芽指數(shù)上升11.96%,增加了堆體的腐熟。
2)海泡石加入堆肥降低了7.84%的溶解性有機(jī)質(zhì)含量且高芳香性組分增加明顯,同時提高了9.71%的胡敏酸比例,堆體穩(wěn)定性增強(qiáng)。
3)海泡石添加的堆體中胡敏酸與高芳香性組分呈更顯著正相關(guān)(=0.836,<0.05),且與總有機(jī)碳呈更顯著負(fù)相關(guān)(=?0.929,<0.01),從而判斷海泡石添加對堆肥碳素轉(zhuǎn)化途徑的影響在于,有機(jī)質(zhì)分解同時促進(jìn)了穩(wěn)定性更高的有機(jī)物產(chǎn)生。
[1] 郭冬生,彭小蘭,龔群輝,等. 畜禽糞便污染與治理利用方法研究進(jìn)展[J]. 浙江農(nóng)業(yè)學(xué)報,2012,24(6):1164-1170.
Guo Dongsheng, Peng Xiaolan, Gong Qunhui, et al. Pollution of livestock and poultry feces and countermeasures[J]. Journal of Zhejiang Agriculture, 2012, 24(6): 1164-1170. (in Chinese with English abstract)
[2] 李旭,路明藝,師曉爽,等. 多孔填充劑促進(jìn)牛糞秸稈高溫恒溫堆肥有機(jī)質(zhì)降解減少氮損失[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(增刊1):132-137.
Li Xu, Lu Mingyi, Shi Xiaoshuang, et al. Accelerating organic matter degradation and reducing NH3emission during constant high temperature composting of cattle manure and corn straw with addition of porous [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 132-137. (in Chinese with English abstract)
[3] Pagans Estela, Barrena Raquel, Font Xavier, et al. Ammonia emissions from the composting of different organic wastes, dependency on process temperature[J]. Chemosphere, 2006, 62(9): 1534-1542.
[4] Jonathan W-C Wong, Shun On Fung, Ammaiyappan Selvam. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting[J]. Bioresource Technology, 2009, 100(13): 3324-3331.
[5] Bougnom B P, Mair J, Etoa F X, et al. Composts with wood ash addition: A risk or a chance for ameliorating acid tropical soils?[J]. Geoderma, 2009, 153(3): 402-407.
[6] Jukka M Kurola, Mona Arnold, Merja H Kontro, et al. Wood ash for application in municipal biowaste composting[J]. Bioresource Technology, 2011, 102(8): 5214-5220.
[7] Chen Yingxu, Huang Xiangdong, Han Zhiying, et al. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting[J]. Chemosphere, 2009, 78(9): 1177-1181.
[8] Liu Ling, Guo Xiaoping, Wang Shuqi, et al. Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts[J]. Ecotoxicology and Environmental Safety, 2018, 150: 270-279.
[9] Jiang Tao, Ma Xuguang, Yang Juan, et al. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting[J]. Bioresource Technology, 2016, 217: 219-226.
[10] Jiang Jishao, Huang Yimei, Liu Xueling, et al. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting[J]. Waste Management, 2014, 34(9): 1595-1602.
[11] Zhao Yi, Zhao Yue, Zhang Zhechao, et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68: 64-73.
[12] Liu Wei, Huo Rong, Xu Junxiang, et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting[J]. Bioresource Technology, 2017, 235: 43-49.
[13] 任秀娜,王權(quán),趙軍超,等. 添加鈣基膨潤土對豬糞堆肥中水溶性有機(jī)物光譜特征的影響[J]. 光譜學(xué)與光譜分析,2018,38(6):1856-1862.
Ren Xiuna, Wang Quan, Zhao Junchao, et al. The effect of Ca-bentonite on spectra of dissolved organic matter during pig manure composting[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1856-1862. (in Chinese with English abstract)
[14] 趙軍超,王權(quán),任秀娜,等. 鈣基膨潤土輔助對堆肥及土壤Cu、Zn形態(tài)轉(zhuǎn)化和白菜吸收的影響[J]. 環(huán)境科學(xué),2018,39(4):1926-1933.
Zhao Junchao, Wang Quan, Ren Xiuna, et al. Effect of Ca-bentonite on Cu and Zn forms in compost and soil, and their absorption by Chinese cabbage[J]. Environmental Science, 2018, 39(4): 1926-1933. (in Chinese with English abstract)
[15] Pan Junting, Li Ronghua, Zhai Limei, et al. Influence of palygorskite addition on biosolids composting process enhancement[J]. Journal of Cleaner Production, 2019, 217: 371-379.
[16] Ren Xiuna, Wang Quan, Awasthi Mukesh Kumar, et al. Improvement of cleaner composting production by adding Diatomite: From the nitrogen conservation and greenhouse gas emission[J]. Bioresource Technology, 2019, 286: 121377.
[17] Hsieh Yuch Ping. Soil organic carbon pools of two tropical soils inferred by carbon signatures[J]. Soil Science Society of America Journal, 1996, 60(4): 1117.
[18] Johnston Cliff T, Premachandra Gnanasiri S, Szabo Tamas, et al. Interaction of biological molecules with clay minerals: A combined spectroscopic and sorption study of lysozyme on saponite[J]. Langmuir, 2012, 28(1): 611-619.
[19] Bashir Saqid, Ali Umeed, Shaaban Muhammad, et al. Role of sepiolite for cadmium (Cd) polluted soil restoration and spinach growth in wastewater irrigated agricultural soil[J]. Journal of Environmental Management, 2020, 258: 110020.
[20] Said-Pullicino D, Gigliotti G. Oxidative biodegradation of dissolved organic matter during composting[J]. Chemosphere, 2017, 68(6): 1030-1040.
[21] Zhao Xinyu, He Xiaosong, Xi Beidou, et al. The evolution of water extractable organic matter and its association with microbial community dynamics during municipal solid waste composting[J]. Waste Management, 2016, 56: 79-87.
[22] 曹云,黃紅英,吳華山,等. 畜禽糞便超高溫堆肥產(chǎn)物理化性質(zhì)及其對小白菜生長的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(12):251-257.
Cao Yun, Huang Hongying, Wu Huashan, et al. Physico- chemical properties of hyperthermophilic composting from livestock manures and its effects on growth of Chinese cabbage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 251-257. (in Chinese with English abstract)
[23] 蔡函臻,寧西翠,王權(quán),等. 堿性固體對污泥的調(diào)質(zhì)堆肥影響及產(chǎn)品對土壤的改良潛力[J]. 環(huán)境科學(xué),2016,37(12):4848-4856.
Cai Hanzhen, Ning Xicui, Wang Quan, et al. Effect of alkali solids amendment on sewage sludge aerobic composting and the potential of related products on infertile soil amelioration[J]. Environmental Science, 2016, 37(12): 4848-4856. (in Chinese with English abstract)
[24] 李丹,何小松,席北斗,等. 堆肥過程水溶性有機(jī)物組成和結(jié)構(gòu)演化研究[J]. 環(huán)境科學(xué),2016,37(9):3660-3669.
Li Dan, He Xiaosong, Xi Beidou, et al. Composition and evolution characteristics of dissolved organic matter during composting process[J]. Environmental Science, 2016, 37(9): 3660-3669. (in Chinese with English abstract)
[25] 陳雪霜,江韜,盧松,等. 典型水庫型湖泊中CDOM吸收及熒光光譜變化特征:基于沿岸生態(tài)系統(tǒng)分析[J]. 環(huán)境科學(xué),2016,37(11):4168-4178.
Chen Xueshuang, Jiang Tao, Lu Song, et al. Spectral characteristics of chromophoric dissolved organic matter (CDOM) from a typical reservoir lake from inland of three gorges reservoir areas: In the view of riparian ecosystem analysis[J]. Environmental Science, 2016, 37(11): 4168-4178. (in Chinese with English abstract)
[26] 李季,彭生平. 堆肥工程實用手冊[M]. 北京,化學(xué)工業(yè)出版社,2011.
[27] 吳傳棟. 基于碳源調(diào)控的污泥堆肥氮素轉(zhuǎn)化及氨同化作用機(jī)制研究[D]. 哈爾濱,哈爾濱工業(yè)大學(xué),2018.
Wu Chuandong. Study On Nitrogen Transformation and Ammonia Assimilation during Sewage Sludge Composting Based on Carbon Source Control[D]. Harbin, Harbin Institute of Technology, 2018. (in Chinese with English abstract)
[28] Wang Quan, Li Ronghua, Cai Hanzhan, et al. Improving pig manure composting efficiency employing Ca-bentonite[J]. Ecological Engineering, 2016, 87: 157-161.
[29] Li Ronghua, Wang Jim J, Zhang Zengqiang, et al. Nutrient transformations during composting of pig manure with bentonite[J]. Bioresource Technology, 2012, 121: 362-368.
[30] Paredes C, Cegarra J, Bernal M P, et al. Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties[J]. Environment International, 2005, 31(2): 305-312.
[31] Yang Yajun, Du Wei, Ren Xiuna, et al. Effect of bean dregs amendment on the organic matter degradation, humification, maturity and stability of pig manure composting[J]. The Science of the Total Environment, 2020, 708(15): 134623
[32] Kleber M, Sollins P, Sutton R. A conceptual model of organo- mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(1): 9-24.
[33] Jouraiphy Abdelmajid, Amir Soumia, Gharous Mohamed El, et al. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste[J]. International Biodeterioration & Biodegradation, 2005, 56(2): 101-108.
[34] Chen Wen, Westerhoff Paul, Leenheer Jerry A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2005, 37(24): 5701-5710.
[35] 曾鳳,霍守亮,席北斗,等. 豬場廢水厭氧消化液后處理過程中DOM變化特征[J]. 環(huán)境科學(xué),2011,32(6):1687-1695.
Zeng Feng, Huo Shouliang, Xi Beidou, et al. Characteristics variations of dissolved organic matter from digested piggery wastewater treatment process[J]. Environmental Science, 2011, 32(6): 1687-1695. (in Chinese with English abstract)
[36] 劉曉明,余震,周普雄,等. 污泥超高溫堆肥過程中DOM結(jié)構(gòu)的光譜分析[J]. 環(huán)境科學(xué),2018,39(8):3807-3815.
Liu Xiaoming, Yu Zhen, Zhou Puxiong, et al. Spectroscopic characterization of DOM during hyperthermophilic composting of sewage sludge[J]. Environmental Science, 2018, 39(8): 3807-3815. (in Chinese with English abstract)
[37] He Xiaosong, Xi Beidou, Wei Ziming, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste[J]. Chemosphere, 2011, 82(4): 541-548.
[38] He Xiaosong, Xi Beidou, Li Xiang, et al. Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification[J]. Chemosphere, 2013, 93(9): 2208-2215.
[39] Yu Guanghui, Luo Yihong, Wu Minjie, et al. PARAFAC modeling of fluorescence excitation-emission spectra for rapid assessment of compost maturity[J]. Bioresource Technology, 2010, 101(21): 8244-8251.
[40] Lu Fan, Chang Cheng-Hsuan, Lee Duujong , et al. Dissolved organic matter with multi-peak fluorophores in landfill leachate[J]. Chemosphere, 2009, 74(4): 575-582.
[41] Baghoth S A, Sharma S K, Amy G I. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2): 797-809.
[42] Zhao Yue, Wei Yuquan, Zhang Yun, et al. Roles of composts in soil based on the assessment of humification degree of fulvic acids[J]. Ecological Indicators, 2017, 72:473-480.
Effects of sepiolite addition on pig manure compost maturity and dissolved organic matter
Zheng Wei1, Zhou Hong1, Yang Hangbo1, Huang Lei1,2, Chen Yucheng1,2, Peng Li3, Yang Zhimin1,2※
(1.,400716,;2.,,400716,;3.,401121,)
Pig manure has caused the most serious environmental pollution among various animal manure, where estimated approximately 776 million tons in each year in China. Aerobic composting can be expected as an effective technique to treat the solid organic wastes, thereby to decompose inconstant and hazardous organic matter, and futher to quickly reduce the total amount and inactivate biotoxicity of wastes. Previous reports indicated that clay minerals have observably influence on the decomposition of Organic Matter (OM) in soil system. However, the research is still lacking on the intermolecular interactions between clay minerals and OM in the composting, even though the OM was more simple and active. Taking the pig manure and poplar sawdust as raw materials, and sepiolite as a conditioner, this study aims to explore the influence of sepiolite on the stability of aerobic composting. An investigation was made on the variation in the maturity index of compost, organic matter in the different components of compost, and structure of Dissolved Organic Matter (DOM). The results showed that after sepiolite added, the maximum temperature of compost decreased obviously, and the electrical conductivity value increased by 9.69%, compared to control. However, the lower C/N (decreased by 2.81%) and higher seed germination index (increased by 11.96%) were observed with the addition of sepiolite without the negative impact of finial production, while showing better maturity. These indicators suggested that the organic fertilizers with the sepiolite addition were beneficial to the application for the farmland. Most previous studies focused on the content of DOM and humic acid, representing the stable and unstable components of OM in the compost production. Compared with the control, DOM content of compost with the addition of sepiolite was reduced by 7.84%, while the percentage of humic acid increased by 9.71%, indicating that the sepiolite can influence on the content of different components of OM, and thereby make the compost more stable. In this study, fluorescence spectra were used to represent the fluorescence characteristics of DOM, further to clarify the interactions between clay minerals and OM. An Excitation-Emission Matrices-Parallel Factor Analysis (EEM-PAFARAC) was used to quantify the proportion of DOM components. The results demonstrated that the sepiolite significantly increased the fluorescence intensity of long-wavelength peak in the fluorescence spectrum in a relatively short period, meaning that the more stable OM was produced more quickly. After the DOM components were distinguished by EEM-PAFARAC, the proportion of highly aromatic components increased significantly in the begining phase of compost with the addition of sepiolite, indicating more higher proportion in the final production. In order to explore the causes of OM transformation in composting, the correlation analysis showed that there was a more significant negative relationship between the highly aromatic component of DOM and total organic matter, compared with the control, indicating that the OM cannot decomposed, but converted into more stable OM in the sepiolite treatment. Therefore, the sepiolite as an additive can be used to reduce the biotoxicity of composting products, while to increase the degree of maturity, and the stability of compost via impacting on the structure of organic matter.
compost; manure; sepiolite; compost stability; DOM; EEM-PAFARAC
鄭威,周紅,楊航波,等. 海泡石添加對豬糞堆肥腐熟和水溶性有機(jī)質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(1):259-266.doi:10.11975/j.issn.1002-6819.2021.01.031 http://www.tcsae.org
Zheng Wei, Zhou Hong, Yang Hangbo, et al. Effects of sepiolite addition on pig manure compost maturity and dissolved organic matter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 259-266. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.031 http://www.tcsae.org
2020-10-26
2020-12-15
重慶市社會事業(yè)與民生保障科技創(chuàng)新專項重點研發(fā)項目(CSTC2017SHMS-ZDYFX0030);重慶市城市管理局項目(城管科字2018第05號);西南山地生態(tài)循環(huán)農(nóng)業(yè)國家級培育基地項目(5330200076)
鄭威,研究方向為固體廢物處理與土壤修復(fù)。Email:471587596@qq.com.
楊志敏,副教授,主要研究方向為環(huán)境污染修復(fù)與管理。Email:bear@swu.edu.cn
10.11975/j.issn.1002-6819.2021.01.031
S141.4
A
1002-6819(2021)-01-0259-08